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Abstract
We consider a boundary value problem for p-Laplacian systems with two singular and
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1 Introduction
Let Ω be a bounded domain of Rn with smooth boundary ∂Ω , n ≥ 2. Let G be an open sub-
set in R2 with compact complement C1 ∪ C2 = Rn \ G containing θ = (0, 0) and e = (e1, e2),
where θ = (0, 0) ∈ C1 and e = (e1, e2) ∈ C2, n ≥ 2. In this paper we investigate existence
and multiplicity of the solutions (u, v) ∈ W 1,p(Ω , G) for the p-Laplacian system with two
singular and subcritical nonlinearities under the Dirichlet boundary condition:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

– div(|∇u|p–2∇u) = a|u|p–2u – gradu
1

(|u|2+|v|2)q – gradu
1

(|u–e1|2+|v–e2|2)r

+ 2α
α+β

|u|α–1|v|β in Ω ,

– div(|∇v|p–2∇v) = b|v|p–2v – gradv
1

(|u|2+|v|2)q – gradv
1

(|u–e1|2+|v–e2|2)r

+ 2β

α+β
|u|α|v|β–1 in Ω ,

(1.1)

where a, b, p, q, r, α, and β are real constants, and 1 < p < ∞, q, r > 1, and p < α + β < p∗,
where p∗ is a critical exponent such that

p∗ =

⎧
⎨

⎩

np
n–p if n > p,

∞ if n ≤ p.

Singular problems involving p-Laplacian arise in applications of non-Newtonian fluid the-
ory or the turbulent flow of a gas in a porous medium (cf. [12, 19]). Our problems are
characterized as a singular elliptic system with singular nonlinearities at {(u, v) = θ} and
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{(u, v) = e}. We recommend the book [12] for the singular elliptic problems. We also rec-
ommend Rǎdulescu’s paper [21] establishing the recent contributions in singular phenom-
ena in nonlinear elliptic problems from blow-up boundary solutions to equations with
singular nonlinearities in two types of stationary singular problems: the logistic equation

�u = Φ(x, u,∇u) in Ω ,

u > 0 in Ω ,

u = +∞ on ∂Ω

(1.2)

and the Lane–Emden–Fowler equation

–�u = Ψ (x, u,∇u) in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω ,

(1.3)

where Φ is a smooth nonlinear function, while Ψ has one or more singularities. The solu-
tions of (1.2) are called large (or blow-up) solutions. More studies on blow-up boundary
solutions of logistic type equation like (1.2) can be found in [2–5, 7, 8, 11, 13, 14, 16–18,
20, 22]. Singular Dirichlet boundary value problems for the Lane–Emden–Fowler equa-
tion like (1.3) involving singular nonlinearities have been intensively studied in the last
decades. The first study in this direction is due to Fulks and Maybee [10], who proved
existence and uniqueness of the problem

–�u + u–α = u in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω

(1.4)

by using fixed point arguments and no solution of (1.4), provided that 0 < α < 1 and λ1 ≥ 1
(that is, if Ω is small), where λ1 denotes the first eigenvalue of –� in H1

0 (Ω). Shi and Yau
studied in [23] the existence of radial symmetric solutions of the problem

�u + λ
(
up – u–α

)
= 0 in B1,

u > 0 in B1,

u = 0 on ∂B1,

(1.5)

where α > 0, 0 < p < 1, λ > 0 and B1 is the unit ball in RN . They showed in [23] that there
exists λ1 > λ0 > 0 such that (1.5) has no solution for λ < λ0, exactly one solution for λ =
λ0 or λ > λ1, and two solutions for λ0 < λ ≤ λ1. Dupaigne, Ghergu, and Rǎdulescu [9]
proved existence and multiplicity of the Lane–Emden–Fowler equation with convection
and singular potential

–�u ± (
d(x)

)
g(u) = λf (x, u) + ν|∇u|α in Ω ,

u > 0 in Ω ,

u = 0 on ∂Ω .
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M. Trabelsi and N. Trabelsi [24] considered the semilinear elliptic system and proved ex-
istence of the singular limit solutions for a two-dimensional semilinear elliptic system of
Liouville type.

We introduce the space

Lp(Ω , R) =
{

u
∣
∣
∣ u : Ω → R is measurable,

∫

Ω

|u|p dx < ∞
}

endowed with the norm

‖u‖p
Lp(Ω) = inf

{

λ > 0
∣
∣
∣

∫

Ω

∣
∣
∣
∣
u(x)
λ

∣
∣
∣
∣

p

≤ 1
}

and the Sobolev space

W 1,p(Ω , R) =
{

u ∈ Lp(Ω , R) | ∇u(x) ∈ Lp(Ω , R)
}

endowed with the norm

‖u‖W 1,p(Ω ,R) =
[∫

Ω

∣
∣∇u(x)

∣
∣p dx +

∫

Ω

∣
∣u(x)

∣
∣p dx

] 1
p

.

