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Abstract
The strong degenerate parabolic equation

∂xxu + u∂yu – ∂tu = f (x, y, t,u)

comes from the mathematics of finance. A kind of entropy solution is introduced. By
Kružkov’s bi-variable method, the stability for entropy solutions only depending on
the initial value is proved. The usual boundary value condition is replaced by the
regularity of the domain in a special sense.
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1 Introduction
Consider the strongly degenerate parabolic equation

∂xxu + u∂yu – ∂tu = f (x, y, t, u), (x, y, t) ∈ QT = Ω × (0, T), (1.1)

where Ω ⊂ R
2 is a domain with the suitably smooth boundary ∂Ω . Equation (1.1) arises

from mathematical finance [1], or from nonlinear physical phenomena such as the com-
bined effects of diffusion with convection of matter [2]. Antonelli, Barucci and Mancino [1]
introduced a new model for an agent’s decision under risk, in which the utility function is
the solution of Eq. (1.1), in particular, 0 ≤ u ≤ 1. The local classical solution of the Cauchy
problem to Eq. (1.1) had been solved by Crandall, Ishii and Lions [3], and by Citti, Pascucci
and Polidoro [4], Antonelli and Pascucci [5] step by step. However, Zhan [6] had shown
that the global weak solution of Eq. (1.1) cannot be classical generally. In other words,
some blow-up phenomena happen in finite time. Accordingly, we should concerned with
the well-posedness of weak solutions generally.

If the weak solutions hold in the sense of entropy solutions, then the well-posedness as
regards the Cauchy problem to Eq. (1.1) is included in our previous work [7, 8]. If Eq. (1.1)
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comes with the usual initial-boundary value conditions,

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω , (1.2)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (1.3)

when fx, fy, ft are bounded functions, and fu is bounded only if u is bounded, then the
existence and the uniqueness of the entropy solution is proved in [9]. The problem seem-
ingly has been solved perfectly. But, since the equation lacks the term ∂yyu, it is a strongly
degenerate parabolic equation, the usual boundary value condition (1.3) might be super-
fluous. In fact, how to impose a suitable boundary value condition to match up with the
following hyperbolic–parabolic mixed type equation:

∂u
∂t

=
N∑

i,j=1

∂

∂xi

(
aij(x, t, u)

∂u
∂xj

)
+ div

(
b(x, t, u)

)
+ c(x, t, u), (x, t) ∈ Ω × (0, T), (1.4)

has been an important problem in PDE for a long time. One may refer to Refs. [10–19]
and the references therein. Here Ω ⊂R

N is a bounded domain.
In this paper, unlike [9–19], we avoid considering the boundary value condition tactfully.

We primarily study whether the stability of entropy solutions of Eq. (1.1) with the initial
value (1.2) can be proved without any boundary value condition directly. Unsurprisingly,
we should try to find some other conditions to replace the boundary value condition.

Let us make some preparations. We say u ∈ BV(QT ), if and only if u ∈ L1
loc(QT ) and

∫ T

0

∫

Bρ

∣∣u(x + h1, , y + h2, t + h3) – u(x, y, t)
∣∣dx dt ≤ K |h|,

where

Bρ =
{

X = (x, y) ∈R
2 : |X| < ρ

}
, h = (h1, h2, h3)

and K is a positive constant. Let Γu be the set of all jump points of u ∈ BV(QT ), v the
normal of Γu at X = (x, t), u+(X) and u–(X) the approximate limits of u at X ∈ Γu with
respect to (v, Y – X) > 0 and (v, Y – X) < 0, respectively. For a continuous function p :
(x, y, t, u) → p(x, y, t, u) and u ∈ BV(QT ), define

p̂(x, y, t, u) =
∫ 1

0
p
(
x, y, t, τu+ + (1 – τ )u–)

dτ ,

which is called the composite mean value of p. Moreover, if f ∈ C1(R), u ∈ BV(QT ), then
f (u) ∈ BV(QT ) and

∂f (u)
∂xi

= f̂ ′(u)
∂u
∂xi

, i = 1, 2, x1 = x, x2 = y,

is true in the sense of the weak derivatives, i.e. for any ϕ(x, t) ∈ C1
0(QT ),

∫∫

QT

ϕ(x, t) d
[

∂f (u)
∂xi

]
=

∫∫

QT

̂f ′(u)ϕ(x, t) d
[

∂u
∂xi

]
. (1.5)
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Let Sη(s) =
∫ s

0 hη(τ ) dτ for small η > 0. Here hη(s) = 2
η

(1 – |s|
η

)+, obviously hη ∈ C(R) and

hη(s) ≥ 0,
∣∣hη(s)

∣∣ ≤ 2
η

,
∣∣Sη(s)

∣∣ ≤ 1, (1.6)

lim
η→0

Sη(s) = sign(s), lim
η→0

sS′
η(s) = 0. (1.7)

Definition 1.1 Let Ω be a bounded domain in R
2. A function u is said to be the entropy

solution of Eq. (1.1) with the initial value (1.2), if:
(i) u ∈ BV(QT ) ∩ L∞(QT ), and ux ∈ L2(QT ).

