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1 Introduction

It is known that a material that is under the action of high temperatures is influenced by a
heat flow which will involve a temperature distribution, and this will give rise to thermal
stresses. The role of the pertinent material properties can affect the magnitude of thermal
stress, so it must be well understood and all possible modes of failure must be considered.
Taking into account that our study approaches the materials with voids, we can hope that
our results can help the specialists in applications in which some materials with voids are
involved, such as in the production of granular materials or geological layers. It should
be underlined that the granular theory of Goodman and Cowin in [1] gave the start of
research on materials with voids. This theory together with the approach of Cowin and
Nunziato in [2] has a characteristic feature: the presence of some small pores in a model
of a classic solid which are considered by adding to each particle an additional degree of
freedom. Considering the two theories of materials with voids, this degree of freedom will
be used to characterize the mechanical evolution of granular solids. In this case the pores
of the material are interstices and the material of matrix is elastic.

The important implications of this theory are related to manufactured porous objects,
such as ceramics, pressed powders, and also to geological layers, such as rocks or soil.
In the initial stage, the approaches of Cowin and Nunziato were applied only to solids
which are non-conductor of heat (see also [3]). Then, the theory was extended to cover
thermoelasticity of the materials with voids. So, the paper of lesan [4] is a straightforward
extension for solids for which the thermal effect is considered.
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On the other hand, in our work we take into account the micropolar structure of the ma-
terials. This is part of a more general concept, that of the microstructure, which includes a
large number of extensions of classical elasticity theory such as micromorphic structure,
microstretch structure, Cosserat structure, dipolar structure, microtemperatures, and so
on. The start in microstructure theories was given by Eringen (see [5, 6]). Then, the in-
terest in these theories has grown enormously, as evidenced by a huge number of studies
published in this context. Here we list a few of them, such as [7-24].

In our study we will extend the result obtained by Fichera in [25] and Dafermos [26]
regarding the existence of solutions in the context of linear elasticity theory. Here, the
asymptotic stability for the finite energy solution is also approached. We must say, how-
ever, that the results of Dafermos, in turn, are based on the results of Visik [27].

The strategy of our work is the following. First, we put down the main equations and con-
ditions characteristic to the mixed problem for the theory of the micropolar thermoelastic
materials having voids. Then, we introduce the notion of finite energy solutions and show
a way to expand the set of finite energy solutions. The result regarding the uniqueness of
this kind of solution is obtained for the general case of non-homogeneous conditions and
boundary data. We first obtain an existence result regarding a solution with finite energy,
and this is deduced regarding the null initial data. Then, this result is extended to the gen-
eral non-homogeneous initial conditions. In our last result we deduce several estimations

useful to control the evolution of the finite energy solution.

2 Basic equations
We assume that our thermoelastic micropolar body with voids occupies at the moment
t = 0 a regular domain D from the space R?, the usual Euclidian space. Denote by 9D
the border of D and assume it to be a sufficiently regular surface, at least to admit the
application of the divergence theorem. The closure of D is denoted by D. The motion of
our medium will be reported to the rectangular axes Ox;, (i = 1,2, 3). The usual vector and
tensor notations are adopted. We will use a superposed dot to designate the time derivative
of a function, while a partial derivative with respect to a spatial variable is denoted by a
subscript preceded by a comma. In the case of repeated indices, the Einstein summation is
used. When there is no risk of confusion, the time argument and/or the spatial argument
and that of a function will be omitted.

The mass density o, the volume fraction v, and the density of matrix material y in the

reference configuration are represented by

01 =V1V1.

Here, y1, v1 depend only on the time variable, not on the spatial variables.

In order to describe the motion of a thermoelastic micropolar body with voids, we will
use the following independent variables:

o u;(x, £)—the displacement vector field from the reference configuration;

+ @i(x, £)—the vector for the micopolar displacement;

+ 0—the difference between the current temperature and Ty, that is,

9=T—T0;
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+ ¢—the difference between the current volume fraction temperature and vy, that is,
¢=v-—v.

