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Abstract
We consider equilibrium problems for an inhomogeneous two-dimensional body
with a crack and a rigid inclusion. The matrix of the body is assumed to be elastic. The
boundary condition on the crack curve is an inequality describing mutual
nonpenetration of the crack faces. We study two different equilibrium models. For the
first model, we assume that a volume rigid inclusion is described by a domain. The
second one describes a body containing a set of connected thin rigid inclusions, each
corresponding to a curve. The crack is given by the same curve in both models. We
prove that the solutions of equilibrium problems corresponding to the second model
strongly converge to the problem solution for the first model as the number of
inclusions tends to infinity.
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1 Introduction
Mathematical modeling of the processes associated with deformations of solids with inho-
mogeneities in the form of inclusions or cracks is an actively studied research topic. Tech-
nological progress leads to a remarkable growth of research interest in the development
and analysis of new mathematical models of mechanics describing the deformation of
bodies with such inhomogeneities, as well as in the improvement of computational meth-
ods for solving them. It is well known that both inclusions and cracks in loaded solids can
cause significant stress concentrations. When stress concentrations locally exceed critical
values, inclusions can delaminate at some part of the interface between different materials.
In addition, cracks may appear along the boundaries of inclusions under the influence of
the temperature regimes of the operating environment. Analysis of problems for cracked
solids is hampered by nonsmoothness of domains in which the problems are formulated.
For inhomogeneous bodies with a crack along the boundary of a rigid or elastic inclusion,
problems are further complicated by relations describing mechanical interaction of the
inclusion and the supporting matrix. For various types of rigid inclusions and cracks, dif-
ferent models of composite solids with cracks subject to both linear and nonlinear bound-
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ary conditions have been under active study [1–9]. Other models of deformable solids can
be found in [10–13].

In this paper, we follow an approach that uses inequality-type boundary conditions on
the crack faces [14–22]. This determines the nonlinearity of boundary conditions and
leads to the formulation of the problems as variational inequalities. The use of such bound-
ary conditions, in contrast to the classical formulations of the problems of the crack theory
[23, 24], does not impose an a priori known zone of contact for the crack faces. The wide
range of applicability of variational methods enables successful formulation and inves-
tigation of various problems for solids with rigid or elastic inclusions, see, for example
[25–37]. In particular, a foundational reference for two-dimensional elasticity problems
with Signorini-type conditions on a part of the boundary of a thin delaminated rigid in-
clusion is [4]. The three-dimensional case was proposed in [22]. The papers [5, 26, 31] are
devoted to optimal control problems for the shapes of cracks or rigid inclusions in elastic
bodies. As for the framework of equilibrium problems, we refer to [38] with the references
quoted therein.

In the present article, we investigate the connection between two different two-
dimensional models describing the equilibrium of an elastic body with a rigid inclusion.
Following [27], we will use the following characterizations for inclusions: the term “thin in-
clusion” is used when the dimension of the inclusion set is strictly less than the dimension
of the body, while the term “volume inclusion” is used when the dimensions coincide. For
the first model, we assume that the body contains a volume rigid inclusion described by a
domain. In addition, we suppose that the body has an interfacial crack lying on a part of the
inclusion boundary. The second model also describes equilibrium of an elastic body with
a rigid inclusion and a crack, but unlike the first case, the inclusion is modeled as a union
of a finite number of straight line segments and a curve joining these segments. The crack
is given by the same curve in both models. We prove that the equilibrium problem for
the first model can be viewed as the limit of problems corresponding to the second model
as the number of line segments in the inclusion tends to infinity. For a suitable Sobolev
space, the strong convergence of solutions of the corresponding problems is established.

2 Equilibrium problem for an elastic body with a volume rigid inclusion
Let us formulate an equilibrium problem for an elastic body containing a volume rigid
inclusion. We consider the case of the partly delaminated inclusion. In this case we have
an interfacial crack passing along the inclusion boundary. In addition, we suppose that the
rest of the crack can be situated inside the elastic medium. Consider a bounded domain
Ω ⊂ R2 with the boundary Γ ∈ C0,1. We consider a strictly inner subdomain ω of Ω (ω ⊂
Ω) having the shape of a curvilinear rectangle of width a:

ω =
{

(x1, x2) | 0 < x1 < 1, g(x1) < x2 < g(x1) + a
}

, a > 0,

where g ∈ C0,1(0, 2). The crack in the body is defined by the unclosed Lipschitz curve

