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Abstract
We study the equilibrium system with angular velocity for the prey. This system is a
generalization of the two-species equilibrium model with Neumann type boundary
condition. Firstly, we consider the asymptotical stability of equilibrium points to the
system of ordinary differential equations type. Then, the existence of meromorphic
solutions and the stability of equilibrium points to the system of weakly coupled
meromorphic type are discussed. Finally, the existence of nonnegative meromorphic
solutions to the system of strongly coupled meromorphic type is investigated, and
the asymptotic stability of unique positive equilibrium point of the system is proved
by constructing meromorphic functions.
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1 Introduction
The equilibrium system with angular velocity is noted for its pattern-forming behavior
and has been widely used as a model for the study of obstacle problems involving reser-
voir simulation. These include the effects of noise on bifurcations, pattern selection, spa-
tiotemporal chaos, and the dynamics of defects; see, for example, [1–8] and the references
therein for details. It also has been used to model patterns in simple fluids and in a variety
of complex fluids and biological materials, such as neural tissue [3, 7]. These problems are
widely studied and very well used in many areas of mathematics and physics, see [3, 5, 6,
9]. Since it was initiated by Paul Dirac in order to get a form of quantum theory compati-
ble with special relativity, the Dirac equation has been playing a critical role in some fields
of mathematics and physics, such as quantum mechanics, Clifford analysis, and partial
differential equations.

As one of the universal equilibrium systems used in the description of pattern for-
mation in spatially extended dissipative systems, the general equilibrium differential
equation can also be found in the study of convective hydrodynamics, plasma con-
finement in toroidal devices, viscous film flow, and bifurcating solutions of the modi-
fied equilibrium differential equation [6, 10, 11]. In recent years, some references such
as Sheng et al. [12], Zhai et al. [13], Zhang [14], Wu et al. [15], Sun et al. [16], Li
et al. [17], Bai and Sun [18], Wang et al. [19], and so on, introduced many beau-
tiful patterns to satisfy practical requirements of modern computing systems with
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multi-processors. There is the potential of considering the linearization characteris-
tics to be further developed for the system of equilibrium boundary value problems.
Ardila [20] studied the existence and stability of standing waves solutions of a three-
coupled nonlinear Schrödinger system related to the Raman amplification in a plasma.
Hu and Yin [21] considered dynamics of the compressible Navier–Stokes equation in
one spatial dimension for a viscous fluid with vanishing thermal conductivity. For the
case of ideal polytropic gases, it is shown that the rarefaction waves in this medium
are stable with regards to sufficiently weak perturbations of the velocity and pressure
fields.

Motivated and inspired by the references [18–21], in this paper we further consider the
following universal equilibrium equations with nondifferentiable boundary conditions:

–�u + u = a
(|x|)|u|p–2u, x ∈ B1

u > 0, x ∈ B1,

∂u
∂ν

= 0, x ∈ ∂B1,

(1)

where B1 is the unit ball centered at the origin in R
n, n ≥ 3 and p > 2 and a ∈ L1(0, 1) is

increasing, not constant and a(r) > 0 a.e. in [0, 1].
Meanwhile, we are also interested in the equilibrium elliptic system given by

–�u + u = fu
(|x|, u, v

)
, x ∈ B1

–�v + v = fv
(|x|, u, v

)
, x ∈ B1

∂u
∂ν

=
∂u
∂ν

= 0, x ∈ ∂B1,

(2)

under suitable assumptions on f . Our assumptions do allow some supercritical nonlinear-
ities. Problems in this abstract form are often referred to as equilibrium problems. More
details on this problem class can be found in [9, 22].

Let I = {1, 2, . . . , n} be an index set, Hi be a real Hilbert space with inner product 〈·, ·〉i

and norm ‖ · ‖i, respectively. Let A : H1 → H1, B : H2 → H2, F1 : H1 × H2 → H1, and
η1 : H1 × H1 → H1 be mappings. Let ai : Hi × Hi →R be a coercive continuous map such
that

(C1) ai(σi,σi) ≥ ci‖σi‖2
i ;

(C2) |ai(�i,σi)| ≤ di‖�i‖i · ‖σi‖i

for any �i,σi ∈ Hi.
Let bi : Hi × Hi →R be a map with nondifferentiable terms such that
(C3) bi is a linear function for the first variable;
(C4) bi is a convex function;
(C5) There exists a positive constant γi satisfying