Using the above variables u;(x, £), ¢;(x, £), we will introduce the components of the tensors

of strain, namely ¢;; and yj;, as follows:
Eij = Wji + Eijk Pk Yij = @ji- (1)

We assume that the body is free of initial stress and couple stress and has zero intrinsic
equilibrated body forces and zero flux rate. Being in the context of linear theory, it is nat-
ural to consider that the internal energy density is a quadratic form with the following

expression:

1 1
Qo€ = EAijmngthmn + Bijmngtjymn + ECijmnythmn
1 2
+ dijk€iiPx + ek i — 5“9 —ai$,if
1 1
— el = Biyf + Sayd i+ S Ky 0. 2)

We can use a technique based on the proposal by Nunziato and Cowin in paper [2]. So,

taking into account that

a 0 a 0 a
e e i e e e

tuz—’ m; = —, = —, =——, f= —
7 Bey T v ryy T="%0 7= %0,

’

one can obtain the connections between the strain tensors and the stress tensors, that is,
the constitutive equations:

tij= Aijmngmn + Bijmn VYmn + dijk¢,k - alje’

mg; = Bijmngmn + Ci/’mnymn + eijk¢,k - ﬂije,

Hi = Dypni€mn + EpniYn + aj¢;—aib, (3)
on = Oli/‘Sl‘j + ,Bijyij + aiq),; + 09,

qi = K0

Also, we can deduce the following fundamental equations (see also [23]):
« the motion equations:

L + ofi = oii;, @

My + itk + 08i = L@y
« the equations of the equilibrated forces:

hi;+ol= QK(i)'; (5)
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« the equation of evolution of energy:
0Ton = qi; + or. (6)

The notations used in the previous equations have the following significance:

+ o—the density of mass;

+ n—the entropy specific to the body;

+ To—the constant temperature in the initial state;

+ k—the balancing inertia;

+ &, yy—the tensors of strain;

+ t;j, my—the tensors of stress;

« h;—a stress vector for equilibrium;

» g;—a heat flux vector;

* fi» &, [—body forces;

« r—the supply of heat;

The functions Ayuu, Bijmns Cijmns diji> €ijs Xij» Bij» aijs ais a, K characterize the elastic
properties of the body and satisfy the following symmetries:

Ajmn = Apnijs Cijmn = Conijs K = Kj;. (7)

In our work we approach an inhomogeneous material which is supposed to be anisotropic.

From the Clausius—Duhem inequality, that is, the inequality of entropy production, we
can deduce that the thermal conductivity tensor Kj; is positive semidefinite, that is:

K,-j@,,-e,j > 0. (8)

We can observe that the basic Egs. (4) and (6) are similar to those from the classical theory
of thermoelasticity. The new equations of the equilibrated forces (5) are motivated in the
paper [28] by a variational approach (see also [29]).

For completing the mixed problem in the theory of thermoelastic porous bodies, we
have to prescribe some initial data and some boundary conditions. The initial data are

given for ¢ = 0:

ui(0)=u),  ;(0)=u;, inB,
901(0) = (ﬂ?: (01(0) = q)ll’ in B, (9)
$(0)=¢°,  ¢(0)=¢', inB,
0(0)=6° inB.
Also, we will use the boundary data, given for ¢ € [0, t,), as follows:
Uu; = b_ti on 3D1, t,‘ = i,» on aDi,
@i=¢; ondDs, m;=m; ondDs,
- _ (10)
¢=¢ onaDs, h=h ondB;,

0 =6; ondD,, g=q ondD5.

Page 4 of 14
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Here, t; = tyn;, m; = myn;, h = hin;, q = q;n; and n = (1;) is the unit normal outward ori-
ented of the surface dD. The time #, can be co. The surfaces 9D;, dD,, D3, 9D, and
respectively 9D5, dD5, 0D5, 0Dg are parts of the surface 9D, such that

0D, UdD] =0D, U D5 =3D3 U dD5 = 9D, U 9Dy = 0D,
0D NAD] =0D, NAD5 =9D3 N ID5 = 0Dy N IDG =Y.
Also, u?, ul, ¢°, ¢}, 0°, ¢°, ¢, i;, &, ¢y, i, @, 0, g, and /1 are given and regular functions.