(ii) For any 0 ≤ ϕ ∈ C2
0(QT ), for any k ∈ R, for any η > 0, u satisfies

∫ ∫

QT

[
Iη(u – k)ϕt – Bη(u, k)ϕy + Iη(u – k)ϕxx

– f (·, u)Sη(u – k)ϕ – S′
η(u – k)(∂xu)2ϕ

]
dx dy dt

≥ 0. (1.8)

Here

Bη(u, k) =
∫ u

k
sSη(s – k) ds, Iη(u – k) =

∫ u–k

0
Sη(s) ds.

(iii) The initial value condition is true in the sense of that

lim
t→0

∫

Ω

∣∣u(x, y, t) – u0(x, y)
∣∣dx dy = 0. (1.9)

The existence of an entropy solution has been given in [9], we do not repeat it here. The
first aim of this paper is, by Kružkov’s bi-variable method, to prove the stability of entropy
solutions of Eq. (1.1) with the initial value (1.2), but without any boundary value condition.

Theorem 1.2 Let Ω be a bounded domain, 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 be two solutions of Eq.
(1.1) with the different initial values u0, v0 ∈ L∞(Ω). Suppose that f (·, u) is a Lipschitz
function, and that there exists a function a ∈ C1(Ω), axx ∈ C(Ω),

a(x, y) = 0, (x, y) ∈ ∂Ω , a(x, y) > 0, (x, y) ∈ Ω , (1.10)

such that when (x, y) is near the boundary ∂Ω ,

axx + |ay| ≤ 0. (1.11)

Then, for a.e. t ∈ (0, T),

∫

Ω

∣∣u(x, y, t) – v(x, y, t)
∣∣dx dy ≤ c

∫

Ω

∣∣u0(x, y) – v0(x, y)
∣∣dx dy. (1.12)

We give a simple comment here. In the first place, there do exist domains satisfying
the conditions (1.10), (1.11). For example, if the domain Ω is the unit disc D1 = {(x, y) :
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x2 + y2 < 1}, then a(x, y) = 1 – (x2 + y2),

ax = –2x, ay = –2y, axx = –2,

and

axx + |ay| ≤ 0.

In the second place, at least from my own perspective, the conditions (1.10)–(1.11) reflect
the regularity of the domain to some extent. For convenience, we can give the following
definition.

Definition 1.3 Let Ω ⊂ R
2 be an open domain. If there is a nonnegative function g ∈

C1(Ω), ∂2g
∂x2 ∈ C(Ω), such that

∂Ω =
{

(x, y) ∈ R
2 : g(x, y) = 0

}
, Ω =

{
(x, y) ∈R

2 : g(x, y) > 0
}

, (1.13)

and

∂2g(x, y)
∂x2 +

∣∣∣∣
∂g(x, y)

∂y

∣∣∣∣ ≤ 0, (x, y) ∈ Ω , (1.14)

then we say Ω is regular in a special sense.

In other words, Theorem 1.2 reflects that, for a bounded domain Ω , we may use the reg-
ularity of the domain in the sense of Definition 1.3 to take the place of the usual boundary
value condition.

The second aim of this paper is to study the corresponding problem in an unbounded
domain Ω . For any R ≥ 0, we denote DR = {(x, y) : x2 + y2 < R2} and ΩR = Ω ∩ DR. Inspired
by Definition 1.3, we give the following definition.

Definition 1.4 For an unbounded domain Ω ⊂R
2, if there exist a constant R0 and a non-

negative function g ∈ C1(Ω) satisfying (1.13), ∂2g
∂x2 ∈ C(Ω), such that inequality (1.14) is

true when (x, y) ∈ Ω \ ΩR0 , then we say Ω is weakly regular in a special sense.

It would be perfect if we could prove a theorem similar to Theorem 1.2 when Ω is
unbounded and (weakly) regular. But it seems very difficult. We can only give a partial
positive answer. We will provide the definition of the entropy solution to Eq. (1.1) in an
unbounded domain in Sect. 3. We establish first its existence and then we can prove the
following stability theorems.

