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Abstract
The application of the new criteria for minimally thin sets with respect to the
Schrödinger operator to an approximate solution of singular Schrödinger-type
boundary value problems are discussed in this study. The method is based on
approximating functions and their derivatives by using the natural and weakened
total energies. This study shows that the new criteria are very effective and powerful
tools in solving such problems. At the end of the paper, we are also concerned with
the boundary behaviors of solutions for a kind of quasilinear Schrödinger equation.
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1 Introduction
In this paper, we further consider the following Schrödinger problem (see [1]):

izt = –�z + W (x)z – a(x)h
(|z|2)z – k�l

(|z|2)l′
(|z|2)z, (1)

where x ∈ R
n, z : R × R

n → C, a, W : Rn → R is a given potential, k is real constant, and
l and h are real functions. The above quasilinear equations have been accepted as models
of several physical phenomena corresponding to various types of l; we refer to [2] and the
references given therein for physical applications of these problems. Specifically, we would
like to mention that the superfluid film equation in plasma physics has this structure for
l(s) = s (see e.g. [3, 4]), while in the case l(s) = (1 + s)1/2, (1) models the self-channeling of a
high-power ultrashort laser in matter (see e.g. [5, 6]).

The standing waves solutions of (1); that is, solutions of the type z(t, x) = exp(–iEt)u(x)
where E ∈ R and u > 0 is a real function. Inserting z into (1), with l(s) = s and l(s) = (1 +
s2)1/2, turns, respectively, the following equations (see e.g. [7]):

–�u + V∞u – k�
(
u2))u = a(x)h(u),

–�u + V∞u – k�
((

1 + u2)1/2) u
(1 + u2)1/2 = a(x)h(u),

where x ∈R
n and V∞ = W – E.
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It is well known that an unknown Borel probability measure on W = S × T controls the
sampling process, where T = R and S is a compact metric space in R

n. As in [8], the exact
weak solutions of (1) can be defined by g�(s) =

∫
T y d�(t|s), where �(·|s) is the conditional

probability measure induced by � on T given s ∈ S.
To our knowledge, the criteria for minimally thin sets with respect to the Schrödinger

operator (1) was introduced for the first time in the context of the stationary Schrödinger
equations in [9, 10]. In 2018, Jiang, Zhang and Li (see [11]) further improved this complex
method and applied to study meromorphic solutions for the linear differential equations
with analytic coefficients and obtain some applications. Recently, Zhang (see [12, 13]) de-
fined a new type of minimal thinness with respect to the stationary Schrödinger operator,
established new criteria for it and applied the result to study growth properties at infinity
of the maximum modulus with respect to the Schrödinger operator.

In this paper, we will continue to apply new criteria for solutions for a kind of quasilinear
Schrödinger equations. Although we are motivated here by [9–13], there were substantial
difficulties to adapt the above approach to the present situation. Let HE be the completion
of the linear span of the set of functions {Es := E(s, ·) : s ∈ S} equipped with (see [8, 14])

〈 n∑

i=1

ξiEsi ,
m∑

l=1

øjEtj

〉

E

:=
n∑

i=1

m∑

l=1

ξiøjE(si, tj).

Let s ∈ S and g ∈HE . Define (see [15, Remark 2.3])

g(s) = 〈g, Es〉E . (2)

It follows from (2) that (see [16])

‖g‖∞ ≤ κ‖g‖E , (3)

where

κ := sup
t,s∈S

∣
∣E(s, t)

∣
∣ < ∞.

Define (see [17])

gw,χ (s) = gw,ζ ,χ ,s(s) = gw,ζ ,χ ,s(u)|u=s,

gw,ζ ,χ ,s := arg min
f ∈HE

{
1
m

m∑

i=1

Φ

(
s
ζ

,
si

ζ

)(
ti – g(si)

)2 + χ‖g‖2
E

}

, (4)

where

Φ(s, t) ≤ 1, ∀s, t ∈ R
n, (5)

Φ(s, t) ≥ cq, ∀|s – t| ≤ 1. (6)

Scheme (4) yields (see [18, 19])

gw,ς (s) = gw,ζ ,ς ,s(s) = gw,ζ ,ς ,s(u)|u=s,
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gw,ζ ,ς ,s = arg min
f ∈HE, w

{
1
m

m∑

i=1

Ψ

(
s
ζ

,
si

ζ

)
(
g(si) – ti

)2 + ς

m∑

i=1

|ξi|q
}

,

and

HE, w =

{

g(s) =
m∑

i=1

ξiE(s, si) : ξ = (ξ1, . . . , ξm) ∈R
m, m ∈N

}

.