If we take into account Eq. (4), then the basic Egs. (1), (2), and (3) receive the following
form:
[(Aijmngmn),j + (Bijmnymn),j + (dtjk¢,k),j - (aijg),j] +fi’

;=

b=

S ol

[(BijmnEmn),j + (CijmnYmn) j + (eixd i) ,j — (By0),
+ Sz’jk(AjkmnSmn + Bjkmnymn + djkm¢,m - ajke) +gi]r (11)

. 1 1
o= Q_K[(Dmnismn),i + EpnniVmn)i + (@) — (aif) ;] + ;1,
. . . .0 1
oty + By + ai, +ad = —(Kyb,)),; + —r.
To To

The array (u;, ¢;, ¢, 0) is called the solution of the mixed problem in the theory of thermoe-
lastic micropolar materials with pores for any (x,¢) € Qo = D x [0, t) if it satisfies Eq. (11)
and verifies the initial given data (9) and prescribed conditions to the limit (10).

3 Main results
We assume that our micropolar porous material occupies a properly regular and bounded
domain D from R3, which is the usual Euclidean space.

The set of all scalar functions defined on the domain D, which have a derivative of order
nin all points of D and this derivative is a continuous function on the space D, are denoted
by C*(D).

The space C”(D) has the following norm:

n
llenay =D D maxlfj.pl Vf €C'(D).

=0 j1,j2,p

We denote by C*(D) the set of vector functions with seven components, each component
is a function from C”(D). The space C"(D) will be endowed by the usual norm:

7
IWlleniy = D Vel eny-
k=1

The completion of the space C"(D) throughout the norm || - |,y Will be denoted by
Wu(D). Clearly, W,(D) is a Hilbert space because the norm || - ||y, (p) is induced by the
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scalar product:
n
(@, V)w,p) = Z /D Pjipeic Virja-oix AV
p=0

As a consequence, the completion of the space C"(D) throughout the norm || - Iy, ) will
be denoted by W, (D). We can deduce that W, (D) is a Hilbert space because the norm

| - llw,,p is induced by the scalar product

(v, W)W,,(D) = (er Wj)Wn(D)-

7
k=1
We took into consideration that in the case of a product of normed spaces, the norm of
this product is obtained by summing the norms of each factor space.

The class of all functions f : [0, ty) — B having the time derivatives up to nth order, the
last derivative being continuous on [0, t), is denoted by C"([0, #y); D), in which B is the
notation for a Banach space.

Analog definitions can be given for the spaces L1((0, ty); D) and Ly((0, £); D) due to the

clear meaning of L; and L, notations.

Definition 1 The following notations will be useful in what follows:

CY(D) = {9 of class C on D:0 =0 on 8D4},
CI(D) = {v = (u,¢,¢) of class Cl on D : u; = 0 on 3D,
¢; =0on 8D2,¢ =0on 8D3},
Wi (D) = the completion of the space ct (D) throughout the norm || - || w; ),

W, (D) = the completion of the space C'(B) throughout the norm || - [lw,(p).

Corresponding to the function pairs (u, @, ) € CL(D), (v, ¥, x) € C1(D), we can intro-

duce the following functional:

Fl ((ur @, ¢); (V, '/’r X))

1

=3 /D {Ajjmnemn (W, @)e(v, )

+ Bijmn [Smn(ur ¢)Vi/(v7 10) + Emn(v’ '/f)J/ij(ll: ‘ﬂ)] + Cijmnymn((ﬂ)yij('/,)
+ aydixi + di|Diei(W) + x k()]

+ e[ avi(v, ¥) + xavii(w, @)]} V. 12)

Also, for the pair of functions (T',0), we define the functional

Ey(T,0) = / K0, T;dV. (13)
D
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We can extend by continuity the functionals F; and F, to the space W, (D) and, respec-
tively, to space Wi (D).