Theorem 1.5 Let the unbounded Ω be weakly regular in the sense of Definition 1.4. Let
0 ≤ u ≤ 1, 0 ≤ v ≤ 1 be two solutions of Eq. (1.1) with different initial values u0, v0 ∈ L∞(Ω).
If f (·, u) is Lipschitz function, and

g(x, y)
[
δ2x2

√
1 + x2 + y2 – δ

(
1 + y2)]

– 2δx
(
1 + x2 + y2)gx + δ|ygy|

(
1 + x2 + y2) ≤ 0, x ∈ Ω \ ΩR0 , (1.15)
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∣∣∣∣–2δ
xgx√

1 + x2 + y2
+ gxx + δ

ygy√
1 + x2 + y2

+ gy

∣∣∣∣ ≤ cg(x, y), x ∈ ΩR0 , (1.16)

then, for a.e. t ∈ (0, T),

∫

Ω

∣∣u(x, y, t) – v(x, y, t)
∣∣νδ(x)g(x, y) dx dy

≤ c
∫

Ω

∣∣u0(x, y) – v0(x, y)
∣∣νδ(x)g(x, y) dx dy, (1.17)

where δ is a given positive constant, and

νδ(x) = exp
(
–δ

√
1 + x2 + y2

)
.

Moreover, from the proof Theorem 1.5, we are easily to obtain the following.

Theorem 1.6 Let the unbounded Ω be regular in the sense of Definition 1.3 (equivalently,
R0 = 0 in Definition 1.4). Let 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 be two solutions of Eq. (1.1) with different
initial values u0, v0 ∈ L∞(Ω). If f (·, u) is a Lipschitz function, g(x, y) satisfies

g(x, y)
[
δ2x2

√
1 + x2 + y2 – δ

(
1 + y2)]

– 2δx
(
1 + x2 + y2)gx + δ|ygy|

(
1 + x2 + y2) ≤ 0, x ∈ Ω , (1.18)

then the stability (1.17) is true.

Theorem 1.7 Let Ω be an unbounded domain in R
2. Let 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 be two

solutions of Eq. (1.1) with the different initial values u0, v0 ∈ L∞(Ω). If f (·, u) is a Lipschitz
function, and there exists a nonnegative function g ∈ C1(Ω), ∂2g

∂x2 ∈ C(Ω), such that (1.13)
is true and

∣∣∣∣–2δ
xgx√

1 + x2 + y2
+ gxx + δ

ygy√
1 + x2 + y2

+ gy

∣∣∣∣ ≤ cg(x, y), x ∈ Ω , (1.19)

then the stability (1.17) is true.

The limitation of previous theorems is that it is not easy to judge whether the conditions
(1.15) (similarly (1.18)) and (1.16) (similarly (1.19)) are true or not. In other words, for a
given unbounded regular domain Ω , it is difficult to verify that Ω is regular (or weakly
regular).

Certainly, if one insists on considering the well-posedness problem for Eq. (1.1) in the
framework of the initial-boundary value conditions system, then the usual boundary value
condition (1.3) may be overdetermined, only a partial boundary value condition is enough.
The third aim of this paper is to prove the stability of entropy solutions to Eq. (1.1) based on
a partial boundary value condition. For simplicity, we only consider the special unbounded
domain

Ω1 =
{

(x, y) ∈R
2
+ : –x2 + y > 0

}

in this paper.
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Theorem 1.8 Let 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 be two solutions of Eq. (1.1) with the different initial
values u0, v0 ∈ L∞(Ω1) and with the same partial boundary value condition

u(x, t) = v(x, t) = 0, (x, t) ∈ Σ1 × (0, T), (1.20)

where Σ1 = {x ∈ ∂Ω1 : 2x2
1√

1+x2
1+x2

2
– 1 > 0}. If f (·, u) is a Lipschitz function, then for a.e. t ∈

(0, T),

∫

Ω1

∣∣u(x, y, t) – v(x, y, t)
∣∣ν1(x) dx dy ≤ c

∫

Ω1

∣∣u0(x, y) – v0(x, y)
∣∣ν1(x) dx dy. (1.21)

We think that Theorem 1.8 can be generalized to a usual unbounded domain, and we
will pursue this track further.

2 The proof of Theorem 1.2
In this section, we give the proof of Theorem 1.2. Let us recall Kružkov’s bi-variable
method briefly.

Let u, v be two entropy solutions to Eq. (1.1) with initial values

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y). (2.1)

In order to use Kružkov’s bi-variable method, we denote the spatial variables (x, y) by
(x1, x2) or (y1, y2), and dx = dx1 dx2, dy = dy1 dy2.