In order to study the boundary behaviors of gw,ς , we derive

‖gw,ς – g�‖�S

with (see [20–23] for more details)

∥∥g(·)∥∥
�S

:=
(∫

S

∣∣g(·)∣∣2 d�S

) 1
2

.

The remainder of this paper is organized as follows. In Sect. 2, we will provide the main
results. In Sect. 3, some basic but important estimates and properties are summarized.
The proofs of main results will be given in Sect. 4. Section 5 contains the conclusions of
the paper.

2 Main results
The integral operator LE : L2

�S
(S) → L2

�S
(S) is defined by

(LEg)(s) =
∫

S
E(s, t)g(t) d�S(t).

Let {μi} be the eigenvalues of LE and {ei} be the corresponding eigenfunctions. Then we
define

Lr
E(g) =

∞∑

i=1

μr
i 〈g, ei〉L2

�S
ei

for g ∈ L2
�S

(S). We assume that g� satisfies L–r
E g� ∈ L2

�S
, where r is a positive constant de-

pending on the size of the initial data in a suitable norm.
Let cp (0 < p < 2) be a positive constant. Define (see [24])

logN2(B1, ε) ≤ cpε
–p, (7)

where

B1 =
{

f ∈HE, w : ‖g‖E ≤ 1
}

.

Now we are in a position to obtain the existence of solutions for the problem (1).
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Theorem 1 Suppose L–r
E g� ∈ L2

�S
with r > 0, (7) with 0 < p < 2. Then there exist solutions

for the problem (1), which can be defined by

H(w,χ ,ς ) =
∫

S

(
Ew,s

(
γM(gw,ζ ,ς ,s)

)
+ ςΩw(gw,ζ ,ς ,s)

)
d�S(s)

and

H(w,χ ,ς ) ≤ mςM2

(mχ )q .

For the further application of Theorem 1, we have the following result. Similar results
for solutions of the stationary Schrödinger equations, we refer the reader to the papers
(see [13, 25]).

Proposition 1 Let L–r
E g� ∈ L2

�S
, where r > 0. Then

D(χ ) ≤ C1χ
min{2r,1}. (8)

It follows from Theorem 1 that we can decompose solutions for the problem (1) into
two parts, H1(w,ς ) + H2(w,χ ), where

∫

S

{
Es

(
γM(gw,ζ ,ς ,s)

)
– Es(g�) – Ew,s

(
γM(gw,ζ ,ς ,s)

)
+ Ew,s(g�)

}
d�S(s)

and
∫

S

{
Ew,s(gχ ) – Ew,s(g�) – Es(gχ ) + Es(g�)

}
d�S(s).

Finally, we further study the boundary behaviors for solutions for the problem (1).

Theorem 2 Let the assumptions of Theorem 1 hold. Then

H2(w,χ ) ≤ D(χ )
2

+
7(3M + κ

√
D(χ )

χ
)2 log(2/δ)

3m
, (9)

where 0 < δ < 1.

Theorem 3 Let the assumptions of Theorem 1 hold. Then

H1(w,ς ) ≤ 1
2

∫

S

{
Es

(
γM(gw,ζ ,ς ,s)

)
– Es(g�)

}
d�S(s)

+
176M2

m
log

(
2
δ

)
+ Cp,MR

2p
2+p
ς m– 2

2+p , (10)

where 0 < δ < 1 and

Rς = κm1– 1
q

(
M2

ς

) 1
q

.
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3 Lemmas
Some basic but important estimates are needed in this section. The following lemma in-
dicates that the natural and weakened total energies are conserved in time.