In order to obtain our results, we need the following hypotheses with regard to the ma-
terial properties:

(i) o>0, Ij,k > 0, a>0, To > 0; (14)
(ii) the functionals F; and F, must satisfy the inequalities
Fl((vr v x), ¥, X))

3
> /D > [t (@0, 30, 09, 30) + Vo (0, 20, 09, 00) + xixs ]V (15)

mn=1

for any (v, ¥, x), (v, ¥, x)) € CH(D), where ¢; isa positive constant;
Fz(@,@) > 62/ K,,Q,Q,d\/ (16)
D

for any 6 € CY(D), where ¢, isa positive constant.

Clearly, inequality (15) can be generalized for (v, ¥, x), (v, ¥, x) € W1 (D) and inequality
(16) can be generalized for 6 € Wi (D).

According to [22, 23], we can find a positive constant k such that the following inequality
takes place:

Fl((v) v x), ¥, X))
>k / Vivi + @igi + Wi + Vijvij + @ij@i; + Yyl dV. (17)
D
Based on inequality (17), we obtain that the functional F;((v, ¥, x), (v, ¥, x)) is coercive on

the space WI(D).

In what follows the sets that we define now will be useful:
(D) = {(ﬂ,gi,l, r): (g 1) € C°(D), r € C°(D);
if meas(dD;) = meas(dD,) = meas(dDs) = 0
:}/QFdV=0,/ ox x F)dV =0;
D D
if meas(dD;) = 0, meas(dD5) = 0, meas(dD3) # 0, = / oFdV =0;
D
if meas(dD,) = 0,= / ordV = 0};
D

C'(p) = {(u = (w1, 1, 9),6) : (,6) € C1(D) x C'(D) and

if meas(dD,) = 0= / [cijei(u) + Biyi(u) + ab + aip; | AV = 0};
D
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D(Qo) = C*([0,%); C*(D));

D(Qo) = {(v=Wuvi, x), T): (v, T) € D(Qo) and v = 0 on D x {0}}.

For the elements y = ((u;, ¢;, 9),0) € D(Qo), w = ((vi, V1, x), T) € f)(Qo) and considering the
charges z = (f;,g;, r) € C*([0,£y); C°(D)), we define the functionals F3(y, w) and Fy(z, w) as

follows:

to .. .
F(w) - /0 /D {(t—m)[gmvi+1,7</>iw;+gx¢>x—A,jmnemn(y)ély(m

- Bz’jmn (Smn()I))}ij(W) + Emn(w)yz}(y)) - Cijmn)/mn (y)J/l;(W)
= Dyic(pxéii(w) + X x€5(9) = Eiie (dxvii(w) + X x5 ()
+ ai/¢,i)'(,j + ﬂQT + a,-,»@é,-j(w) + ﬂi/g)}ij(w) + aidb,,@]

+ ou;v; + Iijgbnﬁ,» + Q/ctﬁ)'( +abT +ajp; T
1 t
+ Ol,‘jT&‘l‘]'(y) + ﬁi]‘T)/l‘/()/) + F / I<ij9,jT,i d‘f} dth;
0Jo
to . Qr
Fu(z,w) = / /(t —tp) [—Qﬁv, —Iijgﬂﬁ/’ - QKZX - — Ti| dV dt.
o Jp Ty

. . o 0.0 40 50 0 0 - (1
Also, taking into account the initial data § = (u;,¢;,¢"°,6°) such that u;,¢; € C'(D),

#°,0° € C1(D), we will consider the functional

F5(8,w) = to / [0t vileco + I} Wilizo + 0k X e=0@° + aT |¢—o6°
D

+ o T =085 (MO, 90) + BT =0V (MO, 90) + ﬂiT|z=0§0,z’] av.