γi‖�i‖i · ‖σi‖i ≥ ai(�i,σi)

for any �i,σi ∈ Hi.
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(C6)

bi(�i,σi – wi) ≥ bi(�i,σi) – bi(�i, wi)

for any �i,σi, wi ∈ Hi.
Based on the above notations, we then define the proposed system of generalized non-

linear variational inequality problems as follows:
Find (x, y) ∈ H1 × H2 such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

〈F1(Ax, By) – f1,η1(σ1, x)〉1 + a1(x,σ1 – x) + b1(x,σ1) – b1(x, x) ≥ 0

∀σ1 ∈ H1,

〈F2(Ax, By) – f2,η2(σ2, y)〉2 + a2(y,σ2 – y) + b2(y,σ2) – b2(y, y) ≥ 0

∀σ2 ∈ H2,

(3)

where fi ∈ Hi is given for each i ∈ I .

Remark 1 There are some special cases for the model problem (3) (see [23]):
(1) If A = B = I , fi = 0, and ai(�i,σi) = 0, then (3) is equivalent to

〈
F1(x, y),η1(σ1, x)

〉
1 + b1(x,σ1) – b1(x, x) ≥ 0,

where σ1 ∈ H1.

〈
F2(x, y),η2(σ2, y)

〉
2 + b2(y,σ2) – b2(y, y) ≥ 0,

where σ2 ∈ H2.
(2) If H1 = H2 = H , fi = f2 = f , η1 = η2 = η, a1 = a2 = a, b1 = b2 = b, then (3) is reduced to

〈
F(Ax, Bx) – f ,η(v, x)

〉
+ a(x, v – x) + b(x, v) – b(x, x) ≥ 0,

where v ∈ H .

2 Preliminaries
Let us recall some basic definitions and lemmas that we need in the forthcoming analysis.

Definition 1 We say that the functional Φ satisfies the Palais–Smale condition (see [15,
24–26]) if any sequence {un}n∈N ⊂ X has a convergent subsequence provided {Φ(un)}n∈N
is bounded and Φ ′(un) → 0 as n → +∞.

Definition 2 For any λ > 0, we define the subfunctions associated with the universal equi-
librium operator (1) by (see [11])

I
τ ,λ
+ f (x) =

1
Γ (τ )

∫ x

–∞
f (ξ )(x – ξ )τ–1e–λ(x–ξ ) dξ

and the subfunctions associated with the universal equilibrium operator (2) by

I
τ ,λ
– f (x) =

1
Γ (τ )

∫ +∞

x
f (ξ )(ξ – x)τ–1e–λ(ξ–x) dξ .
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Definition 3 The positive and negative tempered equilibrium derivatives of order 0 < τ <
1 are defined as follows (see [27]):

D
τ ,λ
+ f (x) = λτ f (x) +

τ

Γ (1 – τ )

∫ x

–∞
f (x) – f (ξ )
(x – ξ )τ+1 e–λ(x–ξ ) dξ ,

D
τ ,λ
– f (x) = λτ f (x) +

τ

Γ (1 – τ )

∫ +∞

x

f (x) – f (ξ )
(ξ – x)τ+1 e–λ(ξ–x) dξ ,

for any λ > 0, respectively, where f : R →R.

Define the Banach space

W τ ,2
λ (R) =

{
f ∈ L2(R) :

∫

R

(
λ2 + ω2)τ ∣∣̂f (ω)

∣
∣2 dω < ∞

}

with the norm

‖f ‖τ ,λ =
(∫

R

(
λ2 + ω2)τ ∣∣̂f (ω)

∣∣2 dω

)1/2

.

For any f ∈ W τ ,2
λ (R), let Dτ ,λ

± f (x) denote the subfunctions associated with the universal
equilibrium operator (1) with Fourier transform (λ± iω)τ f̂ (ω) (see [23]), where the Fourier
transform of u(x) is defined as follows:

F (u)(ξ ) =
∫ ∞

–∞
e–ix·ξ u(x) dx.

Now we state the following known results.

Lemma 1 (see [23])
(i)

D
τ ,λ
± I

τ ,λ
± f (x) = f (x)

for any τ ,λ > 0 and f ∈ L2(R) and

I
τ ,λ
± D

τ ,λ
± f (x) = f (x)

for any f ∈ W τ ,2
λ (R).