By Definition 1.1, we have

∫∫

QT

[
Iη(u – k)ϕt – Bη(u, k)ϕx2 + Iη(u – k)ϕx1x1 – S′

η(u – k)|∂x1 u|2ϕ]
dx dt

–
∫∫

QT

f (·, u)Sη(u – k)ϕ dx dt

≥ 0, (2.2)
∫∫

QT

[
Iη(v – l)ϕτ – Bη(v, l)ϕy2 + Iη(v – l)ϕy1y1 – S′

η(v – l)|∂y1 v|2ϕ]

–
∫∫

QT

f (·, v)Sη(v – l)ϕ dy dτ

≥ 0. (2.3)

Let φ ≥ 0, φ ∈ C∞
0 (QT ), ψ(x, t, y, τ ) = φ(x, t)jh(x – y, t – τ ). Here,

jh(x – y, t – τ ) = ωh(t – τ )
2∏

i=1

ωh(xi – yi),

where ωh is taken as

ωh(s) =
1
h
ω

(
s
h

)
, ω ∈ C∞

0 (R),ω ≥ 0,ω = 0 if |s| > 1,
∫ ∞

–∞
ω(s) ds = 1.
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Clearly,

∂jh
∂t

+
∂jh
∂τ

= 0,
∂jh
∂xi

+
∂jh
∂yi

= 0, i = 1, 2; (2.4)

∂ψ

∂t
+

∂ψ

∂τ
=

∂φ

∂t
jh,

∂ψ

∂xi
+

∂ψ

∂yi
=

∂φ

∂xi
jh. (2.5)

By choosing k = v(y, τ ) in (2.2), l = u(x, t) in (2.3), and ϕ = ψ(x, t, y, τ ) in both (2.2) and
(2.3), we have

∫∫

QT

∫∫

QT

[
Iη(u – v)(ψt + ψτ ) –

(
Bη(u, v)ψx2 + Bη(v, u)ψy2

)

+ Iη(u – v)ψx1x1 + Iη(v – u)ψy1y1

]

–
{

S′
η(u – v)

(|∂x1 u|2 + |∂y1 v|2)

–
[
f (·, u)Sη(u – v) + f (·, v)Sη(v – u)

]}
ϕ dx dt dy dτ

≥ 0. (2.6)

By (2.4)–(2.5), using the equality (2.5), we can deduce that

(
u+ – u–)

ν1 = 0, (x, t) ∈ Γu, (2.7)

where ν = (ν1,ν2,ν3) is the normal vector of Γu at the point (x, y, t). By (2.7), after a calcu-
lation developed in [9], when η → 0 and then h → 0+ in (2.6), we get

∫∫

QT

[∣∣u(x, t) – v(x, t)
∣∣φt + |u – v|φx1x1 –

1
2

sgn(u – v)
(
u2 – v2)φx2

]
dx dt

–
∫∫

QT

[
f (·, u) – f (·, v)

]
sgn(u – v)φ dx dt

≥ 0. (2.8)

If we choose

φ(x, t) = η(t)ξ (x),

where 0 ≤ η ∈ C∞
0 (0, T), 0 ≤ ξ ∈ C∞

0 (Ω), then

∫∫

QT

[∣∣u(x, t) – v(x, t)
∣∣ξ (x)ηt + |u – v|η(t)ξx1x1

–
1
2

sgn(u – v)
(
u2 – v2)η(t)ξx2

]
dx dt

–
∫∫

QT

[
f (·, u) – f (·, v)

]
sgn(u – v)η(t)ξ (x) dx dt

≥ 0. (2.9)
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For 0 < τ < s < T , we choose

η(t) =
∫ s–t

τ–t
ωε(σ ) dσ , ε < min{τ , T – s},

where, as above, ωε(t) is the kernel of the mollifier with ωε(t) = 0 for t /∈ (–ε, ε).
By (2.9), letting ε → 0, we have

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ξ (x) dx

≤
∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣ξ (x) dx

+
∫ s

τ

∫

Ω

{
|u – v|ξx1x1 –

u + v
2

|u – v|ξx2

–
[
f (·, u) – f (·, v)

]
sgn(u – v)ξ (x)

}
dx dt. (2.10)

For any given small enough 0 < λ, ωλ ∈ C1
0(Ω) is defined as follows:

ωλ(x) =

⎧
⎨

⎩
1, a(x) > λ,

1 – (a(x)–λ)2

λ2 , 0 ≤ a(x) ≤ λ,

where a satisfies the conditions (1.10)–(1.11) and ax1x1 ∈ C(Ω).
We choose now ξ (x) = ωλ(x). So, for 0 ≤ a(x) ≤ λ,

ξx1 = –
2(a – λ)

λ2 ax1 , ξx2 = –
2(a – λ)

λ2 ax2 ,

ξx1x1 = –
2
λ2 a2

x1 –
2(a – λ)

λ2 ax1x1 .