Let Lp(Ω , R2) = Lp(Ω , R)×Lp(Ω , R) and H = W 1,p(Ω , R2) = W 1,p(Ω , R)×W 1,p(Ω , R). Then
Lp(Ω , R2) and H are Hilbert spaces with the norm

∥
∥(u, v)

∥
∥

Lp(Ω ,R2) = ‖u‖Lp(Ω ,R) + ‖v‖Lp(Ω ,R)

and the norm

∥
∥(u, v)

∥
∥

H = ‖u‖W 1,p(Ω ,R) + ‖v‖W 1,p(Ω ,R),

respectively. It was proved in [15] that, for 1 < p < ∞, the eigenvalue problem

– div
(|∇u|p–2∇u

)
= λ|u|p–2u in Ω ,

u = 0 on ∂Ω

has a nondecreasing sequence of nonnegative eigenvalues λ
(p)
j obtained by the Ljusternik–

Schnirelman principle tending to ∞ as j → ∞, where the first eigenvalue λ
(p)
1 is simple

and only eigenfunctions associated with λ
(p)
1 do not change sign, the set of eigenvalues is

closed, the first eigenvalue λ
(p)
1 is isolated. Thus there is a sequence of eigenfunctions (φ(p)

j )j

corresponding to the eigenvalues λ
(p)
j such that the first eigenfunction φ

(p)
1 is positive or

negative depending on p.
Let us set –�pu = – div(|∇u|p–2∇u). Let us define an open subset of the Hilbert space

H = W 1,p(Ω , R2):

ΛG =
{

(u, v) ∈ H | ∇(u, v) ∈ Lp(Ω , R2),
(
u(x), v(x)

) ∈ G = R2 \ (C1 ∪ C2),

θ ∈ C!, (e1, e2) ∈ C2,∀(
u(x), v(x)

) ∈ G ⊂ R2}.

Then ΛG is the loop space on G.
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In this paper, we are looking for weak solutions (u, v) of (1.1) in ΛG satisfying

∫

Ω

[

–�pu · z – �pv · w – a|u|p–2u · z – b|v|p–2v · w

+ gradu
1

(|u|2 + |v|2)q · z + gradv
1

(|u|2 + |v|2)q · w

+ gradu
1

(|u – e1|2 + |v – e2|2)r · z + gradv
1

(|u – e1|2 + |v – e2|2)r · w

–
2α

α + β
|u|α–1|v|β · z –

2β

α + β
|u|α–1|v|β · w

]

dx = 0 ∀(z, w) ∈ ΛG.

Let A be
( a 0

0 b

) ∈ M2×2(R). Let us set

q
λ

(p)
j

(a, b) = Det
(
λ

(p)
j I – A

)
=

(
λ

(p)
j – a

)(
λ

(p)
j – b

)
.

Let μ1
λ

(p)
i

and μ2
λ

(p)
i

be the eigenvalues of the matrix
( λ

(p)
i –a 0

0 λ
(p)
i –b

) ∈ M2×2(R), i.e.,

μ1
λ

(p)
i

=
1
2

{
2λ

(p)
i – a – b –

√
(
2λ

(p)
i – a – b

)2 – 4q
λ

(p)
i

(a, b)
}

,

μ2
λ

(p)
i

=
1
2

{
2λ

(p)
i – a – b +

√
(
2λ

(p)
i – a – b

)2 – 4q
λ

(p)
i

(a, b)
}

.

We note that weak solutions of (1.1) correspond to critical points of the continuous and
Fréchet differentiable functional f (u, v) ∈ C1(ΛG, R),

f (u, v) =
1
p

∫

Ω

[|∇u|p + |∇v|p – a|u|p – b|v|p]dx +
∫

Ω

1
(|u|2 + |v|2)q dx

+
∫

Ω

1
(|u – e1|2 + |v – e2|2)r dx –

2
α + β

∫

Ω

|u|α|v|β dx

= Ra,b(u, v) +
∫

Ω

1
(|u|2 + |v|2)q dx +

∫

Ω

1
(|u – e1|2 + |v – e2|2)r dx

–
2

α + β

∫

Ω

|u|α|v|β dx,

where Ra,b(u, v) = 1
p
∫

Ω
[|∇u|p + |∇v|p – a|u|p – b|v|p] dx, which will be proved in Sect. 3.