Lemma 1 We have the following estimates:

Eτ ,g(t) = Eτ ,g(0), ∀t ∈ [0, τ ], (11)

Ẽτ ,g(t) = Ẽτ ,g(0), ∀t ∈ [0, τ ]. (12)

Proof Multiplying the first equation by g ′
� , we obtain

〈
g ′′
� (t) – ∂2

g g�(t) + δgχ (t), g ′
�(t)

〉
RN ,g = 0.

It follows that

〈
g ′′
� (t), g ′

�(t)
〉
RN ,g +

〈(
–∂2

g
)1/2g�(t),

(
–∂2

g
)1/2g ′

�(t)
〉
RN ,g + δ

〈
gχ (t), g ′

�(t)
〉
RN ,g = 0.

Therefore

d
dt

γM(g�; t) + δ
〈
gχ (t), g ′

�(t)
〉
RN ,g = 0, (13)

which leads to

d
dt

γM(gχ ; t) + δ
〈
g�(t), g ′

χ (t)
〉
RN ,g = 0. (14)

Adding (13) and (14), we can write

d
dt

Eτ ,g(t) = 0,

which is equivalent to (11).
By taking the sum of the resulting two identities we obtain

d
dt

Ẽg(g� ; t) +
d
dt

Ẽg(gχ ; t) + δ
〈
gχ (t),

(
–∂2

g
)–1g ′

�(t)
〉
RN ,g + δ

〈
g�(t),

(
–∂2

g
)–1g ′

χ (t)
〉
RN ,g = 0,

using the symmetry of the matrix (–∂2
g )–1 we obtain

d
dt

Ẽτ ,g(t) = 0. �

From Lemma 1, we deduce the following result.

Lemma 2 Let 0 ≤ δ ≤ δ0
3 . Then

∫

S

(
γM(g�; t) + Ẽg(gχ ; t)

)
dt ≥ Cτ

2
(
Ẽg(g�; 0) + Ẽg(gχ ; 0)

)
(15)

for a positive constant Cτ depending only on τ .
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Proof We recall

γM(g�; t) =
1
2
∥∥g ′

�(t)
∥∥2
RN ,g +

1
2
∥∥(

–∂2
g
)1/2g�(t)

∥∥2
RN ,g ,

and we can write

γM(g�; t) ≥ δ0

2
∥
∥(

–∂2
g
)–1/2g ′

�(t)
∥
∥2
RN ,g +

δ0

2
∥
∥g�(t)

∥
∥2
RN ,g = δ0Ẽg(g� ; t).

It follows from Lemma 1 that
∫

S

(
γM(g�; t) + Ẽg(gχ ; t)

)
dt ≥ C

∫

S

(
Ẽg(g�; t) + Ẽg(gχ ; t)

)
dt. (16)

On the other hand

∣∣Ẽτ ,g(t) –
(
Ẽg(g� ; t) + Ẽg(gχ ; t)

)∣∣ =
∣∣δ

〈(
–∂2

g
)–1g�(t), gχ (t)

〉
RN ,g

∣∣,

and thanks to Lemma 1 and [26, Theorem 2.1], one has

∣
∣Ẽτ ,g(t) –

(
Ẽg(g� ; t) + Ẽg(gχ ; t)

)∣∣ ≤ δ

δ0

(
Ẽg(g�; t) + Ẽg(gχ ; t)

)
. (17)

Hence

Ẽg(g�; t) + Ẽg(gχ ; t) ≥ δ0

δ0 + δ
Ẽτ ,g(t).

Integrating this last inequality over t ∈ [0, τ ] and using the fact that the energy Ẽτ ,g(t) is
conservative, we deduce that

∫

S

(
Ẽg(g�; t) + Ẽg(gχ ; t)

)
dt ≥ δ0τ

δ0 + δ
Ẽτ ,g(0). (18)

Moreover, thanks to inequality (17), we have

Ẽτ ,g(0) ≥ δ0 – δ

δ0

(
Ẽg(g�; 0) + Ẽg(gχ ; 0)

)
,

and inserting this last equation into (18) yields
∫

S

(
Ẽg(g�; t) + Ẽg(gχ ; t)

)
dt ≥ δ0 – δ

δ0 + δ
τ
(
Ẽg(g�; 0) + Ẽg(gχ ; 0)

)
. (19)

However, since

δ0 – δ

δ0 + δ
≥ 1

2

for all δ ≤ δ0
3 , we deduce from (19) that

∫

S

(
Ẽg(g�; t) + Ẽg(gχ ; t)

)
dt ≥ τ

2
(
Ẽg(g�; 0) + Ẽg(gχ ; 0)

)
.