Then
∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ξ (x) dx

≤
∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣ξ (x) dx

+
∫ s

τ

∫

Ωλ

{
–|u – v|2(a – λ)

λ2 ax1x1 +
u + v

2
|u – v|2(a – λ)

λ2 ax2

}
dx dt

–
∫ s

τ

∫

Ω

[
f (·, u) – f (·, v)

]
sgn(u – v)ωλ(x) dx dt (2.11)

where Ωλ = {x ∈ Ω : a(x) < λ}.
Since a satisfies the conditions (1.10)–(1.11), using the fact 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, we have

u + v
2

|u – v|2(a – λ)
λ2 ax2

≤ u + v
2

|u – v|
∣∣∣∣
2(a – λ)

λ2

∣∣∣∣|ax2 |



Huashui Boundary Value Problems         (2019) 2019:95 Page 9 of 17

≤ |u – v|
∣∣∣∣
2(a – λ)

λ2

∣∣∣∣|ax2 |

= –|u – v|2(a – λ)
λ2 |ax2 |, x ∈ Ωλ,

accordingly,

–|u – v|2(a – λ)
λ2 ax1x1 +

u + v
2

|u – v|2(a – λ)
λ2 ax2

≤ –|u – v|2(a – λ)
λ2

(
ax1x1 + |ax2 |

)

≤ 0, x ∈ Ωλ,

and by (2.11), we have

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣dx + c

∫ s

τ

∫

Ω

|u – v|dx dt. (2.12)

By the Gronwall lemma,

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤ c∗

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣dx, (2.13)

where c∗ = ecT . After letting τ → 0 in (2.13), we have

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣dx ≤ c∗

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx. (2.14)

3 Unbounded domains
If Ω is an unbounded domain, we should modify the definition of entropy solutions as
follows.

Definition 3.1 A function u is said to be the entropy solution of Eq. (1.1) with the initial
value (1.2), if u satisfies (i) and (ii) in Definition 1.1, and the initial value is true in the sense
that

lim
t→0

∫

ΩR

∣∣u(x, t) – u0(x)
∣∣dx = 0, (3.1)

where ΩR = DR ∩ Ω .

Since the domain Ω is unbounded, the existence of the entropy solution in the sense of
Definition 3.1, should be proved independently. In what follows, we only give the outline
of its proof.

Consider the approximate problem,

ε�uε + ∂xxuε + uε∂yuε – ∂tuε = f (x, y, t, uε), (x, y, t) ∈ Ω 1
ε
× (0, T), (3.2)

uε(x, t) = 0, (x, t) ∈ ∂Ω 1
ε
× (0, T), (3.3)

uε(x, 0) = u0(x), x ∈ Ω 1
ε

, (3.4)
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where Ω 1
ε

= D 1
ε
∩ Ω . We assume 0 ≤ u0 ∈ C2

0(Ω). It is well known that there is a classical
solution uε .

Denote x1 = x, x2 = y, x3 = t, differentiate (3.5) with respect to xs, s = 1, 2, 3, and sum up
for s after multiplying the resulting relation by uxs

Sη(|grad uε |)
|grad uε | νδ(x), by a complicated calcu-

lation, similar to those in [9], then we can deduce the following important lemma.

Lemma 3.2 If f is a C1 function, fx1 , fx2 , ft are bounded functions, and fu is bounded too
when u is bounded, then we have

∫ T

0

∫

Ω

|grad uε|νδ(x) dx dt ≤ c, (3.5)

∫ T

0

∫

Ω1

νδ(x)|ux1 |2 dx dt ≤ c. (3.6)

Theorem 3.3 If 0 ≤ u0 ∈ C2
0(Ω), f is a C1 function, fx1 , fx2 , ft are bounded functions, and

fu is bounded when u is bounded, there exists an entropy solution of Eq. (1.1) in the sense
of Definition 3.1.

Proof By Kolmogoroff’s theorem, there exist a subsequence {uεn} of uε and a function
u ∈ BV(QT ) ∩ L∞(QT ) such that (uεε ) is locally strongly convergent in L1 to u, and so
uεε → u a.e. on QT . By (3.6), there exists a subsequence of {ε} (we still denote it ε), such
that

∂uε

∂x
⇀

∂u
∂x

, in L2
loc(QT ). (3.7)

Let ϕ ∈ C2
0(QT ), ϕ ≥ 0. Multiplying (3.4) by ϕSη(uε –k), and integrating over QT , we obtain

∫∫

QT

∂uε

∂t
ϕSη(uε – k) dx dy dt

=
∫∫

QT

∂

∂x

(
∂uε

∂x

)
ϕSη(uε – k) dx dy dt

+ ε

∫∫

QT

�uεϕSη(uε – k) dx dy dt +
∫∫

QT

uεuεyϕSη(uε – k) dx dy dt

–
∫∫

QT

f (x, y, t, uε)ϕSη(uε – k) dx dy dt. (3.8)

Integrating by parts, we can deduce that

∫∫

QT

Iη(uε – k)ϕt dx dy dt +
∫∫

QT

Iη(uε – k)ϕxx dx dy dt –
∫∫

QT

Bη(uε , k)ϕy dx dy dt

– ε

∫∫

QT

∇uε · ∇ϕSη(uε – k) dx dy dt – ε

∫∫

QT

|∇uε|2S′
η(uε – k)ϕ dx dy dt

–
∫∫

QT

(uεx)2S′
η(uε – k)ϕ dx dy dt –

∫∫

QT

f (x, y, t, uε)ϕSη(uε – k) dx dy dt

= 0. (3.9)
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Accordingly, we have

