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Abstract
In the paper the convergence of a finite difference scheme for two-dimensional
nonlinear elliptic equation in the rectangular domain with the integral boundary
condition is considered. The majorant is constructed for the error of the solution of
the system of difference equations, and the estimation of this error is obtained. With
this aim, the idea of application of the M-matrices for the theoretical investigation of
the system of difference equations was developed. Main results for the convergence
of the difference schemes are obtained considering the structure of the spectrum
and properties of the M-matrices for a wider class of boundary value problems for
nonlinear equations with nonlocal conditions. The main advantage of the suggested
method is that the error of approximate solution is estimated in the maximum norm.
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1 Introduction
Many physical phenomena have been formulated as a mathematical model with nonlocal
boundary conditions. A short overview of these models is presented in many papers (see,
for example, works [1, 2]). Particulary, many problems in thermoelasticity can be formu-
lated as nonlocal problems (see [3–5] and the references therein). Two of the latest new
mathematical models in the biotechnology are presented in [6, 7]. A separate class of such
nonlocal models is boundary value problem for elliptic equation with nonlocal boundary
conditions [8].

Numerical methods for boundary value problem of linear and nonlinear elliptic equa-
tions with various types of nonlocal conditions have been intensively investigated dur-
ing past decades. Finite difference methods for linear elliptic equations with Bicadze–
Samarski or multipoint nonlocal conditions were analyzed in works [8, 9]. In the papers
[10–12], the main goal was the investigation of the existence and uniqueness of the solu-
tion of difference problem with integral conditions, as well as estimation of the error in
certain norms.

Various iterative methods for the systems of linear difference equations, derived from
elliptic equations with nonlocal conditions, and proofs of convergence of these methods
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can be found in [13–15]. In the articles [16–19], the iterative methods are generalized
for the systems of nonlinear difference equations with nonlocal conditions. Some other
difference methods for elliptic equations with nonlocal conditions were described in [13,
20–22].

In most cases of elliptic equations with nonlocal conditions, the matrix of the discrete
problem is characterized by the properties appropriate for M-matrices [23–25]. This was
used to prove the convergence of iterative methods for linear and nonlinear elliptic equa-
tions with nonlocal conditions [17, 26].

Application of the M-matrices for the elliptic and parabolic differential equations with
Dirichlet boundary conditions has been described by Varga [25] (for some new research
in this field, see the works [27–29]).

In the present paper, the idea of application of M-matrices for theoretical investigation
of difference methods with nonlocal conditions is further developed. Namely, M-matrices
are used to prove the convergence of difference schemes. It is well known that the property
of diagonal dominance of the matrix of discrete problem is necessary for applicability of
the maximum principle. However, matrices with nonlocal conditions are not diagonally
dominant. We can overcome this problem by applying the methodology of M-matrices.

We will use that in the spectrum of the matrix there are no eigenvalues with negative
real part. This became apparent after investigating the structure of the spectrum of two-
dimensional differential and appropriate difference operators with nonlocal conditions
(see the works [14, 30–36] and the references therein). As far as authors know, the idea
of application of M-matrices for the convergence of the difference schemes in the case of
nonlocal boundary conditions is applied for the first time. We note that in the case of non-
local conditions, the matrix of system of finite difference equations is neither diagonally
dominated nor symmetric.

Using the structure of the spectrum and properties of M-matrices, we succeed in prov-
ing the convergence of difference schemes for a wider class of nonlinear equations with
nonlocal conditions than it was proved before. This is the main result of the research.

The structure of the paper is the following. In Sect. 2, the differential problem is for-
mulated and its discrete approximation is provided. The difference problem for the error
of the solution is investigated in Sect. 3. In Sect. 4, the main properties of the matrix of
difference problem are described, the case of matrix being as M-matrix is analyzed. The
auxiliary lemmas on the evaluation of the solution of the system of the equations with an
M-matrix are provided in Sect. 5. The majorant for the error is constructed in Sect. 6.
The results of numerical experiments are presented in Sect. 7. In Sect. 8, we conclude and
generalize some results.