Inserting this inequality into (16), the desired estimate (15) is obtained. �
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We complete this subsection with the following lemma.

Lemma 3 We have

∫

S
Ẽg(gχ ; t) dt ≤ C

δ(
√

δ0 – δ)
(
γM(g� ; 0) + Ẽg(gχ ; 0)

)

+
C

(
√

δ0 – δ)2

∫

S
γM(g�; t) dt, (20)

∫

S

∥∥gχ (t)
∥∥2
RN ,g dt ≤ C

δ(
√

δ0 – δ)
(
γM(g�; 0) + Ẽg(gχ ; 0)

)

+
C

(
√

δ0 – δ)2

∫

S
γM(g�; t) dt, (21)

Ẽg(gχ ; τ ) + Ẽg(gχ ; 0) ≤ C√
δ0 – δ

(
γM(g�; 0) + Ẽg(gχ ; 0)

)

+
Cδ

(
√

δ0 – δ)2

∫

S
γM(g� ; t) dt, (22)

where 0 ≤ δ ≤ min(δ0,
√

δ0).

Proof First, we recall the following estimates:

∫

S

∥∥gχ (t)
∥∥2
RN ,g dt ≤ C

δ(
√

δ0 – δ)
(
γM(g�; 0) + Ẽg(gχ ; 0)

)

+
C

(
√

δ0 – δ)2

∫

S

(∥∥g�(t)
∥∥2
RN ,g +

∥∥g ′
�(t)

∥∥2
RN ,g

)
dt, (23)

∫

S

∥∥(
–∂2

g
)–1/2g ′

χ (t)
∥∥2
RN ,g dt ≤ C

δ(
√

δ0 – δ)
(
γM(g�; 0) + Ẽg(gχ ; 0)

)

+
C

(
√

δ0 – δ)2

∫

S

(∥∥g�(t)
∥∥2
RN ,g +

∥∥g ′
�(t)

∥∥2
RN ,g

)
dt,

from the proof of Lemma 2.
Taking the sum of these two inequalities, we obtain

∫

S
Ẽg(gχ ; t) dt ≤ C

δ(
√

δ0 – δ)
(
γM(g� ; 0) + Ẽg(gχ ; 0)

)

+
C

(
√

δ0 – δ)2

∫

S

(∥∥g�(t)
∥∥2
RN ,g +

∥∥g ′
�(t)

∥∥2
RN ,g

)
dt. (24)

And thanks to Lemma 2, we improve (24) as follows:

∫

S
Ẽg(gχ ; t) dt ≤ C

δ(
√

δ0 – δ)
(
γM(g�; 0) + Ẽg(gχ ; 0)

)

+
C

(
√

δ0 – δ)2

∫

S
γM(g�; t) dt,

which proves the inequality (20).
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The other estimates (21) and (22), are obtained easily from equations (23), (24) and the
relation

∫

S

(∥∥g�(t)
∥
∥2
RN ,g +

∥
∥g ′

�(t)
∥
∥2
RN ,g

)
dt ≤ max

(
1
δ0

, 1
)∫

S
γM(g� ; t) dt. �

4 Proofs of main results
Now we derive the learning rates.

Proof of Theorem 1 Let y = (t1, t2, t3, . . . , tm)τ , K[s] = (E(si, sj))m
i,j=1 and aw = (aw

1 , . . . , aw
m) be

the coefficient of gw,ς . It follows from the representation theorem (see [27, 28]) that

aw
i =

1
χm

Ψ

(
s
ζ

,
si

ζ

)(
ti – gw,ζ ,χ ,s(si)

)

for i = 1, 2, . . . , m.
By the Hölder inequality, we have

m∑

i=1

∣
∣aw

i
∣
∣q =

1
(χm)q

m∑

i=1

∣∣
∣∣Ψ

(
s
ζ

,
si

ζ

)(
ti – gw,ζ ,χ ,s(si)

)
∣∣
∣∣

q

≤ 1
(χm)q

( m∑

i=1

Ψ

(
s
ζ

,
si

ζ

) 1
2–q

)1– q
2

×
( m∑

i=1

(
s
ζ

,
si

ζ

)(
ti – gw,ζ ,χ ,s(si)

)2
) q

2

.