(ii)

〈
f ,Dτ ,λ

+ g
〉
L2(R) =

〈
D

τ ,λ
– f , g

〉
L2(R)

for any τ ,λ > 0 and f , g ∈ W τ ,2
λ (R).

Lemma 2 (see [2])
(i) For any τ ,λ > 0 and p ≥ 1, Iτ ,λ

± : Lp(R) → Lp(R) are bounded equilibrium operators
with

∥∥Iτ ,λ
± f

∥∥
Lp(R) ≤ λ–τ‖f ‖Lp(R).
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(ii)

I
τ ,λ
± I

β ,λ
± f (x) = I

τ+β ,λ
± f (x)

for any τ ,β ,λ > 0 and f ∈ Lp(R).
(iii)

〈
f , Iτ ,λ

+ g
〉
L2(R) =

〈
I
τ ,λ
– f , g

〉
L2(R)

for any τ ,λ > 0 and f , g ∈ L2(R).

Next, for 0 < τ < 1, we define a fractional Sobolev space Hτ (R) as follows:

Hτ (R) = C∞
0 (R)

‖·‖τ

endowed with

‖u‖τ =
(∫

R

∣
∣u(t)

∣
∣2 dt +

∫

R

|ω|2τ
∣
∣̂u(ω)

∣
∣2 dω

)1/2

. (4)

It follows that

2
τ–1

2 ‖u‖τ ≤ ‖u‖τ ,1 ≤ ‖u‖τ , (5)

‖u‖τ ,1 ≤ ‖u‖τ ,λ ≤ λτ‖u‖τ ,1, (6)

‖u‖τ ,λ < ‖u‖τ ,1 < λ–τ‖u‖τ ,λ (7)

for 0 < τ < 1, where ‖u‖τ ,1 is the norm on W τ ,2
1 (R), and so W τ ,2

1 (R) = Hτ (R) with equivalent
norms.

Lemma 3 (see [5, 18]) Let τ > 1/2. Then any u ∈ W τ ,2
λ (R) is uniformly continuous, bounded

and there exists a constant C = Cτ such that

sup
t∈R

∣∣u(t)
∣∣ ≤ C‖u‖τ ,λ. (8)

Remark 2 From Lemma 3 and (5)–(7), we have the following implication: if u ∈ W τ ,2
λ with

1
2 < τ < 1, then u ∈ Lq(R) for all q ∈ [2,∞) as

∫

R

∣∣u(t)
∣∣q dt ≤ ‖u‖q–2

∞ ‖u‖2
L2(R) ≤ 21–τ Cq–2‖u‖q

τ ,λ.

Remark 3 The imbedding of W τ ,2
λ in Lq(–T , T) is compact for q ∈ (2,∞) and any T > 0

(see [3]).

3 Existence and convergence
In this section, we prove the existence of solution of (3) and discuss the convergence of
the sequence.
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Theorem 1 Assume that u is a critical point of

I(w) := ψ(w) –
1
p

∫

B1

a
(|x|)|w|p dx. (9)

If there exists v ∈ Dom(ψ) satisfying the equilibrium equation

–�v + v = a
(|x|)|u|p–2u, x ∈ B1

∂v
∂ν

= 0, x ∈ ∂B1,
(10)

then u is a meromorphic solution of (3).

Proof Assume that {�n}n∈N ⊂ W τ ,2
λ (R) is a sequence such that {Φ(�n)}n∈N is bounded and

Φ ′(�n) → 0 as n → ∞. Then there exists a positive constant D such that

∣∣Φ(�n)
∣∣ ≤ D and

∥∥Φ ′(�n)
∥∥

(W τ ,2
λ (R))∗ ≤ D (11)

for any n ∈ N, where (W τ ,2
λ (R))∗ is the dual space of W τ ,2

λ (R).
Firstly, we show that {�n}n∈N is bounded. Without loss of generality, we assume that

inf
n

‖�n‖τ ,λ = η > 0,

denote by � = �(η) the number corresponding to δ = η2 in (C1) such that

M
(‖�n‖2

τ ,λ
) ≥ � (12)

for all n.
In view of (C2) and (12), one gets

D + D‖�n‖τ ,λ ≥ Φ(�n) –
1
μ

Φ ′(�n)�n

=
1
2

M̂
(‖�n‖2

τ ,λ
)

–
1
μ

M
(‖�n‖2

τ ,λ
)‖�n‖2

τ ,λ

–
1
μ

∫

R

(
μF

(
t,�n(t)

)
– f

(
t,�n(t)

)
�n(t)

)
dt

≥
(

1
2Υ

–
1
μ

)
M

(‖�n‖2
τ ,λ

)‖�n‖2
τ ,λ

≥ �

(
1

2Υ
–

1
μ

)
‖�n‖2

τ ,λ.