2 Problem formulation
Let us solve a nonlinear elliptic equation in a rectangular domain D = {0 < x < 1, 0 < y < 1}

∂2u
∂x2 +

∂2u
∂y2 = f (x, y, u), (x, y) ∈ D, (1)

with the integral condition

u(0, y) = γ

∫ 1

0
u(x, y) dx + μ1(y), 0 < y < 1, (2)
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and Dirichlet boundary conditions at the points of the remaining three sides of the rect-
angle:

u(1, y) = μ2(y), 0 ≤ y ≤ 1,

u(x, 0) = μ3(x), u(x, 1) = μ4(x), 0 ≤ x ≤ 1,
(3)

where μ1, μ2, μ3, and μ4 are given sufficiently smooth functions, which satisfy compat-
ibility conditions at the points (1, 0) and (1, 1). We assume that the following hypotheses
are true:

H1. ∂f /∂u ≥ 0 for all the values (x, y) ∈ D and u;
H2. γ is a given real number and 0 ≤ γ ≤ 2 – δ, 0 < δ ≤ 2.
Let us consider difference problem, corresponding to the differential problem

δ2
x Uij + δ2

y Uij = fij(Uij), i, j = 1, N – 1, (4)

U0j = γ h

(
U0j + UNj

2
+

N–1∑
i=1

Uij

)
+ (μ1)j, j = 1, N – 1, (5)

UNj = (μ2)j, Ui0 = (μ3)i, UiN = (μ4)i, i, j = 0, N , (6)

where h = 1/N is stepsize, N is a positive integer, fij(Uij) = f (xi, yj, Uij),

δ2
x Uij :=

Ui–1,j – 2Uij + Ui+1,j

h2 , δ2
y Uij :=

Ui,j–1 – 2Uij + Ui,j+1

h2 .

The solution of the system of difference equations (4)–(6) by the iterative methods was
investigated in [17]. It follows from the results there that under hypotheses H1 and H2, the
unique solution of the system of difference equations (4)–(6) exists. In the present paper,
the error estimation for this solution and the convergence of difference scheme (4)–(6) are
considered.

Let us denote by uij = u(xi, yj) the solution of differential problem (1)–(3) and by Uij the
solution of difference problem. Then the error is

zij = uij – Uij. (7)

Suppose that the differential problem (1)–(3) possesses unique, sufficiently smooth solu-
tion such that its derivatives up to the fourth order are bounded. Then

δ2
x uij + δ2

y uij = fij(uij) + Rij(h), i, j = 1, N – 1, (8)

u0j = γ h

(
u0j + uNj

2
+

N–1∑
i=1

uij

)
+ (μ1)j + Rj(h), j = 1, N – 1, (9)

uNj = (μ2)j, ui0 = (μ3)i, uiN = (μ4)i, i, j = 0, N , (10)
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where

∣∣Rij(h)
∣∣ ≤ h2

6
M4,

∣∣Rj(h)
∣∣ ≤ h2

12
M2γ <

h2

6
M2,

M4 = max

(∣∣∣∣∂
4u

∂x4

∣∣∣∣,
∣∣∣∣∂

4u
∂y4

∣∣∣∣
)

, M2 = max

∣∣∣∣∂
2u

∂x2

∣∣∣∣.

(11)

It follows from (4)–(6) and (8)–(10) that

–δ2
x zij – δ2

y zij + dijzij = –Rij(h), i, j = 1, N – 1, (12)

z0j – γ h

(
z0j + zNj

2
+

N–1∑
i=1

zij

)
= Rj(h), j = 1, N – 1, (13)

zNj = zi0 = ziN = 0, i, j = 0, N , (14)

where

dij =
∂fij(uij)

∂u
≥ 0, (15)

i.e., dij is an unknown nonnegative constant.

Remark 1 Conditions (14) for system (12)–(13) mean that there are no unknowns zNj, zi0,
and ziN in the expression on the left-hand side of equations (12).

3 The investigation of the difference problem for the error
We will estimate the error zij as the solution of the system of equations (12)–(14) in
Sects. 3–5. Firstly, we reduce this system to two systems of lower order. In order to do
this, we express z0j from equations (13):

z0j = α

N–1∑
i=1

zij + βRj(h), j = 1, N – 1, (16)

where

α =
γ h

1 – γ h/2
, β =

1
1 – γ h/2

.