γ =
{

(x1, x2) | 0 < x1 < 1 + λ, x2 = g(x1) + a
}

, γ̄ ⊂ Ω , –1 < λ < 1,

which lies on the part of the boundary of ω (see Fig. 1). We assume that the domain Ω

can be split into two subdomains Ω1 and Ω2 with Lipschitz boundaries such that γ ⊂
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Figure 1 Geometry of the cracked body with a volume rigid
inclusion

∂Ω1 ∩ ∂Ω2, meas(∂Ωi ∩ Γ ) > 0, i = 1, 2. This condition guarantees the validity of the Korn
inequality in the non-Lipschitz domain Ωγ = Ω\γ̄ . Depending on the direction of the
normal ν = (ν1,ν2) to γ , we will speak about a positive face γ + or a negative face γ – of the
curve γ .

The domain ω fits a volume rigid inclusion, while the domain Ωγ \ω corresponds to an
elastic part of the body.

Denote by W = (w1, w2) the displacement vector. Introduce the Sobolev spaces

H1,0(Ωγ ) =
{

v ∈ H1(Ωγ ) | v = 0 on Γ
}

.

Introduce the tensors describing the deformation of the body

εij(W ) =
1
2

(wi,j + wj,i), i, j = 1, 2,
(

wi,j =
∂wi

∂xj

)
,

σij(W ) = cijklεij(W ), i, j = 1, 2,

where cijkl is the given elasticity tensor, assumed to be symmetric and positive definite:

cijkl = cklij = cjikl, i, j, k, l = 1, 2, cijkl = const.,

cijklξijξkl ≥ c0|ξ |2, ∀ξ , ξij = ξji, i, j = 1, 2, c0 = const., c0 > 0.

For further consideration, we should note that the well-known Korn inequality provides
∫

Ωγ

σij(W )εij(W ) ≥ c‖W‖2, ∀W ∈ H1,0(Ωγ )2, (1)

where ‖ · ‖ = ‖ · ‖H1(Ωγ )2 , the constant c > 0 is independent of W [14, 39].

Remark 1 Inequality (1) yields the equivalence of the standard norm in the Sobolev space
H1,0(Ωγ )2 and the semi-norm determined by the left-hand side of (1).

Due to the presence of the rigid inclusion in the body, the displacement field satisfies a
special kind of relations on the corresponding domain ω. The linear space of infinitesimal
rigid displacements R(ω) is defined as follows [40]:

R(ω) =
{
ρ = (ρ1,ρ2) | ρ(x) = b(x2, –x1) + (c1, c2); b, c1, c2 ∈ R, x ∈ ω

}
.

The condition of mutual nonpenetration of opposite faces of the crack is given by [14, 40]

[W ]ν ≥ 0 on γ ,
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where [W ] = W |γ + – W |γ – is the jump of W on γ with two opposite crack faces γ +

and γ +.
In order to provide a variational formulation describing the equilibrium state for the

body with the rigid inclusion ω and the crack γ , we introduce the energy functional

Π (W ) =
1
2

∫

Ωγ

σij(W )εij(W ) –
∫

Ωγ

FW , (2)

where the vector F = (f1, f2) ∈ L2(Ωγ )2 describes the external forces acting on the body,
FW = fiwi. Consider the minimization problem:

find Uω ∈ K such that Π (Uω) = inf
W∈K

Π (W ), (3)

where

K =
{

W ∈ H1,0(Ωγ )2 | [W ]ν ≥ 0 on γ ; W |ω ∈ R(ω)
}

.

Problem (3) is known to have a unique solution Uω ∈ K , which satisfies the variational
inequality [40]

∫

Ωγ \ω
σij(Uω)εij(W – Uω) ≥

∫

Ωγ

F(W – Uω) ∀W ∈ K . (4)

We note that because of the structure of the displacement in the domain ω, we have
εij(W ) = 0, i, j = 1, 2, for all W ∈ K . Therefore, inequality (4) can be rewritten as

Uω ∈ K ,
∫

Ωγ

σij(Uω)εij(W – Uω) ≥
∫

Ωγ

F(W – Uω) ∀W ∈ K . (5)

3 Family of equilibrium problems for an elastic bodies with a thin rigid
inclusion

Along with the equilibrium problem (3), we will consider the following equilibrium prob-
lems for a special thin rigid inclusion. We start with a description of the geometrical prop-
erties of the inclusions’ shape. We suppose that Qn is a union of line segments and a special
Lipschitzian curve L, so that (see Fig. 2)