∫∫

QT

Iη(uε – k)ϕt dx dy dt +
∫∫

QT

Iη(uε – k)ϕxx dx dy dt –
∫∫

QT

Bη(uε , k)ϕy dx dy dt

– ε

∫∫

QT

∇uε · ∇ϕSη(uε – k) dx dy dt –
∫∫

QT

(uεx)2S′
η(uε – k)ϕ dx dy dt

–
∫∫

QT

f (x, y, t, uε)ϕSη(uε – k) dx dt

≥ 0. (3.10)

We use the inequality

lim inf
ε→0

∫∫

QT

S′
η(uε – k)

∂uε

∂x
∂uε

∂x
ϕ dx dy dt ≥

∫∫

QT

∣∣∣∣
∂u
∂x

∣∣∣∣
2

S′
η(u – k)ϕ dx dy dt. (3.11)

Let ε → 0 in (3.10). By (3.11), we know uε → u and u satisfies (i) and (ii) in Definition 1.1.
The initial value condition, satisfied in the sense of (3.3), can be proved by a similar

method to that in [7]. Then u is an entropy solution of Eq. (1.1) in the sense of Defini-
tion 3.1. �

For convenience, we denote again (x, y) = (x1, x2). Theorem 1.5 is proved as follows.

Proof of Theorem 1.5 Let us choose the test function

φ(t, x) = η(t)ξ (x), (3.12)

and using Kružkov’s bi-variable method we obtain

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ξ (x) dx

≤
∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣ξ (x) dx

+
∫ τ

s

∫

Ω

{
|u – v|ξx1x1 –

u + v
2

|u – v|ξx2

–
[
f (·, u) – f (·, v)

]
sgn(u – v)ξ (x)

}
dx dt. (3.13)

By taking the limit, we can choose

ξ (x1, x2) = νδ(x1, x2)g(x1, x2), (3.14)

where g(x1, x2) satisfies the conditions (1.14)–(1.16).
In the first place, we have the following direct calculations:

νδ = e–δ
√

1+x2
1+x2

2 , (3.15)

νδx1 = –δνδ

x1√
1 + x2

1 + x2
2

, (3.16)
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νδx2 = –δνδ

x2√
1 + x2

1 + x2
2

, (3.17)

νδx1x1 = δ2νδ

x2
1

1 + x2
1 + x2

2
– δνδ

1 + x2
2

(1 + x2
1 + x2

2) 3
2

, (3.18)

ξx2 = νδx2 g(x1, x2) + νδgx2 (x1, x2)

= –δνδ

x2g(x1, x2)√
1 + x2

1 + x2
2

+ νδgx2 , (3.19)

ξx1x1 = νδx1x1 g(x1, x2) + 2νδx1 gx1 + νδgx1x1

=
[
δ2νδ

x2
1

1 + x2
1 + x2

2
– δνδ

1 + x2
2

(1 + x2
1 + x2

2) 3
2

]
g(x1, x2)

– 2δνδ

x1gx1√
1 + x2

1 + x2
2

+ νδgx1x1 (x1, x2). (3.20)

Since the domain Ω is weakly regular in the sense of Definition 1.4, there is a R0 ≥ 0,

ΩR0 =
{

x ∈ Ω , |x|2 < R2
0
}

,

such that when x ∈ Ω \ ΩR0 , (1.14) is true, i.e.

gx1x1 + |gx2 | ≤ 0. (3.21)

In the second place, we use these calculations (3.19)–(3.21) in (3.13).

∫

Ω

(
|u – v|ξx1x1 –

u + v
2

|u – v|ξx2

)
dx

=
(∫

ΩR0

+
∫

Ω\ΩR0

)
|u – v|

(
ξx1x1 –

u + v
2

ξx2

)
dx. (3.22)

Since 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, we have

∫

Ω\ΩR0

|u – v|
(

ξx1x1 –
u + v

2
ξx2

)
dx

=
∫

Ω\ΩR0

|u – v|
{[

δ2νδ

x2
1

1 + x2
1 + x2

2
– δνδ

1 + x2
2

(1 + x2
1 + x2

2) 3
2

]
g(x1, x2)

– 2δνδ

x1gx1√
1 + x2

1 + x2
2

+ νδgx1x1

+
u + v

2
δνδ

x2gx2√
1 + x2

1 + x2
2

+ νδgx2

}
dx

≤
∫

Ω\ΩR0

νδ|u – v|
(1 + x2

1 + x2
2) 3

2

{
g(x1, x2)