Taking into account H2 and 0 < h ≤ 1/2, we get

1 ≤ 1
1 – γ h/2

≤ 2,

so

0 ≤ α ≤ 2γ h, 1 ≤ β ≤ 2. (17)
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Substituting (16) into (12), where i = 1, all equations (12) could be rewritten as follows:

–δ2
x zij – δ2

y zij + dijzij = –Rij(h), i = 2, N – 1, j = 1, N – 1, (18)

1
h2

(
–α

N–1∑
i=1

zij + 2z1j – z2j

)
– δ2

y z1j + d1jz1j = –R1j(h) +
βRj(h)

h2 , (19)

j = 1, N – 1.

Systems (12)–(14) and (18), (19), (16), (14) are equivalent. So (12)–(14) is being reduced
to two separate systems of lower order: one system is (18), (19), (14) and the other system
is (16). In system (18), (19), (14) only the unknowns zij, i, j = 1, N – 1, in the internal points
of the domain D are presented. So the number of equations and unknowns in the system
is equal to (N – 1)2. Furthermore, the unknowns z0j in (16) are expressed by unknowns zij,
i, j = 1, N – 1. This allows us to first solve (18), (19), (14) and (16) only afterwards.

Now we write system (18), (19), (14) in the matrix form:

Az = R, (20)

where z = {zij} is the vector of length (N – 1)2, R = {rij} is the vector of length (N – 1)2 with
elements

rij =

⎧⎨
⎩

–Rij(h), i = 2, N – 1, j = 1, N – 1,

–R1j(h) + βRj(h)
h2 , i = 1, j = 1, N – 1.

(21)

Matrix A is formed in the following way:

A = Λ – C + D, (22)

where Λ = Λ1 + Λ2 is the square matrix of order (N – 1)2, corresponding to a difference
operator –δ2

x – δ2
y in the rectangular domain with the Dirichlet type homogeneous bound-

ary conditions according to Remark 1. D is a diagonal matrix with elements dij that are
defined by (15). Matrix C consists of multipliers h–2α next to unknowns zij in the first
summand of (19). More exactly, C is a block matrix

C = diag(C1, C1, . . . , C1), (23)

where

C1 =
1
h2

⎛
⎜⎜⎜⎝

α α · · · α

0 0 · · · 0
· · · · · · · · · · · ·
0 0 · · · 0

⎞
⎟⎟⎟⎠ , (24)

the number of blocks of matrix C and order of matrix C1 are N – 1.
Furthermore, all three forms of system (12)–(14) will be used: the equivalent system

(18), (19), (16), (14) with the order N(N – 1); partial system (18), (19), (14) with the order
(N – 1)2; the matrix form (20) of system (18), (19), (14).
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We will use also the notation A1 = Λ – C. So system (20) can be written as follows:

(A1 + D)z = R. (25)

4 Properties of the matrix A
Now we will use a few properties of M-matrices. We reformulate some of these properties,
applied for the system of difference equations (20) as new lemmas.

Definition 1 ([23–25]) A real square matrix A = {akl}, k, l = 1, n with akl ≤ 0 for all k �= l
is called an M-matrix if A is nonsingular and A–1 is nonnegative.

It follows from the definition that akk > 0. Throughout the rest of this paper, we will
denote A > 0(A ≥ 0) if akl > 0 (akl ≥ 0) for all k, l. Additionally, A < B if akl < bkl . Similar
notation for vectors is also used. The following property of M-matrices is correct [23–25].

Lemma 1 If A is such that akl < 0 (k �= l), then the following statements are equivalent:
(i) A–1 exists and A–1 ≥ 0;

(ii) The real parts of all the eigenvalues of the matrix A are positive: Reλ(A) > 0.

The main properties of matrix A for the system of equations (20) as lemmas are formu-
lated below.

Lemma 2 The diagonal elements of the matrix A of system (20) are positive.