When p < α + β < p∗, the embedding W 1,p
0 (Ω , G) ↪→ Lα+β (Ω , G) is continuous and com-

pact, so we can assure that the functional f (u, v) satisfies the (P.S.) condition, which will
be also proved in Sect. 3.

Our main result is as follows.

Theorem 1.1 Assume that a, b, p, q, r, α, and β are real constants, and 1 < p < ∞, q, r > 1,
and p < α + β < p∗, n ≥ 2,

(i) 2λ
(p)
i > a + b,

(ii) q
λ

(p)
i

(a, b) = det
( λ

(p)
i –a 0

0 λ
(p)
i –b

)
> 0 for i ≥ 1.

Then (1.1) has at least one nontrivial weak solution (u(x), v(x)) such that (u(x), v(x)) = (0, 0)
and (u(x), v(x)) = (e1, e2).
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For the proof of Theorem 1.1, we approach variational method and use critical point
theory on eigenspaces. In Sect. 2, we introduce the eigenspaces spanned by the eigenfunc-

tions corresponding to the eigenvalues of the matrix
( λ

(p)
i –a 0

0 λ
(p)
i –b

) ∈ M2×2(R) and obtain

some variational results on the eigenspaces. In Sect. 3, we prove that the corresponding
functional of (1.1) satisfies the (P.S.) condition and prove Theorem 1.1.

2 Variational results on eigenspaces
Let q

λ
(p)
i

(a, b), μ1
λ

(p)
i

, and μ2
λ

(p)
i

be the numbers introduced in Sect. 1. We note that

if q
λ

(p)
i

(a, b) < 0, then μ1
λ

(p)
i

< 0 < μ2
λ

(p)
i

,

if 2λ
(p)
i > a + b and q

λ
(p)
i

(a, b) > 0, then 0 < μ1
λ

(p)
i

< μ2
λ

(p)
i

,

if 2λ
(p)
i < a + b and q

λ
(p)
i

(a, b) > 0, then μ1
λ

(p)
i

< μ2
λ

(p)
i

< 0,

if 2λ
(p)
i = a + b and q

λ
(p)
i

(a, b) > 0, then μ1
λ

(p)
i

= μ2
λ

(p)
i

= 0.

Let (c1
λ

(p)
i

, d1
λ

(p)
i

) and (c2
λ

(p)
i

, d2
λ

(p)
i

) be the eigenvectors of
( λ

(p)
i –a 0

0 λ
(p)
i –b

)
corresponding to μ1

λ
(p)
i

and μ2
λ

(p)
i

, respectively. Let us set

D
λ

(p)
i

=
{

(a, b) ∈ R2 | q
λ

(p)
i

(a, b) > 0 for i ≥ 1
}

,

D′
λ

(p)
i

= D
λ

(p)
i

∩ {
2λ

(p)
i ≤ a + b

}
,

D′′
λ

(p)
i

= D
λ

(p)
i

∩ {
2λ

(p)
i > a + b

}
,

W
λ

(p)
i

=
{
φ

(p)
i | –�pφ

(p)
i = λ

(p)
i φ

(p)
i

}

H
λ

(p)
i

=
{(

cφ(p), dφ(p)) ∈ H | (c, d) ∈ R2,φ(p) ∈ W
λ

(p)
i

}
,

H1
λ

(p)
i

=
{(

c1
λ

(p)
i

φ(p), d1
λ

(p)
i

φ(p)) ∈ H | φ(p) ∈ W
λ

(p)
i

}
,

H2
λ

(p)
i

=
{(

c2
λ

(p)
i

φ(p), d2
λ

(p)
i

φ(p)) ∈ H | φ(p) ∈ W
λ

(p)
i

}
,

H+(a, b) =
( ⊕

μ1
λ

(p)
i

>0

H1
λ

(p)
i

)

⊕
( ⊕

μ2
λ

(p)
i

>0

E2
λ

(p)
i

)

,

H–(a, b) =
( ⊕

μ1
λ

(p)
i

<0

H1
λ

(p)
i

)

⊕
( ⊕

μ2
λ

(p)
i

<0

H2
λ

(p)
i

)

,

H0(a, b) =
( ⊕

μ1
λ

(p)
i

=0

H1
λ

(p)
i

)

⊕
( ⊕

μ2
λ

(p)
i

=0

H2
λ

(p)
i

)

.