Since μ > 2Υ , the boundedness of {�n}n∈N follows directly. So there exists a subsequence
{�n}n∈N and u ∈ W τ ,2

λ such that

�n ⇀ u weakly in W τ ,2
λ (R), (13)
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which yields

Φ ′(�n)(�n – �) = M
(‖�n‖2

τ ,λ
)∫

R

(
D

τ ,λ
+ �nD

τ ,λ
+ (�n – �)

)
dt

–
∫

R

f (t,�n)(�n – �) dt → 0 (14)

as n → ∞.
Now we show that

lim
n→∞

∫

R

f (t,�n)(�n – �) dt = 0.

To this end, by (13), there exists some positive constant d such that

‖�n‖τ ,λ < d and ‖u‖τ ,λ < d, for n ∈N,

�n → u strongly in Lq(R) and a.e. in R.

Moreover, (C4) implies that there exists a positive constant T such that

f (t,�n) ≤ ε|�n|q–1 (15)

for any ε > 0 and |t| > T .
Then, by using Remark 2 and Young’s inequality, we obtain

∣
∣∣
∣

∫

R

f (t,�n)(�n – �) dt
∣
∣∣
∣

≤
∫

R

∣
∣f (t,�n)

∣
∣|�n – u|dt

≤
∫ T

–T

∣∣f (t,�n)
∣∣|�n – u|dt +

∫

|t|>T

∣∣f (t,�n)
∣∣|�n – u|dt

≤ ε‖�n‖∞ + ε

∫

|t|>T
|�n|q–1|�n – u|dt

≤ εC‖�n‖τ ,λ + ε

∫

|t|>T

(
q – 1

q
|�n|q +

1
μ

|�n – u|q
)

dt

≤ εC‖�n‖τ ,λ +
q – 1

q
ε21–τ Cq–2‖�n‖q

τ ,λ + ε
1
μ

21–τ Cq–2‖�n – u‖q–2
τ ,λ

≤ εCd +
q – 1

q
ε21–τ Cq–2dq + ε

1
μ

21–τ Cq–2‖�n – u‖q–2
τ ,λ

for large enough n from (8).
Then

lim
n→∞

∫

R

f (t,�n)(�n – �) dt = 0.
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Therefore, we have

M
(‖�n‖2

τ ,λ
)∫

R

(
D

τ ,λ
+ �nD

τ ,λ
+ (�n – �)

)
dt → 0

from (14) as n → ∞.
Thus, by the boundedness of M(‖�n‖2

τ ,λ), one can get

∫

R

(
D

τ ,λ
+ �nD

τ ,λ
+ (�n – �)

)
dt → 0 (16)

from (12) as n → ∞.
In a similar manner, we can get

∫

R

(
D

τ ,λ
+ uDτ ,λ

+ (�n – �)
)

dt → 0 (17)

as n → ∞.
Combining (16) and (17), we obtain that

∫

R

(
D

τ ,λ
+ (�n – �)Dτ ,λ

+ (�n – �)
)

dt → 0

as n → ∞.
Hence,

‖�n – u‖τ ,λ → 0

as n → ∞, and then Φ satisfies the Palais–Smale condition. �

Theorem 2 Let the following two conditions hold:
(1) ∀σi,�i ∈ Hi, ηi(σi,�i) = –ηi(�i,σi);
(2) ai : Hi × Hi →R satisfies (C1) and (C2), bi : Hi × Hi →R with (C3)–(C6).
Moreover, we have the following conditions:

0 <
1

σ1 + ρ1c1

[
δ1

√
1 – 2ρ1τ1 + ρ2

1β2
1 + ρ1γ1

]
+

ρ2δ2ξ2

σ2 + ρ2c2
< 1, (18)

0 <
1

σ2 + ρ2c2

[
δ2

√
1 – 2ρ2τ2 + ρ2

2β2
2 + ρ2γ2

]
+

ρ1δ1ξ1

σ1 + ρ1c1
< 1. (19)

Then the sequence {(�n,σn)}n≥0 converges to (�∗,σ ∗), where (�∗,σ ∗) is the meromorphic
solution of (3).