Indeed, the diagonal elements of matrix Λ are 4/h2, diagonal elements of matrix D are
nonnegative (dij ≥ 0 according to H1). The diagonal elements of matrix C are h–2α or 0.
Then the least diagonal element of matrix A is

4
h2 + dij –

α

h2 > 0,

because 0 ≤ α ≤ 2γ h.

Lemma 3 The nondiagonal elements of matrix A of system (20) are nonpositive.

The statement of lemma follows from the fact that nondiagonal elements of matrix Λ

are –h–2 or 0, nondiagonal elements of matrix C are h–2α or 0, and matrix D is diagonal.

Lemma 4 All eigenvalues of matrix Λ – C are positive.

Proof When dij = 0, the eigenvalue problem corresponding to the system of difference
equations (12)–(14) is

δ2
x vij + δ2

y vij + λvij = 0, i, j = 1, N – 1, (26)

v0j – γ h

(
v0j + vNj

2
+

N–1∑
i=1

vij

)
= 0, j = 1, N – 1, (27)

vNj = vi0 = viN = 0, i, j = 0, N . (28)
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This eigenvalue problem is equivalent for the eigenvalue problem for the matrix A1 = Λ–C
(for more details, see [17, 26]). It follows from [26] that all eigenvalues of matrix A1 are
positive when 0 ≤ γ ≤ γ0, γ0 ≈ 3.42. �

It follows from Lemmas 1–4:

Corollary 1 Matrices A1 = Λ – C and A = Λ – C + D are M-matrices, so (Λ – C)–1 ≥ 0,
A–1 ≥ 0.

5 Comparison theorem
In this section, some properties of M-matrices, adapted for the evaluation of the solution
for the system of difference equations, will be reformulated. We consider the system of
equations

Au = f , (29)

where A is an M-matrix.

Lemma 5 If the matrix A in system (29) is an M-matrix and f ≥ 0, then u ≥ 0.

The statement of lemma follows from u = A–1f and A–1 ≥ 0, f ≥ 0.
Let us denote the elements of vector u as {uk}, i.e., u = {uk}. The vector with elements

|uk| can be denoted as |u|, i.e., |u| = {|uk|}.

Lemma 6 (Comparison theorem) Suppose that u and w are the solutions of two systems

Au = f ,

Aw = g,

where A is an M-matrix, g ≥ 0. If |f| ≤ g, then |u| ≤ w.

Proof As A–1 ≥ 0, then

|u| =
∣∣A–1f

∣∣ ≤ ∣∣A–1∣∣|f| = A–1|f| ≤ A–1g = w. �

Remark 2 In addition, suppose that an M-matrix is diagonally dominant in a weak sense

akk ≥
n∑

l=1,
l �=k

|akl|, akl ≤ 0. (30)

We interpret (29) as the system of difference equations obtained from the elliptic equation
with Dirichlet boundary condition. Then inequality (30) guarantees that the maximum
principle is valid for this system [37]. In this case Lemma 6 coincides with the corollary
from the maximum principle, usually called the comparison theorem. The function w
mentioned in the comparison theorem and Lemma 6 is called the majorant. In this sense,
the theory of M-matrices could be interpreted as an extension of the maximum princi-
ple for the case when the matrix of the system of difference equations is not diagonally
dominant.
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Lemma 7 Suppose that u and w are the solutions of two systems

(A + D)u = f ,

Aw = g,

where A is an M-matrix, D ≥ 0 is the diagonal matrix, g ≥ 0. If |f| ≤ g, then |u| ≤ w.

Proof As D ≥ 0 and A is an M-matrix, then

A–1 ≥ (A + D)–1 ≥ 0.

So

|u| ≤ (A + D)–1|f| ≤ A–1g = w. �

Remark 3 It follows from the vector inequality |u| ≤ w that |uk| ≤ wk . So the statements
of Lemmas 6 and 7 could be interpreted as follows:

max
1≤k≤n

|uk| ≤ max
1≤k≤n

wk .

So the statements of Lemmas 6 and 7 could be reformulated as

‖u‖∞ ≤ ‖w‖∞,

where

‖u‖∞ = max
1≤i,j≤n

|uij|.