Then H+(a, b), H–(a, b), and H0(a, b) are the positive, negative, and null spaces relative to
the quadratic form Ra,b(u, v) in H and

H = H+ ⊕ H– ⊕ H0.
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From now on we shall assume that 2λ
(p)
i > a + b and q

λ
(p)
i

(a, b) > 0. Because μ1
λ

(p)
i

> 0 and

μ2
λ

(p)
i

> 0, ∀i ≥ 1,

H0 = ∅, H– = ∅

and

H = H+.

We note that H can be split by two subspaces Y1 and Y2 such that

Y1 = span
{

eigenfunctions corresponding to eigenvalues μ1
λ

(p)
i

and μ1
λ

(p)
i

,

with 1 ≤ i ≤ m
}

,

Y2 = span
{

eigenfunctions corresponding to eigenvalues μ1
λ

(p)
i

and μ2
λ

(p)
i

,

with i ≥ m + 1
}

,

dim Y1 < ∞ and

H = Y1 ⊕ Y2.

Let us set

X1 = Y1 ∩ ΛG,

X2 = Y2 ∩ ΛG.

Then

ΛG = X1 ⊕ X2.

Let us set

Bρ =
{

(u, v) ∈ ΛG | ∥∥(u, v)
∥
∥

H ≤ ρ
}

,

∂Bρ =
{

(u, v) ∈ ΛG | ∥∥(u, v)
∥
∥

H = ρ
}

,

Q = B̄R ∩ X1 ⊕ {
σ (z1, z2) | (z1, z2) ∈ ∂B1 ∩ (

H1
μ

λ
(p)
m+1

⊕ H2
μ

λ
(p)
m+1

) ⊂ ∂B1 ∩ X2, 0 < σ < R
}

.

Let us define

Γ =
{
γ ∈ C(Q̄,ΛG) | γ = id on ∂Q

}
.



Choi and Jung Boundary Value Problems         (2019) 2019:97 Page 7 of 16

We note that weak solutions of (1.1) correspond to critical points of the continuous and
Fréchet differentiable functional f (u, v) ∈ C1(ΛG, R),

f (u, v) =
1
p

∫

Ω

[|∇u|p + |∇v|p – a|u|p – b|v|p]dx +
∫

Ω

1
(|u|2 + |v|2)q dx

+
∫

Ω

1
(|u – e1|2 + |v – e2|2)r dx –

∫

Ω

[
2

α + β
|u|α|v|β

]

dx.

Let us define

C(p)
α,β (Ω) = inf

(u,v)∈ΛG

{

τ > 0
∣
∣
∣

(
∫

Ω
(|∇u|p + |∇v|p) dx)

1
p + (

∫

Ω
(|u|p + |v|p) dx)

1
p

(
∫

Ω
|u|α|v|β dx)

1
α+β

≤ τ

}

. (2.1)

Lemma 2.1 Assume that a, b, p, q, r, α, and β are real constants, and 1 < p < ∞, q, r > 1,
p < α + β < p∗, 2λ

(p)
i > a + b, and q

λ
(p)
i

(a, b) > 0. Let i ∈ N and (a0, b0) ∈ ∂D′
λ

(p)
i

and (z1, z2) ∈
∂B1 ∩ (H1

μ
λ

(p)
m+1

⊕ H2
μ

λ
(p)
m+1

) ⊂ ∂B1 ∩ X2. Then there exist a neighborhood W of (a0, b0), a

small number σ > 0, and a large number R > 0 such that, for any (a, b) ∈ W \ D′
λ

(p)
i

, if

(u, v) ∈ ∂Q = ∂(B̄R ∩ X1 ⊕ {σ (z1z2) | 0 < σ < R}), then

sup
u∈∂Q

f (u, v) < 0 and sup
u∈Q

f (u, v) < ∞.

Proof Let (a, b) ∈ W \ D′
λ

(p)
i

. Let us choose an element (z1, z2) ∈ ∂B1 ∩ X2 and (u, v) ∈ X1 ⊕
{σ (z1, z2) | σ > 0}. Then, by (2.1), we have

f (u, v) =
1
p

∫

Ω

[|∇u|p + |∇v|p – a|u|p – b|v|p]dx +
∫

Ω

1
(|u|2 + |v|2)q dx

+
∫

Ω

1
(|u – e1|2 + |v – e2|2)r dx –

2
α + β

∫

Ω

|u|α|v|β dx

≤ 1
p
μ2

λ
(p)
m

∥
∥(u, v)

∥
∥p

Lp(Ω) +
1
p
σ pμ2

λ
(p)
m

+
∫

Ω

[
1

(|u|2 + |v|2)q +
1

(|u – e1|2 + |v – e2|2)r

]

dx

–
2

α + β

(
C(p)

α,β
)–(α+β)(Ω)

∥
∥(u, v)

∥
∥α+β

H .