If we replace y by w in F5(z, w), then we obtain the following identity:

tO . . .
Fy(w,w) = / / (- to)[gwi $ I0s + 0k X + Agmm(W)e ()
0 D

+ ZBijmngmn(W)yzj(W) + Cijmn)’mn(w))}t]’(w)

+ 2D x k€57 (W) + 2E e x kv (W) + agx,ix,j + aT*

1 t
+ —/ I(l‘}'Q/TJ’dT dav dt
To Jo ’

L ..
+ EO/[QV;‘W + Iy + ok x> + aT?],_ dV. (18)
D

Our goal is to find a solution with finite energy for the mixed problem constituted by
Eq. (11), the initial conditions (9), and the boundary conditions (10). To this end, we need

some new spaces.
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First, we consider the completion of the space D(Qp) throughout the norm | - | as being
the Hilbert space V(Qy), the norm | - | being induced by the following scalar product:

<(ul’ (pl7¢ 9 (Vl’ I/IUX T)>

/ / |:ulvl + o+ ox

t
Ui+ Qi+ OX + UiV + Qi+ ixi + 0T + f G,iT,ii| dV dt. (19)
0

Also, we denote by V(Qo) the completion of the space YV)(QO) obtained by means of the
above norm | - |. Let us observe that V(Qo) is a closed linear manifold.

Another Hilbert space is defined as the completion of the space D(Qo) throughout the
norm which is generated by the following scalar product:

[(ui» @i, $,0), (vi, Yris X T)]
= <(ui, PDi ¢» 9): (Vi: 1/’1’» X T)> + ((I;ti’ ‘pi’ ¢'>» 9): ("/i’ IZ’I" X: T)>)
where the product ((u,0), (v, T)) was already defined in (19). This Hilbert space will be
denoted by u (Qo).

Also, the space G(D) is obtained as a completion of C°(D) throughout the norm
I lwo D)< wo(p)- At last, the completion of the set

{(M, V,@) : (u = (uir §0i:¢)’9) € él(l))r (V = (Vi’ 1/ft,X);9) € é1(1))}’

throughout the norm

1
|(u, V,9)|0 = {5 / [Qvivi + Ilﬂﬁﬂﬂj + QKX2 +Aijmnszj(u)8mn(v)
D
+ ZBijmnsij(u)ymn(V) + Cijmn )’ij(M)an(V) + 2Di/keif(u)¢lk
1/2
+ 2Ey () x x + agdix,j + a0’ ] d"} ,

will be denoted by Hy(B).

With the help of Sobolev’s embedding theorem and by using Schwarz’s inequality, we
can extend by continuity the functional F3(y, w) on the product space U(Qo) x V(Qo) and,
analogously, F4(z, §) can be an extended functional on the space U(Qo) x L1((0, to); G(D)).

Similarly, we can extend F5(§, w) so that it can exist for § € Hy(D), w € u (Qo).

Taking into account the above completions and extensions and considering the hypothe-
ses (14)—(17) and identity (18), we can find a positive constant c3, depending only on 7y,
k, and a, to have the estimation

Iw* < csF3(w,w), VYw e U(Qp). (20)

Consider u = (u;, ¢;, ¢) and y = (4,0) € V(Qo), y satisfies our mixed problem consisting of
the system of equations (11), the data to the limit conditions (10), and the initial data (9).
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Below, we can define the concept of solution, having a finite energy, in the case of the
mixed problem defined in our context.

Definition 2 If y = (1, 0) satisfies the conditions

F3(y,w) = Fa(z,w) + F5(8,w), Yw=((vi, Vi, x), T) € U(Qo), (21)
lim u(t) = ug, in Wo(D), (22)

then y is called the finite energy solution that satisfies Eq. (11) and verifies the conditions
to the limit (10) and corresponds to the initial data § = (4?, ¢?, ¢°,0°) € Ho(D), having the
loads z = (f,g,/,r) € L1((0, t); G(D)).

The result that follows shows a way to find a new finite energy solution, starting from a
given solution.