It follows that

m∑

i=1

∣
∣aw

i
∣
∣q ≤ m

(χm)q

(
Ew,s(gw,ζ ,χ ,s)

) q
2

from (5).
Thus

Ew,s
(
γM(gw,ζ ,ς ,s)

)
+ ςΩw(gw,ζ ,ς ,s)

≤ Ew,s(gw,ζ ,ς ,s) + ςΩw(gw,ζ ,ς ,s)

≤ Ew,s(gw,ζ ,χ ,s) + ςΩw(gw,ζ ,χ ,s)

≤ Ew,s(gw,ζ ,χ ,s) +
mς

(χm)q

(
Ew,s(gw,ζ ,χ ,s)

) q
2

≤ Ew,s(gw,ζ ,χ ,s) + χ‖gw,ζ ,χ ,s‖2
E

+
mς

(χm)q

(
Ew,s(gw,ζ ,χ ,s) + χ‖gw,ζ ,χ ,s‖2

E
) q

2 .

Since

Ew,s(gw,ζ ,χ ,s) + χ‖gw,ζ ,χ ,s‖2
E ≤ Ew,s(0) + χ‖0‖2

E ,



Meng Boundary Value Problems         (2019) 2019:91 Page 9 of 13

we get

Ew,s
(
γM(gw,ζ ,ς ,s)

)
+ ςΩw(gw,ζ ,ς ,s)

≤ Ew,s(gw,ζ ,χ ,s) + χ‖gw,ζ ,χ ,s‖2
E +

mςM2

(χm)q .

This yields our desired estimation. �

Proof of Theorem 2 Let

h(u, t) =
∫

S
Ψ

(
s
ζ

,
u
ζ

)
[(

t – gχ (u)
)2 –

(
t – g�(u)

)2]d�S(s)

for any z = (u, t) ∈ Z. Then

∫

Z
h d� =

∫

S

{
Es(gχ ) – Es(g�)

}
d�S(s);

1
m

m∑

i=1

h(wi) =
∫

S

{
Ew,s(gχ ) – Ew,s(g�)

}
d�S(s).

By (3) we have

‖gχ‖∞ ≤ κ‖gχ‖E ≤ κ

√
D(χ )

χ
.

Combining with (5), we have

∣∣h(u, t)
∣∣ ≤ (‖gχ‖∞ + M

)(
3M + ‖gχ‖∞

)

≤
(

3M + κ

√
D(χ )

χ

)2

:= Bχ .

Therefore

∥
∥∥
∥h(u, t) –

∫

Z
h d�

∥
∥∥
∥∞

≤ 2Bχ

and

ζ 2(h) ≤
∫

Z
h2 d�

=
∫

Z

(∫

S
Ψ

(
s
ζ

,
u
ζ

)
d�S(s)

)2(
gχ (u) – g�(u)

)2

× (
gχ (u) + g�(u) – 2y

)2 d�(u, t)

≤ (
3M + ‖gχ‖∞

)2‖gχ – g�‖2
�S

≤ BχD(χ ).
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By Lemma 1,

1
m

m∑

i=1

h(wi) –
∫

Z
h d� ≤ D(χ )

2
+

7Bχ log(2/δ)
3m

. (25)

�

Proof of Theorem 3 Consider the set of functions

GR =
{

h(u, t) =
∫

S
Ψ

(
s
ζ

,
u
ζ

)((
t – γM(g)(u)

)2 –
(
t – g�(u)

)2)d�S(s) : f ∈ BR

}
.