Then there exist a large number R > 0 and a small number σ > 0 with 0 < σ < R such that
if (u, v) ∈ ∂Q, then we have 0 <

∫

Ω
[ 1

(|u|2+|v|2)q + 1
(|u–e1|2+|v–e2|2)r ] dx ≤ C1 for some constant

0 < C1 < 1, and, by p < α + β < p∗, we have

f (u, v) ≤ 1
p
μ2

λ
(p)
m

∥
∥(u, v)

∥
∥p

Lp(Ω) +
1
p
σ pμ2

λ
(p)
m

+ C1 –
2

α + β

∫

Ω

|u|α|v|β dx

≤ 1
p
μ2

λ
(p)
m

∥
∥(u, v)

∥
∥p

Lp(Ω) +
1
p
σ pμ2

λ
(p)
m

+ C1 –
2

α + β

(
C(p)

α,β
)–(α+β)(Ω)

∥
∥(u, v)

∥
∥α+β

H < 0.

Thus we have sup(u,v)∈∂Q f (u, v) < 0. Moreover, if (u, v) ∈ Q, then we have f (u, v) ≤
1
pμ2

λ
(p)
m

‖(u, v)‖p
Lp(Ω) + 1

pσ pμ2
λ

(p)
m

+ C1 < ∞. �
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Lemma 2.2 Assume that a, b, p, q, r, α, and β are real constants, and 1 < p < ∞, q, r > 1,
p < α + β < p∗, 2λ

(p)
i > a + b, and q

λ
(p)
i

(a, b) > 0. Let i ∈ N and (a0, b0) ∈ ∂D′
λ

(p)
i

and (z1, z2) ∈
∂B1 ∩ (H1

μ
λ

(p)
m+1

⊕ H2
μ

λ
(p)
m+1

) ⊂ ∂B1 ∩ X2. Then there exist a neighborhood W of (a0, b0) and a

small number ρ > 0 such that, for any (a, b) ∈ W \ D′
λ

(p)
i

, if (u, v) ∈ ∂Bρ ∩ X2, then we have

inf
u∈∂Bρ∩X2

f (u, v) > 0 and inf
u∈Bρ∩X2

f (u, v) > –∞.

Proof Let (a, b) ∈ W \ D′
λ

(p)
i

and (u, v) ∈ X2. Then, by (2.1), we have

f (u, v) =
1
p

∫

Ω

[|∇u|p + |∇v|p – a|u|p – b|v|p]dx +
∫

Ω

1
(|u|2 + |v|2)q dx

+
∫

Ω

1
(|u – e1|2 + |v – e2|2)r dx –

∫

Ω

[
2

α + β
|u|α|v|β

]

dx

≥ 1
p
μ1

λ
(p)
m+1

∥
∥(u, v)

∥
∥p

Lp(Ω) +
∫

Ω

[
1

(|u|2 + |v|2)q +
1

(|u – e1|2 + |v – e2|2)r

]

dx

–
2

α + β

(
C(p)

α,β
)–(α+β)(Ω)

∥
∥(u, v)

∥
∥α+β

H

≥ 1
p
μ1

λ
(p)
m+1

∥
∥(u, v)

∥
∥p

Lp(Ω) –
2

α + β

(
C(p)

α,β
)–(α+β)(Ω)

∥
∥(u, v)

∥
∥α+β

H .

Since p < α + β < p∗, there exists a small number ρ > 0 such that if (u, v) ∈ ∂Br ∩ X2,
then f (u, v) > 0. Thus inf(u,v)∈∂Br∩X2 f (u, v) > 0. Moreover, if (u, v) ∈ Br ∩ X2, then f (u, v) ≥
– 2

α+β
(C(p)

α,β)–(α+β)(Ω)‖(u, v)‖α+β

H > –∞. Thus inf(u,v)∈Br∩X2 f (u, v) > –∞. So the lemma is
proved. �

Let us define

γ = inf
h∈Γ

sup
u∈Q

f
(
h(u, v)

)
.

Lemma 2.3 Assume that a, b, p, q, r, α, and β are real constants, and 1 < p < ∞, q, r > 1,
p < α + β < p∗, 2λ

(p)
i > a + b, and q

λ
(p)
i

(a, b) > 0. Let i ∈ N and (a0, b0) ∈ ∂D′
λ

(p)
i

. Then there

exist a neighborhood W of (a0, b0), a small number σ , a small number ρ > 0, and a large
number R > 0 such that, for any (a, b) ∈ W \ D′

λ
(p)
i

,

0 < inf
u∈∂Bρ∩X2

f (u, v) ≤ γ = inf
h∈Γ

sup
u∈Q

f
(
h(u, v)

) ≤ sup
u∈Q

f (u, v) < ∞.