6 Construction of majorant and the main theorem
In this section the majorant for the solution of the system of difference equations (20) is
constructed using the statements of Lemmas 6 and 7, and the error z is evaluated. We
define the following function:

w(x, y) =
M
ε

h2

24
(
1 – εx2 – εy2 – (1 – 2ε)x

)
, (31)

where M = max(M2, M4), ε = δ/13, δ = 2 – γ . As 0 ≤ γ ≤ 2 – δ, then 0 < δ < 2, 0 < ε < 2/13.
It is important to emphasize that δ �= 0, ε �= 0.

It is obvious that

wij ≥ 0, i, j = 0, N . (32)

Certainly, w(x, y) ≥ w(1, 1) = 0. For the function w(x, y), we provide the system of equations

A1w = g (33)
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with the matrix A1 defined by formula (25). In other words, taking the known matrix
A1 and the function w, we calculate vector g, i, j = 1, N – 1. We write for the function w
difference equations, similarly to (12), (13). From (31) we get

∂2w
∂x2 =

∂2w
∂y2 = –

Mh2

12
,

∂4w
∂x4 =

∂4w
∂y4 = 0.

So, it follows that

–δ2
x wij – δ2

y wij = –
∂2w
∂x2 –

∂2w
∂y2 =

Mh2

6
. (34)

Now we write down an analog of equations (19) for function (31). Note that in the case of
the condition f ′′(x) = const, the truncation error of the trapezoid rule can be expressed in
the following way:

∫ b

a
f (x) dx – h

(
f0 + fN

2
+

N–1∑
i=1

fi

)
= –

h2(b – a)
12

f ′′.

So

h

(
w0j + wNj

2
+

N–1∑
i=1

wij

)
=

∫ 1

0
w(x, y) dx +

h2

12
∂2w
∂x2 .

As ∂2w/∂x2 < 0, then

h

(
w0j + wNj

2
+

N–1∑
i=1

wij

)
<

∫ 1

0
w(x, y) dx. (35)

Let us denote

gj = w0j – γ h

(
w0j + wNj

2
+

N–1∑
i=1

wij

)
, j = 1, N – 1. (36)

Now we get

gj >
Mh2

24ε

(
1 – εy2) – γ

∫ 1

0
w(x, y) dx =

Mh2

24ε

(
1 –

γ

2
– εy2 –

2ε

3
γ + εy2γ

)
.

Substituting ε = δ/13 and δ = 2 – γ to the right-hand side of the last equality, we get

gj >
Mh2

24

(
2 – γ

2ε
– y2 –

2γ

3
+ y2γ

)
≥ Mh2

24

(
δ

2
13
δ

– 1 –
2γ

3

)

≥ Mh2

24
25
6

>
Mh2

6
>

Mh2γ

12
. (37)
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Equations (34), (36) are analogous to equations (12), (13). Recall that in Sect. 3 we express
w0j from (36)

w0j = α

N–1∑
i=1

wij + βgj, j = 1, N – 1, (38)

where α and β are the same as in (16). Substituting (38) into (34), when i = 1, we can
rewrite equations (34) as follows:

–δ2
x wij – δ2

y wij =
Mh2

6
, i = 2, N – 1, j = 1, N – 1, (39)

1
h2

(
–α

N–1∑
i=1

w1j + 2w1j – w2j

)
– δ2

y wij =
Mh2

6
+

βgj

h2 , j = 1, N – 1. (40)

Now, as before, we write (39), (40) in a matrix form (33). To express the elements of the
vector g = {gij}, we note that function w unlike z = {zij} does not satisfy the homogeneous
boundary conditions (14). This is the reason why the unknowns with the indexes (0, j),
(i, 0), and (i, N) are present in equations (34) and not in (12). Coefficients to these un-
knowns are not the elements of the matrix A1, so these additional components should be
added to the expression of components of vector g. So in the system of equations (33) we
have

gij =

⎧⎨
⎩

Mh2

6 + w̃ij
h2 , i = 2, N – 1, j = 1, N – 1,

Mh2

6 + βgj(h)
h2 + w̃ij

h2 , i = 1, j = 1, N – 1,
(41)

where

w̃ij =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

wNj > 0, i = N – 1, j = 1, N – 1,

wi0 > 0, i = 1, N – 1, j = 1,

wiN > 0, i = 1, N – 1, j = N – 1,

0, otherwise,

(42)

gj satisfies inequality (37).
Now the main result of the research on the estimate of the error of the difference method

can be formulated and convergence of the method can be proved.