Qn =

(k=2n⋃

k=1

ln
k

)

∪L, n = 1, 2, . . . ,

where 2n is a quantity of the following similar line segments:

ln
k =

{
(x1, x2) | x1 = k/2n, g(x1) < x2 < g(x1) + a

}
, k = 1, 2, . . . 2n,

and L is the curve

L =
{

(x1, x2) | 0 ≤ x1 ≤ 1, x2 = ψ(x1)
}
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Figure 2 Geometry of the cracked body with a system of
joined thin inclusions (example of Q3)

defined by the function ψ ∈ C0,1[0, 1] satisfying

g(x1) < ψ(x1) < g(x1) + a, 0 ≤ x1 ≤ 1.

Next we fix n ∈ N and assume that the set Qn fits the rigid inclusion, so that the corre-
sponding space of infinitesimal rigid displacements has the form

R(Qn) =
{
ρ = (ρ1,ρ2) | ρ(x) = b(x2, –x1) + (c1, c2); b, c1, c2 ∈ R, x ∈ Qn

}
.

A variational statement of the equilibrium problem for an elastic body with a system of
joined thin rigid inclusions and a crack has the following form:

find Un ∈ Kn such that Π (Un,Ω) = inf
W∈Kn

Π (W ,Ω),

Kn =
{

W ∈ H1,0(Ωγ )2 | [W ]ν ≥ 0 on γ ; W |Qn ∈ R(Qn)
}

.
(6)

The existence and uniqueness of solution Un of problem (6) can be proven as in the case
for one delaminated inclusion, see [4]. The corresponding variational inequality takes the
form

Un ∈ Kn,
∫

Ωγ

σij(Un)εij(W – Un) ≥
∫

Ωγ

F(W – Un) ∀W ∈ Kn. (7)

4 Passage to the limit for the second model as the number of line inclusions
tends to infinity

We consider the limiting case when the number of line inclusions tends to infinity, i.e.,
n → ∞. We want to answer the following questions:

1. Can we get problem (4) as a limit for the family of problems (7) depending on n ∈ N?
2. Does the sequence of solutions {Un} of problems (7) converge to Uω as n → ∞ in

H1,0(Ωγ )2?
We formulate the following theorem, in the proof of which we answer the questions

posed.

Theorem 1 The sequence of solutions {Un} of problems (7) strongly converges to Uω as
n → ∞ in H1,0(Ωγ )2.

Proof We first obtain a uniform estimate for the norms of solutions. We can substitute
W = 0 for all inequalities (7), which gives

∫

Ωγ

σij(Un)εij(Un) ≤
∫

Ωγ

FUn ∀n ∈ N. (8)
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From this, using the Korn inequality, we get the following uniform estimate:

‖Un‖ ≤ C (9)

for some constant C independent of n. Since H1(Ωγ ) is a Hilbert space, we can extract a
weakly convergent subsequence (denoted as previously) {Un} to some Ũ in H1,0(Ωγ )2.

Next we will show that Ũ ∈ K . For the traces on γ +, γ –, and Qm, by the compactness
property, we have the following convergences:

Un → Ũ strongly in L2(γ )2, (10)

Un → Ũ strongly in L2(Qm)2, (11)

for all fixed m ∈ N. Bearing in mind the last relations, we can extract once again subse-
quences (retain notations) and obtain the convergences Un|γ → Ũ|γ , Un|Qm → Ũ|Qm a.e.
on γ ± and Qm. This fact allows us to pass to the limit in the following inequality:

[Un]ν ≥ 0 on γ as n → ∞.

This leads to [Ũ]ν ≥ 0 on γ .
It remains to prove that Ũ ∈ R(ω) to show that Ũ belongs to K . For instance, we fix some

natural number m. The convergence (11) allows us to conclude that each of the numerical
sequences {bn}, {cn

1}, {cn
2} defining the structure of ρn on Qm is bounded in absolute value.

Thus, we can extract subsequences (retain notation) such that

bn → b, cn
i → ci, i = 1, 2, as n → ∞.

Consequently, we have for this subsequence the convergence

Un|Qm → (bx2 + c1, –bx1 + c2) a.e. on Qm.

Due to arbitrariness of m, we can see that

Ũ|Qm = (bx2 + c1, –bx1 + c2) ∀m ∈ N. (12)

For an arbitrary value of xs ∈ (0, 1), we consider the traces of Ũ on the line segment

Is =
{

(x1, x2) | x1 = xs, g(xs) < x2 < g(xs) + a
}

.