[
δ2x2

1

√
1 + x2

1 + x2
2 – δ

(
1 + x2

2
)]
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– 2δx1
(
1 + x2

1 + x2
2
)
gx1 + δ|x2gx2 |

(
1 + x2

1 + x2
2
)}

dx

+
∫

Ω\ΩR0

νδ

(
gx1x1 + |gx2 |

)
dx

≤ 0. (3.23)

Here, we have use the assumption (1.15)

g(x1, x2)
[
δ2x2

1

√
1 + x2

1 + x2
2 – δ

(
1 + x2

2
)]

– 2δx1
(
1 + x2

1 + x2
2
)
gx1 + δ|x2gx2 |

(
1 + x2

1 + x2
2
) ≤ 0, x ∈ Ω \ ΩR0 ,

and since the domain Ω is weakly regular,

gx1x1 + |gx2 | ≤ 0, x ∈ Ω \ ΩR0 .

Meanwhile,

∫

ΩR0

|u – v|
(

ξx1x1 –
u + v

2
ξx2

)
dx

=
∫

ΩR0

|u – v|
{[

δ2νδ

x2
1

1 + x2
1 + x2

2
– δνδ

1 + x2
2

(1 + x2
1 + x2

2) 3
2

]
g(x1, x2)

– 2δνδ

x1gx1√
1 + x2

1 + x2
2

+ νδgx1x1

+
u + v

2
δνδ

x2gx2√
1 + x2

1 + x2
2

+ νδgx2

}
dx

≤
∫

ΩR0

|u – v|
{[

δ2 x2
1

1 + x2
1 + x2

2
– δ

1 + x2
2

(1 + x2
1 + x2

2) 3
2

]
g(x1, x2)νδ

+ νδ

∣∣∣∣–2δ
x1gx1√

1 + x2
1 + x2

2
+ gx1x1 + δ

x2gx2√
1 + x2

1 + x2
2

+ gx2

∣∣∣∣

}
dx

≤ c
∫

ΩR0

|u – v|g(x1, x2)νδ dx. (3.24)

Here, we have used the assumption (1.16)

∣∣∣∣–2δ
x1gx1√

1 + x2
1 + x2

2
+ gx1x1 + δ

x2gx2√
1 + x2

1 + x2
2

+ gx2

∣∣∣∣ ≤ cg(x1, x2), x ∈ ΩR0 .

At last, we substitute (3.23)–(3.24) into (3.13) to get

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣νδ(x)g(x1, x2) dx

≤
∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣νδ(x)g(x1, x2) dx + c

∫ s

τ

∫

Ω

|u – v|νδ(x)g(x1, x2) dx dt. (3.25)
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By the Gronwall lemma, we have

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣νδ(x)g(x1, x2) dx ≤ c∗

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣νδ(x)g(x1, x2) dx, (3.26)

where c∗ = ecT , and the conclusion follows easily. �

From the proof of Theorem 3.3 (Theorem 1.5), we easily obtain Theorem 1.6 and The-
orem 1.7, we omit the details here.

4 The proof of Theorem 1.8
In the last section, we prove Theorem 1.8. As before, we choose the test function

φ(t, x) = η(t)ξ (x),

and use Kruz̆kov’s bi-variable method to obtain
∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ξ (x) dx

≤
∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣ξ (x) dx

+
∫ s

τ

∫

Ω

{
|u – v|ξx1x1 –

u + v
2

|u – v|ξx2

–
[
f (·, u) – f (·, v)

]
sgn(u – v)ξ (x)

}
dx dt. (4.1)

By a process of limit, we can choose δ = 1 in the function νδ(x) and

ξ (x1, x2) = ν1(x)φλ

(
x2 – x2

1
)
, (4.2)

where λ > 0 is small enough,

φλ(t) =

⎧
⎨

⎩
1, if t ≥ λ,

1 – (t–λ)2

λ2 , if 0 < t < λ,
(4.3)

Since

ν1x1 = –
x1√

1 + x2
1 + x2

2
ν1, ν1x2 = –

x2√
1 + x2

1 + x2
2
ν1,

ν1x1x1 = –
1 + x2

2

(1 + x2
1 + x2

2) 3
2
ν1 +

x2
1

1 + x2
1 + x2

2
ν1.

Then

ξx1 = ν1x1φλ – 2x1φ
′
λν1

= ν1

[
–x1φλ√

1 + x2
1 + x2

2
– 2x1φ

′
λ

]
,
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where

φ′
λ(t) =

⎧
⎨

⎩
0, if t ≥ λ,

– 2(t–λ))
λ2 , if t < λ,

and

φ′′
λ(t) =

⎧
⎨

⎩
0, if t ≥ λ,

– 2
λ2 , if t < λ,

ξx2 = ν1x2φλ + ν1φ
′
λ

= ν1

[
–x2φλ√

1 + x2
1 + x2

2
+ φ′

λ

]
,

we have

ξx1x1 = ν1x1x1φλ – 4x1ν1x1φ
′
λ – 2φ′

λν1 + 4x2
1φ

′′
λν1

=
[

–
1 + x2

2

(1 + x2
1 + x2

2) 3
2
ν1 +

x2
1

1 + x2
1 + x2

2
ν1

]
φλ

+ 4
x2

1√
1 + x2

1 + x2
2
φ′

λν1

– 2φ′
λν1 + 4x2

1φ
′′
λν1. (4.4)