Theorem 8 If hypotheses H1 and H2 are true and the truncation errors satisfy inequalities
(11), then for finite difference method (4)–(6)

|zij| ≤ C1Mh2

δ
, i = 0, N – 1, j = 1, N – 1, (43)

where zij = uij – Uij, uij is the solution of differential problem and Uij is the solution of dif-
ference problem, M = max(M2, M4), C1 is constant, which does not depend on either h or
on the solution of differential problem.
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Proof The matrix A of systems (20) and A1 of (33) are the M-matrices (Corollary 1). In-
equalities for the components of the vectors R and g can be written. Namely, it follows
from (11), (21) and (41), (42) that

|rij| ≤ h2

6
M4 ≤ h2

6
M ≤ gij, i = 2, N – 1, j = 1, N – 1.

Similarly, from the same formulae, taking into consideration (37), it follows

|r1j| ≤
∣∣R1j(h)

∣∣ +
β|Rj(h)|

h2 ≤ h2M
6

+
βh2M

6h2

≤ h2

6
M +

βgj

h2 ≤ g1j, j = 1, N – 1.

Therefore

|rij| ≤ gij, i = 1, N – 1, j = 1, N – 1.

Now Lemmas 6 and 7 could be applied to the solutions of systems (20), (33). It follows
from the lemmas that

|zij| ≤ wij, i, j = 1, N – 1.

Taking into account (31), we have

wij ≤ w00 =
Mh2

24ε
=

13Mh2

24δ
.

So

|zij| ≤ 13Mh2

24δ
, i, j = 1, N – 1. (44)

Now z0j is estimated from (16) and (44):

|z0j| ≤ 2γ h
N–1∑
i=1

|zij| + 2
∣∣Rj(h)

∣∣

≤ 13Mγ h2

24δ
+

h2M2

3
≤

(
13
24δ

+
1
3

)
Mh2 ≤ 29

24δ
Mh2. (45)

Inequality (43) follows from (44), (45). The convergence of the difference scheme when
h → 0 follows from (43). �

7 Numerical results
To justify the theoretical results and investigate the efficiency of numerical schemes in the
case of nonlocal boundary conditions, we consider a model problem where the analytical
solution is explicitly known. The theoretical results presented in the previous sections do
not depend upon the numerical method that is used to solve nonlinear system of finite
difference equations (4)–(6). This system can be solved using one of the iterative methods
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designed for problems with nonlocal conditions [16–18]. We can also use some classical
method used for solving nonlinear systems, for example, [38]. Here we have used a gen-
eralization of the alternating-direction implicit (ADI) method for problems with nonlocal
boundary conditions [18] defined on two-dimensional uniform grids on D = [0, 1] × [0, 1].
Meshes of different sizes with h = hx = hy and variation of parameter γ were used in sim-
ulations.

Test 1 Problem with nonlocal BC. The first numerical example is a simple test case for
validating the error estimates and demonstrating the performance of the finite-difference
method for several values of parameter of nonlocality γ .

We consider a model problem (1)–(3) [39] in a unit square domain D

∂2u
∂x2 +

∂2u
∂y2 = –

π2

4
u(1 – u) + g(x, y), (x, y) ∈ D, (46)

with the integral condition (2) and Dirichlet boundary conditions (3). The function g(x, y)
is chosen so that the function

u(x, y) =
(
1 – x2) sin

(
π

2
y
)

(47)

is the analytical solution of the problem, i.e.,

g(x, y) = 2 sin

(
π

2
y
)

+
π2

4
(
1 – x2)2

sin2
(

π

2
y
)

. (48)

The boundary conditions were prescribed to satisfy the given exact solution (47). The
accuracy of the ADI method applied to problems with nonlocal or Dirichlet boundary
conditions was estimated by calculating the maximum norm of the absolute error

Eh = max
i,j

∣∣u(xi, yj) – Uij
∣∣.