Proof By Lemma 2.1, we have

γ = inf
h∈Γ

sup
u∈Q

f
(
h(u, v)

) ≤ sup
u∈Q

f (u, v) < ∞.

By Lemma 2.2, we have

0 < inf
u∈∂Bρ∩X2

f (u, v) ≤ inf
h∈Γ

sup
u∈Q

f
(
h(u, v)

)
= γ .

Thus the lemma is proved. �
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3 (P.S.) condition and proof of Theorem 1.1
We need some lemma for the proof that f (u, v) satisfies the (P.S.) condition.

Lemma 3.1 ([1, 6]) Let 1 < p < ∞. Let 1 < τ ≤ p∗. Then the embedding

H = W 1,p(Ω , R2) ↪→ Lτ
(
Ω , R2)

is continuous and compact and, for every (u, v) ∈ C∞
0 (Ω , R2), we have

∥
∥(u, v)

∥
∥

Lτ (Ω̄ ,R2) ≤ C
∥
∥(u, v)

∥
∥

H

for a positive constant C independent of u.

By Lemma 3.1, we obtain the following.

Lemma 3.2 Assume that 1 ≤ p < ∞, a, b, p, q, r, α, and β are real constants and q, r > 1
and p < α + β < p∗. Then all the solutions of (1.1) belong to ΛG ⊂ H .

Proof

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u = –�–1
p (a|u|p–2u – gradu

1
(|u|2+|v|2)q – gradu

1
(|u–e1|2+|v–e2|2)r + 2α

α+β
|u|α–1|v|β )

in Ω ,

v = –�–1
p (b|v|p–2v – gradv

1
(|u|2+|v|2)q – gradv

1
(|u–d|2+|v–d|2)r + 2β

α+β
|u|α|v|β–1)

in Ω .

(3.1)

Since the right-hand side of (1.1) belongs to Lα+β (Ω , G), where p < α + β < p∗, and by
Lemma 3.1, the embedding W 1,p(Ω , G) ↪→ Lα+β (Ω , G) is continuous and compact, it fol-
lows that –�–1

p is a compact operator and the solutions of (3.1) are in W 1,p(Ω , G) = ΛG. �

Lemma 3.3 Assume that 1 ≤ p < ∞, a, b, p, q, r, α, and β are real constants and q, r > 1
and p < α + β < p∗. Then the functional f (u, v) is continuous, Fréchet differentiable with
Fréchet derivative in ΛG,

Df (u, v) · (z, w)

=
∫

Ω

[

–�pu · z – �pv · w – a|u|p–2u · z – b|v|p–2v · w

+ gradu
1

(|u|2 + |v|2)q · z + gradv
1

(|u|2 + |v|2)q · w

+ gradu
1

(|u – e1|2 + |v – e2|2)r · z + gradv
1

(|u – e1|2 + |v – e2|2)r · w

–
2α

α + β
|u|α–1|v|β · z –

2β

α + β
|u|α|v|β–1 · w

]

dx ∀(z, w) ∈ ΛG.

Moreover, Df ∈ C. That is, f ∈ C1.



Choi and Jung Boundary Value Problems         (2019) 2019:97 Page 10 of 16

Proof Let us set H(x, u, v) = 1
p (a|u|p + b|v|p) – 1

(|u|2+|v|2)q – 1
(|u–e1|2+|v–e2|2)r + 2

α+β
|u|α|v|β .

Then Hu(x, u, v) = a|u|p–2u – gradu
1

(|u|2+|v|2)q – gradu
1

(|u–e1|2+|v–e2|2)r + 2α
α+β

|u|α–1|v|β and
Hv(x, u, v) = b|v|p–2v – gradv

1
(|u|2+|v|2)q – gradv

1
(|u–e1|2+|v–e2|2)r + 2β

α+β
|u|α|v|β–1. First we shall

prove that f (u, v) is continuous. For u, v ∈ ΛG,

∣
∣f (u + z, v + w) – f (u, v)

∣
∣

=
∣
∣
∣
∣
1
p

∫

Ω

(
–�p(u + z), –�p(v + w)

) · (u + z, v + w) dx –
∫

Ω

H(x, u + z, v + w) dx

–
1
p

∫

Ω

(–�pu, –�pv) · (u, v) dx +
∫

Ω

H(x, u, v) dx
∣
∣
∣
∣

=
∣
∣
∣
∣
1
2

∫

Ω

[(
–�p(u + z), –�p(v + w)

) · (u + z, v + w) – (–�pu, –�pv) · (u, v)
]

dx

–
∫

Ω

(
H(x, u + z, v + w) – H(x, u, v)

)
dx

∣
∣
∣
∣.