Proof It follows from (18) and (19) that

〈
�n – �n–1,η1(σ1,�n)

〉
1 + ρ1

〈
F1(A�n–1, Bσn–1) – f1,η1(σ1,�n)

〉
1

+ ρ1
[
a1(�n,σ1 – �n)

]
+ ρ1

[
b1(�n–1,σ1) – b1(�n–1,�n)

] ≥ 0, (20)
〈
σn – σn–1,η2(σ2,σn)

〉
2 + ρ2

〈
F2(A�n–1, Bσn–1) – f2,η2(σ2,σn)

〉
2

+ ρ2
[
a2(σn,σ2 – σn)

]
+ ρ2

[
b2(σn–1,σ2) – b1(σn–1,σn)

] ≥ 0 (21)

for any (σ1,σ2) ∈ H1 × H2.
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If we take σ1 = �n+1 in (20) and σ1 = �n in (21), respectively, then

〈
�n – �n–1,η1(�n+1,�n)

〉
1 + ρ1

〈
F1(A�n–1, Bσn–1) – f1,η1(�n+1,�n)

〉
1

+ ρ1
[
a1(�n,�n+1 – �n)

]
+ ρ1

[
b1(�n–1,�n+1) – b1(�n–1,�n)

] ≥ 0, (22)
〈
�n+1 – �n,η1(�n,�n+1)

〉
1 + ρ1

〈
F1(A�n, Bσn) – f1,η1(�n,�n+1)

〉
1

+ ρ1
[
a1(�n+1,�n – �n+1)

]
+ ρ1

[
b1(�n,�n) – b1(�n,�n+1)

] ≥ 0. (23)

Adding (22) and (23), we obtain that

〈
�n – �n+1,η1(�n,�n+1)

〉
1

≤ 〈
�n–1 – �n,η1(�n,�n+1)

〉
1 – ρ1

〈
F1(A�n–1, Bσn–1) – F1(A�n, Bσn),η1(�n,�n+1)

〉
1

– ρ1
[
a1(�n – �n+1,�n – �n+1)

]
+ ρ1

[
b1(�n–1 – �n,�n+1) + b1(�n – �n–1,�n)

]

≤ 〈
�n–1 – �n – ρ1

[
F1(A�n–1, Bσn–1) – F1(A�n, Bσn)

]
,η1(�n,�n+1)

〉
1

– ρ1
[
a1(�n – �n+1,�n – �n+1)

]
+ ρ1

[
b1(�n – �n–1,�n – �n+1)

]
.

Since η1 is σ1-strongly monotone and δ1-Lipschitz continuous and a1 satisfies (C1), we
have

σ1‖�n – �n+1‖2
1

≤ ∥∥�n–1 – �n – ρ1
[
F1(A�n–1, Bσn–1) – F1(A�n, Bσn)

]∥∥
1

∥∥η1(�n,�n+1)
∥∥

1

– ρ1c1‖�n – �n+1‖2
1 + ρ1γ1‖�n – �n–1‖1‖�n – �n+1‖1

≤ δ1
∥∥�n–1 – �n – ρ1

[
F1(A�n–1, Bσn–1) – F1(A�n, Bσn)

]∥∥
1‖�n – �n+1‖1

– ρ1c1‖�n – �n+1‖2
1 + ρ1γ1‖�n – �n–1‖1‖�n – �n+1‖1,

which implies that

‖�n – �n+1‖1

≤ 1
σ1 + ρ1c1

(
δ1

∥∥�n–1 – �n – ρ1
[
F1(A�n–1, Bσn–1) – F1(A�n, Bσn–1)

]∥∥
1

+ ρ1δ1
∥
∥F1(A�n, Bσn–1) – F1(A�n, Bσn)

∥
∥

1 + ρ1γ1‖�n – �n–1‖1
)
. (24)

So
∥∥�n–1 – �n – ρ1

[
F1(A�n–1, Bσn–1) – F1(A�n, Bσn–1)

]∥∥2
1

= ‖�n–1 – �n‖2
1 – 2ρ1

〈
F1(A�n–1, Bσn–1) – F1(A�n, Bσn–1),�n–1 – �n

〉
1

+ ρ2
1
∥∥F1(A�n–1, Bσn–1) – F1(A�n, Bσn–1)