We also measured the relative true error

εh = max
i,j

∣∣∣∣u(xi, yj) – Uij

u(xi, yj)

∣∣∣∣.

The results of the numerical test for different γ on uniform mesh with N = 100 intervals
in each direction are listed in Table 1.

In order to calculate order of accuracy p, we have run iterations on uniform mesh with
N = 100 intervals in each direction. Numerical results are reported in Table 2 and demon-
strate the accuracy of the second order for ADI method both for the Dirichlet boundary
condition and for the integral boundary condition.

We determined from the numerical results in Table 1 that the error of the solution
slightly increases as γ grows, when 0 ≤ γ < 2. This agrees well with the fact that approxi-
mation error Rj(h) of nonlocal conditions (2) is linearly dependent on γ (see (11)).

From the results in Table 2, we see that error which theoretically is O(h2) (Theorem 8)
matches theory rather well both in the case of Dirichlet condition (γ = 0) and in the case
of nonlocal condition (γ = 1).
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Table 1 The errors for different γ in the case of h = 0.01

γ Eh εh

0.0 1.89729 · 10–6 1.26332 · 10–5
0.3 2.01499 · 10–6 1.49908 · 10–5
1.0 5.77622 · 10–5 5.03429 · 10–5
1.95 2.13652 · 10–5 8.20321 · 10–5
2.0 2.54840 · 10–5 8.00939 · 10–5
3.0 1.03093 · 10–3 1.78941 · 10–3
3.2 4.17644 · 10–3 8.49890 · 10–3
3.22 4.88902 · 10–3 7.93334 · 10–3
3.224 8.65916 · 10–3 9.80129 · 10–2

Table 2 The errors for different stepsizes h and γ

γ h Eh εh Order p

0.0 0.25 1.08749 · 10–3 2.62507 · 10–3
0.125 2.90550 · 10–4 6.83678 · 10–4 1.9042
0.0625 7.35630 · 10–5 1.73016 · 10–5 1.9817
0.03125 1.85130 · 10–5 4.38179 · 10–5 1.9904

1.0 0.25 1.44959 · 10–3 3.00694 · 10–3
0.125 3.72072 · 10–4 7.81139 · 10–4 1.9620
0.06250 9.47515 · 10–5 1.97871 · 10–4 1.9734
0.03125 2.38487 · 10–5 5.84610 · 10–5 1.9902

We also note that Test 1 was also successfully solved with γ ∈ [2; 3.224]. When γ > 2, the
matrix corresponding to difference operator δ2

x with nonlocal condition (5) has negative
eigenvalue and ADI might not converge (for more details, see [14–16]).

Test 2 Problem with parameter c. In the second test we consider problem (46), (2)–(3).
The functions f and g are chosen so that the function

u(x, y) =
(
1 – x2) sin

(
π

2
y
)

+ cx2 (49)

is exact solution of the problem, i.e.,

f (x, y, u) = –
π2

4
u(1 – u) + g(x, y), (50)

where

g(x, y) = – sin

(
π

2
y
)(

2 +
π2

4
(
1 – x2))

+ 2c +
π2

4

((
1 – x2) sin

(
π

2
y
)

+ cx2
)(

1 –
(
1 – x2) sin

(
π

2
y
)

– cx2
)

.

Let us explain the role of additional term cx2 in (49). Recall that approximation error
for problem (8) depends on constants M2 and M4 from (11). Varying c > 0 lets us inves-
tigate the influence of the approximation error of nonlocal condition (which is bounded
by constant M2) without changing approximation error of differential equation (which is
bounded by constant M4).