We have
∣
∣
∣
∣
1
2

∫

Ω

[(
–�p(u + z), –�p(v + w)

) · (u + z, v + w) – (–�pu, –�pv) · (u, v)
]

dx
∣
∣
∣
∣

≤ O
(∥
∥(z, w)

∥
∥

H

)
(3.2)

and
∣
∣
∣
∣

∫

Ω

[
H(x, u + z, v + w) – H(x, u, v)

]
dx

∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

Ω

[(
Hu(x, u, v), Hv(x, u, v)

) · (z, w) + O
(∥
∥(z, w)

∥
∥

H

)]
dx

∣
∣
∣
∣ = O

(∥
∥(z, w)

∥
∥

H

)
. (3.3)

Thus we have

∣
∣f (u + z, v + w) – f (u, v)

∣
∣ = O

(∥
∥(z, w)

∥
∥

H

)
.

Next we shall prove that f (u, v) is Fréchet differentiable. For u, v ∈ ΛG,

∣
∣f (u + z, v + w) – f (u, v) – Df (u, v) · (z, w)

∣
∣

=
∣
∣
∣
∣
1
p

∫

Ω

(
–�p(u + z), –�p(v + w)

) · (u + z, v + w) dx –
∫

Ω

H(x, u + z, v + w) dx

–
1
p

∫

Ω

(–�pu, –�pv) · (u, v) dx +
∫

Ω

H(x, u, v) dx

–
∫

Ω

(
–�pu – Hu(x, u, v), –�pv – Hv(x, u, v)

) · (z, w) dx
∣
∣
∣
∣

=
∣
∣
∣
∣
1
p

∫

Ω

[(
–�p(u + z), –�p(v + w)

) · (u + z, v + w)

– (–�pu, –�pv) · (u, v) – (–�pu, –�pv) · (z, w)
]

dx

–
∫

Ω

[
H(x, u + z, v + w) – H(x, u, v) –

(
Hu(x, u, v), Hv(x, u, v)

) · (z, w)
]

dx
∣
∣
∣
∣.
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By (3.2) and (3.3),

∣
∣f (u + z, v + w) – f (u, v) – Df (u, v) · (z, w)

∣
∣ = O

(∥
∥(z, w)

∥
∥2

H

)
.

Thus f ∈ C1. �

Lemma 3.4 (A priori estimate) Assume that 1 ≤ p < ∞, a, b, p, q, r, α, and β are real
constants, q, r > 1, p < α + β < p∗, 2λ

(p)
i > a + b, and q

λ
(p)
i

(a, b) > 0. Let (un, vn)n be any se-
quence in ΛG and γ ∈ R be any positive real number. Then there exist constants Ci = Ci(γ ),
i = 1, 2, 3, such that if (un, vn)n ∈ ΛG satisfies that f (un, vn) → γ and Df (un, vn) → θ , then

lim
n→∞

∥
∥(un, vn)

∥
∥

Lα+β (Ω) ≤ C1,

lim
n→∞

∫

Ω

1
(|un|2 + |vn|2)q dx ≤ C2,

∫

Ω

1
(|un – e1|2 + |vn – e2|2)r dx ≤ C3.

Proof Let γ ∈ R be any positive real number. Let (un, vn)n be any sequence in ΛG such
that f (un, vn) → γ and Df (un, vn) → θ . Then there exists a small number ε > 0 such that

γ + ε

≥ lim
n→∞ f (un, vn) – lim

n→∞
1
p

Df (un, vn) · (un, vn)

= lim
n→∞

[∫

Ω

1
(|un|2 + |vn|2)q dx +

∫

Ω

1
(|un – e1|2 + |vn – e2|2)r dx

–
2

α + β

∫

Ω

|un|α|vn|β dx
]

– lim
n→∞

1
p

∫

Ω

[

gradu
1

(|un|2 + |vn|2)q · un + gradv
1

(|un|2 + |vn|2)q · vn

+ gradu
1

(|un – e1|2 + |vn – e2|2)r · un + gradv
1

(|un – e1|2 + |vn – e2|2)r · vn

–
2α

α + β
|un|α–1|vn|β · un –

2β

α + β
|un|α|vn|β–1 · vn

]

dx ∀(un, vn) ∈ ΛG.