Since the function g is continuous, for an arbitrary positive number ε, there is δε > 0 such
that

∣∣g(x) – g(xs)
∣∣ < ε, ∀x : |x – xs| ≤ δε .

Consider the following line segment:

Cε =
{

(x1, x2) | x1 = xs, g(xs) + ε ≤ x2 ≤ g(xs) – ε + a
}

.
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For sufficiently small h satisfying |h| < δε , we have the uniform estimate

∥∥Ũ
(
xh) – Ũ(x)

∥∥
L2(Cε ) ≤ C

√|h|‖Ũ‖, (13)

where xh(x) = xh(x1, x2) = (x1 + h, x2) [41]. Now choosing as h the numbers of a convergent
sequence {hm} satisfying

(xs + hm, x2) ∈ Qm, ∀x2 : g(xs + hm) < x2 < g(xs + hm) + a, (14)

hm → 0 as m → ∞, (15)

from (12) and (13), we establish that Ũ(x) = (bx2 + c1, –bx1 + c2) on Cε . Due to arbitrariness
of ε, the relation Ũ(x)|Is = (bx2 + c1, –bx1 + c2) is fulfilled a.e. on each line segment Is,
s ∈ (0, 1). Therefore,

Ũ|ω = (bx2 + c1, –bx1 + c2),

and Ũ belongs to the set K .
Now we fix some test function W ∈ K , which also belongs to Kn for all n ∈ N. For this

function we rewrite (7) as follows:

Un ∈ Kn,
∫

Ωγ

σij(Un)εij(W – Un) ≥
∫

Ωγ

F(W – Un) ∀n ∈ N. (16)

Next, without loss of generality, we can assume that {Un} weakly converges to Ũ . Then we
can pass to the limit in inequalities (16) as n → ∞. As a result, we obtain

∫

Ωγ

σij(Ũ)εij(W – Ũ) ≥
∫

Ωγ

F(W – Ũ). (17)

Taking into account that W ∈ K is arbitrary, and Ũ ∈ K , by uniqueness of solution to the
variational inequality (4), we have that Ũ = Uω . By analogous arguments, it can be shown
that from any subsequence of solutions {Uk} ⊂ {Un} we can extract a subsequence {Ukn}
that weakly converges to Uω in H1,0(Ωγ )2 as n → ∞. This means that the initial sequence
{Un} weakly converges to Uω in H1,0(Ωγ )2 as n → ∞.

Let us prove that Un → Uω strongly in H1,0(Ωγ )2 as n → ∞. Comparing two inequalities
that correspond to (4) with the following test functions W = 0 and W = 2Uω , we have

∫

Ωγ

σij(Uω)εij(Uω) =
∫

Ωγ

FUω.

Analogously, we get from (7)
∫

Ωγ

σij(Un)εij(Un) =
∫

Ωγ

FUn.

In virtue of the weak convergence Un → Uω in H1,0(Ωγ )2 as n → ∞, the last two equations
yield the following chain of equalities:

lim
n→∞

∫

Ωγ

σij(Un)εij(Un) = lim
n→∞

∫

Ωγ

FUn =
∫

Ωγ

FUω =
∫

Ωγ

σij(Uω)εij(Uω).



Lazarev and Semenova Boundary Value Problems         (2019) 2019:87 Page 8 of 9

Finally, recalling Remark 1, we see that these equalities provide ‖Un‖ → ‖Uω‖ as n →
∞ in H1,0(Ωγ )2. This, together with the weak convergence Un → Uω in H1,0(Ωγ )2, gives
Un → Uω strongly in H1,0(Ωγ )2 as n → ∞ as was to be shown. Theorem is proved. �

5 Conclusion
Convergence result for the solutions Un of the variational problems (6) is proved. These
problems correspond to the model describing the equilibrium of the elastic body with the
system of the joined thin rigid inclusions. Each thin inclusion is prescribed by a curve,
and the system of the joined inclusions fits the set Qn being a union of curves. We prove
that Un → Uω strongly in H1,0(Ωγ )2 as n → ∞, where the number n is associated with the
quantity of inclusions, and the limiting function Uω is the solution of problem (3) corre-
sponding to the model with the volume rigid inclusion. The volume inclusion fits a domain
in R2. The considered problems are nonlinear due to the nonpenetration condition of in-
equality type on the crack γ .
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