Tables 3 and 4 present the performance of the algorithm for various values of constant c.
Note that for large values of c the error increases.
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Table 3 The errors for different γ and c in the case of h = 0.01

γ c Eh εh

0.0 0.0 1.89729 · 10–6 1.26332 · 10–5
0.5 1.84946 · 10–6 2.79954 · 10–6
1.0 1.80728 · 10–6 2.38339 · 10–6
5.0 3.70598 · 10–5 8.10686 · 10–6

1.0 0.0 5.77622 · 10–5 5.03429 · 10–5
0.5 6.89338 · 10–6 6.53304 · 10–5
1.0 7.80954 · 10–6 7.91123 · 10–5
5.0 2.09098 · 10–5 1.85548 · 10–4

2.0 0.0 2.54840 · 10–5 8.00939 · 10–5
0.5 3.73614 · 10–5 5.85915 · 10–5
1.0 4.96933 · 10–5 5.29029 · 10–5
5.0 7.63759 · 10–3 3.08093 · 10–3

Table 4 The errors for different γ , h, and c in the case of the RHS function (50)

γ c h Eh εh Order p

0.0 1.0 0.25 1.01492 · 10–3
0.125 2.77342 · 10–4 3.68367 · 10–4 1.8716
0.0625 6.98376 · 10–5 9.25603 · 10–5 1.9896
0.03125 1.75949 · 10–5 2.32000 · 10–5 1.9888

1.0 1.0 0.25 1.36950 · 10–3 2.06912 · 10–3
0.125 3.53840 · 10–4 5.20942 · 10–4 1.9525
0.06250 8.96690 · 10–5 1.31948 · 10–4 1.9804
0.03125 2.26954 · 10–5 6.66756 · 10–5 1.9822

We may observe that the actual convergence follows very closely the expected theoret-
ical error. Numerical tests reinforce the theoretical convergence results.

8 Remarks and generalizations
The integral condition (2) could be interpreted as some kind of generalization of the
Dirichlet boundary condition. Namely, when γ = 0, the nonlocal condition (2) becomes
Dirichlet condition. When γ = 0, then δ = 2 and

|zij| ≤ 13M4

48
h2, i, j = 1, N – 1, (51)

follows from (44).
As it was mentioned in Sect. 5 (Remark 2), in the case γ = 0 the error zij could be es-

timated by the maximum principle. So, it is interesting to compare the estimate got with
the estimate received using the maximum principle [37]:

|zij| ≤ M4

12
h2. (52)

In both estimates, the order of the error subject to h is the same, but the constant in es-
timate (51) is approximately three times more in the case of nonlocal condition. It could
be explained simply. It depends on the definition of majorant w(x, y). For the maximum
principle the majorant is usually defined as in [37]:

w(x, y) =
h2M4

24
(
2 – x2 – y2). (53)
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The maximal value of this function is approximately three times less than the maximal
value of majorant (31) chosen in this research. It has to be noted that both majorants
coincide if ε = 1/2 is taken in (31). But in (31), a smaller value of ε (ε = δ/13) guarantees
inequality (37) for all values 0 ≤ γ < 2. And this is not true for ε = 1/2. Indeed, let us take
in (31) ε = 1/2. It follows in this case that the inequality

Mh2

24

(
2 – γ

2ε
– y2 –

2γ

3
+ y2γ

)
≥ γ

Mh2

12

with ε = 1/2 will be true when 0 ≤ γ ≤ 3/11. So, we get an interesting conclusion. When
0 ≤ γ ≤ 3/11, then ε = 1/2 in the definition of majorant (31) can be taken. In this case we
can get estimation (52) instead of estimation (44).

Majorant w(x, y) is constructed according to formula (31) in the case 0 ≤ γ ≤ 2 –δ, δ > 0.
But the matrix A of system (20) is an M-matrix with the values for γ ∈ [0,γ0), γ0 ≈ 3.42
[26]. It is not clear how the majorant can be defined for γ ≥ 2.

The theory of M-matrices was first used in the comparison theorem instead of the max-
imum principle for the estimation of the error of approximate solution. This idea let us
estimate error in the maximum norm in the case γ > 1.

The numerical results presented in Sect. 7 confirm theoretical results about the estimate
of the error. Method’s error is second order, independent of the type of boundary condi-
tions (Dirichlet with γ = 0 or nonlocal with γ > 0). Moreover, the numerical experiment
provides additional information about quantitative dependence of error of the solution on
γ and M2.

We prove the convergence of the difference scheme for one concrete case of nonlocal
condition. Furthermore, this methodology may also be applied in another case when, for
the operator with nonlocal conditions, all the eigenvalues are positive only.
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