∥∥2
1

≤ (
1 – 2ρ1τ1 + ρ2

1β2
1
)‖�n–1 – �n‖2

1 (25)

and

∥∥F1(A�n, Bσn–1) – F1(A�n, Bσn)
∥∥

1 ≤ ξ1‖σn–1 – σn‖2. (26)
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It follows from (24), (25), and (26) that

‖�n – �n+1‖1 ≤ 1
σ1 + ρ1c1

[
δ1

√
1 – 2ρ1τ1 + ρ2

1β2
1 + ρ1γ1

]‖�n–1 – �n‖1

+
ρ1δ1ξ1

σ1 + ρ1c1
‖σn–1 – σn‖2, (27)

taking σ2 = σn+1 in (25) and σ2 = σn in (26), respectively.
Similarly, we have

‖σn – σn+1‖2 ≤ 1
σ2 + ρ2c2

[
δ2

√
1 – 2ρ2τ2 + ρ2

2β2
2 + ρ2γ2

]‖σn–1 – σn‖2

+
ρ2δ2ξ2

σ2 + ρ2c2
‖�n–1 – �n‖1. (28)

From (27) and (28), we obtain that

‖�n – �n+1‖1 + ‖σn – σn+1‖2

≤
(

1
σ1 + ρ1c1

[
δ1

√
1 – 2ρ1τ1 + ρ2

1β2
1 + ρ1γ1

]
+

ρ2δ2ξ2

σ2 + ρ2c2

)
‖�n–1 – �n‖1

+
(

1
σ2 + ρ2c2

[
δ2

√
1 – 2ρ2τ2 + ρ2

2β2
2 + ρ2γ2

]
+

ρ1δ1ξ1

σ1 + ρ1c1

)
‖σn–1 – σn‖2

≤ max{θ1, θ2}
(‖�n–1 – �n‖1 + ‖σn–1 – σn‖2

)
, (29)

where

θ1 :=
1

σ1 + ρ1c1

[
δ1

√
1 – 2ρ1τ1 + ρ2

1β2
1 + ρ1γ1

]
+

ρ2δ2ξ2

σ2 + ρ2c2
,

θ2 :=
1

σ2 + ρ2c2

[
δ2

√
1 – 2ρ2τ2 + ρ2

2β2
2 + ρ2γ2

]
+

ρ1δ1ξ1

σ1 + ρ1c1
.

Now, if we define the norm ‖ · ‖∗ on H1 × H2 by

∥∥(u, v)
∥∥∗ = ‖u‖1 + ‖v‖2

for any (u, v) ∈ H1 × H2, then we have

∥
∥(�n,σn) – (�n+1,σn+1)

∥
∥∗ ≤ max{θ1, θ2}

∥
∥(�n–1,σn–1) – (�n,σn)

∥
∥∗. (30)

By using (18) and (19), it follows that θ1, θ2 ∈ (0, 1). Hence, (30) implies that {(�n,σn)} is
a Halton sequence in H1 × H2.

Let (�n,σn) → (�∗,σ ∗) in H1 × H2 as n → ∞. Therefore,

〈
F1

(
A�∗, Bσ ∗) – f1,η1

(
σ1,�∗)〉

1 + a1
(
�∗,σ1 – �∗) + b1

(
�∗,σ1

)
– b1

(
�∗,�∗) ≥ 0

∀σ1 ∈ H1,
〈
F2

(
A�∗, Bσ ∗) – f2,η2

(
σ2,σ ∗)〉

2 + a2
(
σ ∗,σ2 – σ ∗) + b2

(
σ ∗,σ2

)
– b2

(
σ ∗,σ ∗) ≥ 0

∀σ2 ∈ H2.
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Thus, (�∗,σ ∗) is a meromorphic solution of the model problem (3), which implies the
required conclusion. �

4 Conclusions
In this paper, we studied the equilibrium system with angular velocity for the prey. This
system was a generalization of the two-species equilibrium model with Neumann type
boundary condition. Firstly, we considered the asymptotical stability of equilibrium points
to the system of ordinary differential equations type. Then, the existence of meromorphic
solutions and the stability of equilibrium points to the system of weakly coupled meromor-
phic type were discussed. Finally, the existence of nonnegative meromorphic solutions to
the system of strongly coupled meromorphic type was investigated, and the asymptotic
stability of unique positive equilibrium point of the system was proved by constructing
meromorphic functions.
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