We have

∣
∣h(u, t)

∣
∣ ≤

∫

S
Ψ

(
s
ζ

,
u
ζ

)∣
∣(γM(g)(u) – g�(u)

) × (
γM(g)(u) + g�(u) – 2y

)∣∣d�S(s)

≤ 8M2

from (5), which yields

∣
∣h(u, t)

∣
∣2 =

∣∣
∣∣

∫

S
Ψ

(
s
ζ

,
u
ζ

)(
γM(g)(u) – g�(u)

) × (
γM(g)(u) + g�(u) – 2y

)
d�S(s)

∣∣
∣∣

2

≤ 16M2
∫

S
Ψ

(
s
ζ

,
u
ζ

)
(
γM(g)(u) – g�(u)

)2 d�S(s)
∫

S
Ψ

(
s
ζ

,
u
ζ

)
d�S(s).

So

E
(
h2) ≤ 16M2

∫

S

(∫

S
Ψ

(
s
ζ

,
u
ζ

)
(
γM(g)(u) – g�(u)

)2 d�S(u)
)

d�S(s).

It has been proved in [13, 29] that

∫

S
Ψ

(
s
ζ

,
u
ζ

)(
g(u) – g�(u)

)2 d�S(u)

=
∫

Z
Ψ

(
s
ζ

,
u
ζ

)[(
g(u) – t

)2 –
(
g�(u) – t

)2]d�(u, t),

which implies that

E
(
h2) ≤ 16M2

∫

S

(∫

Z
Ψ

(
s
ζ

,
u
ζ

)[(
γM(g)(u) – t

)2

–
(
g�(u) – t

)2]d�(u, t)
)

d�S(s)

= 16M2
∫

Z

(∫

S
Ψ

(
s
ζ

,
u
ζ

)
[(

γM(g)(u) – t
)2

–
(
g�(u) – t

)2]d�S(s)
)

d�(u, t)

= 16M2
E(h).
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Then we get

∣∣h1(u, t) – h2(u, t)
∣∣

=
∣∣
∣∣

∫

S
Ψ

(
s
ζ

,
u
ζ

)((
γM(g1)(u) – t

)2 –
(
γM(g2)(u) – t

)2)d�S(s)
∣∣
∣∣

≤
∣
∣∣∣

∫

S
Ψ

(
s
ζ

,
u
ζ

)
(
γM(g1)(u)

)
– γM(g2)(u))

× (
γM(g1)(u) + γM(g2)(u) – 2t

)
d�S(s)

∣
∣∣
∣

≤ 4M
∣∣g1(u) – g2(u)

∣∣ (26)

for any h1, h2 ∈GR, which yields

N2(GR, ε) ≤ N2

(
BR,

ε

4M

)
= N2

(
B1,

ε

4MR

)
.

It follows from the capacity condition (7) that

logN2(GR, ε) ≤ cp(4M)pRpε–p.

By applying Lemma 2 to G with Q = 8M2 we have

Eg –
1
m

m∑

i=1

h(wi) ≤ Eg
2

+
176M2

m
log

(
2
δ

)
+ Cp,MR

2p
2+p m– 2

2+p

for any 0 < δ < 1, where

Cp,M = c′
p(4M)

4
2+p c

2
2+p
p .

Moreover, we take f = gw,ζ ,ς ,s and derive the following bound of gw,ζ ,ς ,s by using the same
method in [9, Lemma 3] and (5):

‖gw,ς‖E ≤ κm1– 1
q

(
M2

ς

) 1
q

.

If we take

R = Rς = κm1– 1
q

(
M2

ς

) 1
q

,

then we can complete the proof of Theorem 3. �

5 Conclusion
The application of the new criteria for minimally thin sets with respect to the Schrödinger
operator to an approximate solution of singular Schrödinger-type boundary value prob-
lems were discussed in this study. The method was based on approximating functions and



Meng Boundary Value Problems         (2019) 2019:91 Page 12 of 13

their derivatives by using the natural and weakened total energies. This study showed that
the new criteria were very effective and powerful tools in solving such problems. At the
end of the paper, we were also concerned with the boundary behaviors of solutions for a
kind of quasilinear Schrödinger equation.
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