Accordingly, by φ′
λ(s) ≥ 0 and φ′′

λ(s) ≤ 0 when s < λ is small enough, we extrapolate:

∫

Ω

[
|u – v|ξx1x1 –

u + v
2

|u – v|ξx2

]
dx

=
∫

Ω

|u – v|
[

–
1 + x2

2

(1 + x2
1 + x2

2) 3
2
ν1 +

x2
1

1 + x2
1 + x2

2
ν1

]
φλ dx

+ 4
∫

Ω

|u – v| x2
1√

1 + x2
1 + x2

2
φ′

λν1 dx

– 2
∫

Ω

|u – v|[φ′
λν1 – 2x2

1φ
′′
λν1

]
dx

–
∫

Ω

u + v
2

|u – v|ν1

[
–x2φλ√

1 + x2
1 + x2

2
+ φ′

λ

]
dx

=
∫

Ω

|u – v|
[

–
1 + x2

2

(1 + x2
1 + x2

2) 3
2
ν1 +

x2
1

1 + x2
1 + x2

2
ν1

]
φλ dx

+ 4
∫

Ωλ

|u – v| x2
1√

1 + x2
1 + x2

2
φ′

λν1 dx

– 2
∫

Ωλ

|u – v|[φ′
λν1 – 2x2

1φ
′′
λν1

]
dx

+
∫

Ω

u + v
2

|u – v|ν1
x2φλ√

1 + x2
1 + x2

2
dx –

∫

Ωλ

u + v
2

|u – v|ν1φ
′
λ dx
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≤
∫

Ω

|u – v|
[

–
1 + x2

2

(1 + x2
1 + x2

2) 3
2
ν1 +

x2
1

1 + x2
1 + x2

2
ν1

]
φλ dx

+ 4
∫

Ωλ

|u – v|
[

4x2
1√

1 + x2
1 + x2

2
– 2

]
φ′

λν1 dx

+
∫

Ω

u + v
2

|u – v|ν1
x2φλ√

1 + x2
1 + x2

2
dx

≤
∫

Ω

|u – v|
[

–
1 + x2

2

(1 + x2
1 + x2

2) 3
2
ν1 +

x2
1

1 + x2
1 + x2

2
ν1

]
φλ dx

+ 4
∫

Ωλ1

|u – v|
[

4x2
1√

1 + x2
1 + x2

2
– 2

]
φ′

λν1 dx

+
∫

Ω

u + v
2

|u – v|ν1
x2φλ√

1 + x2
1 + x2

2
dx (4.5)

where Ωλ = {x = (x1, x2) ∈ Ω : x2 – x2
1 < λ}, Ωλ1 = {x ∈ Ωλ : 2x2

1√
1+x2

1+x2
2

– 1 > 0}.

Since u = v = 0 when x ∈ Σ1, using the fact

0 < –
(
x2 – x2

1 – λ
)

= λ –
(
x2 – x2

1
)

< λ

we have

lim
λ→0

∫

Ωλ1

|u – v|
[

4x2
1√

1 + x2
1 + x2

2
– 2

]
φ′

λν1 dx

= –2 lim
λ→0

1
λ2

∫

Ωλ1

|u – v|
[

4x2
1√

1 + x2
1 + x2

2
– 2

](
x2 – x2

1 – λ
)
)ν1 dx

≤ 2 lim
λ→0

1
λ

∫

Ωλ1

|u – v|
[

4x2
1√

1 + x2
1 + x2

2
– 2

]
ν1 dx

= 2
∫

Σ1

|u – v|
[

4x2
1√

1 + x2
1 + x2

2
– 2

]
ν1 dΣ

= 0. (4.6)

Let λ → 0 in (4.1). Then by |f (·, u) – f (·, v)| ≤ c|u – v|, using (4.5)–(4.6), we have

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ν1(x) dx

≤
∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣ν1(x) dx + c

∫ s

τ

∫

Ω

|u – v|ν1(x) dx dt. (4.7)

By the Gronwall lemma, we have

∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ν1(x) dx ≤ c∗

∫

Ω

∣∣u(x, τ ) – v(x, τ )
∣∣ν1(x) dx, (4.8)

where c∗ = ecT .
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Let τ → 0.
∫

Ω

∣∣u(x, s) – v(x, s)
∣∣ν1(x) dx ≤ c∗

∫

Ω

∣∣u(x, 0) – v(x, 0)
∣∣ν1(x) dx.
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