Theorem 1 Counusider y to be a solution with finite energy, y € V(Qo), which verifies Eq. (11)
and satisfies the conditions to the limit (10), defined on the cylinder Qo, and which corre-

sponds to the source z = (f;,g;,1,r) and to the initial conditions § = (U, ¢}, ¢°,0°).
Define the function y by

t
y=/ym@m
0

Then y is also a solution with finite energy for problem (11), (10) defined in cylinder Qo,
which corresponds to the initial conditions 5 =(0,0,¢°,0) and to the source 7 = (ﬁ, gi,i, 7),
in which we used the notations

t
)= [ fns)ds e B,
0
t
&0 [ atns)ds e v
0
. t
li(x,8) = f I(x,5) ds + x°(x),
0
t
Fi(x, t) = / r(x,s)ds
0
T
+ Eo [o ()& (1°) + Byj(x) vy (u°) + a(x)0° + ai(x)$?].
Proof The result can be obtained by using the same procedure as in Dafermos [26]. [

Also, by using a procedure similar to the one used in Dafermos [26], we can prove the

following uniqueness result with regard to the finite energy solution of the mixed problem.

Theorem 2 In thermoelasticity of initially stressed bodies with voids, the mixed problem
consisting of system (11) and the data to the limit (10) admits only one finite energy solution
which corresponds to some given initial conditions and some given sources.
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Let us restrict the considerations to the more simple case of null initial data, the sources
belonging to Ly((0, ty); G(D)). In this case, we have the open path to demonstrate the exis-
tence result for a solution with finite energy as well as an estimate of this solution. These
results are included in the following theorem.

Theorem 3 [n thermoelasticity of initially stressed bodies with pores, we consider the
mixed problem consisting of system (11) and the boundary data (10) which corresponds
to the source z = ((f;, g, 1), 1) € Lo((0, £0); G(D)) and to null initial data. Then this problem
admits at least a finite energy solution y = (u;, ¢;, $,0) € V(Qo). Furthermore, we can deter-
mine a positive constant ca, depending on cs (from (20)), 0, Ty, and ty, so that the following
estimation takes place:

|J’| =< C4”Z”L2(Q0)><L2(Q())'

Now, we want to extend the result of the existence for the solution with finite energy
from the particular case of the null initial data from Theorem 2 to the case of some arbi-
trary initial data. To this aim we need the following definitions.

Definition 3 We define the Hilbert space H(D) by
H(D) = Ho(D) N {W1(D) x Wy(D) x Wy(D)}.

If the source z = ((f;,g;,{),r) € G(B), then the map S(z) : Hy(D) — H(D) that made the
transfer (u;, ¥, x, T) € Ho(D) into (u;, i, ¢,0) € H(D), where (u;,¢;,¢,0) € W, (D) x
W, (D), will be named as solution for the following system:

Fi(u,) = /D [(ijei(w) + Byyi(@) + aivr; + aT)6

—ouvi; — Ljpip; — ok x + ofivi + 0givi + olx |,
Vo = (u, ¥i, x, T) € W1(D),

F2(T, 9) = —/ {To [Oll‘jé‘i]‘(u) + ﬂi,yij(u) + (ll'l//,l' + ﬂT] - QV}@ dV, VT € Wl(D)
D

In the following theorem we characterize the solution defined by means of the map S(z)
in Theorem 3. Also, the smoothness of this kind solution is investigated, taking into ac-
count some hypotheses on the initial data and some specific sources. This is an auxiliary
step to obtain the existence of the solution in the general case of the initial conditions.

Theorem 4 For any z € Hy(D), S(z) is a well-defined and one-to-one map so that the in-
verse map S~1(z) is defined for all z from the codomain of S(z) C H(D) to Hy(D).

Also, this solution satisfies the following estimation with regard to the general initial data
§= (u?,goio,(bo,eo) and the sources z = (f;, g;, I, r):

”S(Z) ||W1(D)XW1(D)><W1(D) =< C5{|8|() + ”Z”Wo(D)XW()(D)}:

where cs is a positive constant.
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Proof To prove our result, we can use the same procedure as Fischera in the paper [25]. So,
we must take into account that the functional F; satisfies inequality (15). Also, we must
consider that the functional F;(v,v) is coercive in the space N4 (D) with respect to the

norm || - ||y, (), which follows from inequality (17). a

Let us consider some arbitrary sources zy,z1,...,2Zu-1, such that zy,z1,...,z,-1 € G(D),
and introduce the map

Sin(20,215 -+ Zm-1) = S(20) 0 S(z1) 0 - - - 0 S(zm1).
The codomain of the application
Sm(y():yl; e )ym—l) : HO(D) - H(D)

will be denoted by H,,,(B; y0,¥1,- - -»Vm-1)- If we set H,,(D) = H,,(D;¥0,y1,--.,¥m-1) for § €
H,,(B), we introduce a new norm

181 = |S,,1(0,0,...,0)5] .

The notation (j;’ﬁ): ‘;Zlyf will be used for the partial derivative of order m for a function
f=flnz .z

Based on these new considerations, we can address the problem of the existence of a
finite energy solution in the general case of some non-homogeneous initial data.

Theorem 5 The mixed problem consisting of system (11), satisfied in Q(0), the conditions
to the limit (10), the charges

2= (fogh) € C" (0,6, GD)), 2 Ly((0,£0); G(D)),

and the initial restrictions

(m-1)
z (0) form=1,2,....

1
8 = (u), ¢, 9°,0°) € H,(D;2(0), z (0),...,
admits at least one solution with finite energy y € V(Qo).

Proof The result can be obtained by using the same procedure as Fischera in the paper
[25]. O

Using the procedure of Dafermos [26] and Fichera [25], we can deduce the following
three properties regarding the controllability of the finite energy solution from Theorem 5.

Theorem 6 Any solution with finite energy of the mixed problem satisfies the following
estimations:

(1) (I/li; §0i1¢’ iit,¢i;¢.5:9) € Cm([oy tO)$HO(D));

(ui! Dis ¢7 I;ii7¢i,¢.7x9)|(0) = (I/[?, (pl(‘)rd)oi u}; ¢31d;1) 00);
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(ii) forall k = 0,1,...,m and t € [0, ty), we have

® 0 ® k1) ke1) KeD) (&) &) (+l (m-1)
(w01 @, Wi’ @i s @, 0) € Sui(Ds2(t), 2(8), ..., 2(t)),
) %) K (k+1) (k+1) (k+1) (k) (k) (k)+1 (m-1)

(i i &5 s @i » & 5 0)(@) = Prui(2(2), 2(2),...., 2(2))

(m) (m) M (m+1) (me1) (m+1) (m)
= (Ui i» > wi s i, ¢ ,60)1);

(iii) we have the estimation
® (0 & k1) q+1) & R 01 LK) (K 1/2
(‘(ub%‘, ¢r u , Qi, ¢ 70)(t)‘0+ ?/ FZ(G;Q)(*S)dS
0Jo
_ o (m-1) t
<1870, % (0),..., "2 )], + c6 / G — (23)
0

where cg is a positive constant depending on Ty, 0, Ij, and a. Also, estimation (23) takes
placeforallk=0,1,...,mand t € [0, ).

Remark It is worth noting that in the simple case of null loads, z = 0, inequality (23) turns

into equality.

4 Conclusions

We first put down the main equations and basic conditions for the mixed problem in the
theory of micropolar thermoelastic materials with pores. Then we extended the proce-
dure proposed by Dafermos in [26] and Fichera in [25] in order to obtain some unique-
ness and existence results. The first result is the uniqueness of the finite energy solution.
Then we prove the existence result for a finite energy solution in the particular case of
null initial data. In Theorem 5 this result is extended in order to cover the general case of
non-homogeneous initial conditions. The last theorem of our study is dedicated to some
properties regarding the controllability of the finite energy solution. We need to empha-
size the validity of the results regarding the uniqueness and existence for the finite energy
solution is as in the classical theory, even if the context in our study is much more compli-
cated, because we considered the effect of the micropolar structure, the effect of thermal

treatment, and the effect of voids.
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