By limn→∞ Df (un, vn) = θ , we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

limn→∞ un = limn→∞(–�p – agp)–1(– gradu
1

(|un|2+|vn|2)q – gradu
1

(|un–e1|2+|vn–e2|2)r

+ 2α
α+β

|un|α–1|vn|β ),

limn→∞ vn = limn→∞(–�p – bgp)–1(– gradv
1

(|un|2+|vn|2)q – gradv
1

(|un–e1|2+|vn–e2|2)r

+ 2β

α+β
|un|α|vn|β–1),

where gp(t) = |t|p–2t for t = 0 and gp(0) = 0. By 2λ
(p)
i > a + b and q

λ
(p)
i

(a, b) = Det(λ(p)
j I –

A) = (λ(p)
j – a)(λ(p)

j – b) > 0, we have λ
(p)
j – a > 0 and λ

(p)
j – b > 0. Thus (–�p – agp)–1 and
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(–�p – bgp)–1 are positive operators. Since

lim
n→∞

(

– gradu
1

(|un|2 + |vn|2)q – gradu
1

(|un – e1|2 + |vn – e2|2)r +
2α

α + β
|un|α–1|vn|β

)

> 0,

lim
n→∞

(

– gradv
1

(|un|2 + |vn|2)q – gradv
1

(|un – e1|2 + |vn – e2|2)r +
2β

α + β
|un|α|vn|β–1

)

> 0,

and (–�p – agp)–1 and (–�p – bgp)–1 are positive operators, it follows that limn→∞ un > 0
and limn→∞ vn > 0. Then we have

– gradu
1

(|un|2 + |vn|2)q un – gradv
1

(|un|2 + |vn|2)q vn = 2q
1

(|un|2 + |vn|2)q > 0,

– gradu
1

(|un – e1|2 + |vn – e2|2)r un > 0 and – gradv
1

(|un – e1|2 + |vn – e2|2)r vn > 0.

Therefore we have

γ + ε

≥ lim
n→∞

[∫

Ω

1
(|un|2 + |vn|2)q dx

+
∫

Ω

1
(|un – e1|2 + |vn – e2|2)r dx –

2
α + β

∫

Ω

|un|α|vn|β dx
]

–
1
p

lim
n→∞

∫

Ω

[

gradu
1

(|un|2 + |vn|2)q · un + gradv
1

(|un|2 + |vn|2)q · vn

+ gradu
1

(|un – e1|2 + |vn – e2|2)r · un + gradv
1

(|un – e1|2 + |vn – e2|2)r · vn

–
2α

α + β
|un|α–1|vn|β · un –

2β

α + β
|un|α|vn|β–1 · vn

]

dx

=
(

2q
p

+ 1
)

lim
n→∞

∫

Ω

[
1

(|un|2 + |vn|2)q

]

dx + lim
n→∞

∫

Ω

1
(|un – e1|2 + |vn – e2|2)r dx

–
1
p

lim
n→∞

∫

Ω

gradu
1

(|un – e1|2 + |vn – e2|2)r · un dx

–
1
p

lim
n→∞

∫

Ω

gradv
1

(|un – e1|2 + |vn – e2|2)r · vn dx

+
(

2
p

–
2

α + β

)

lim
n→∞

∫

Ω

[|un|α|vn|β
]

dx ∀(un, vn) ∈ ΛG.

Since 1 < p < ∞, q, r > 1, p < α + β < p∗, we have that 2q
p + 1 > 0 and 2

p –
2

α+β
> 0. Since

∫

Ω
1

(|un–e1|2+|vn–e2|2)r dx > 0, – 1
p limn→∞

∫

Ω
gradu

1
(|un–e1|2+|vn–e2|2)r · un dx > 0,

and – 1
p limn→∞

∫

Ω
gradv

1
(|un–e1|2+|vn–e2|2)r · vn dx > 0, it follows that there exist constants

Ci = Ci(γ ), i = 1, 2, 3, such that limn→∞ ‖(un, vn)‖Lα+β (Ω) ≤ C1, limn→∞
∫

Ω
( 1
|un|2+|vn|2)q dx ≤

C2, and
∫

Ω
1

(|un–e1|2+|vn–e2|2)r dx ≤ C3. �
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Lemma 3.5 If any sequence (un, vn)n in ΛG satisfies

(un, vn) → (z, w) ∈ ∂ΛG,

then

f (un, vn) → ∞.

Proof The proof can be checked easily. �

Now, we shall prove that f (u, v) satisfies (P.S.)γ with γ > 0 as follows.

Lemma 3.6 (Palais–Smale condition) Assume that 1 ≤ p < ∞, a, b, p, q, r, α, and β are real
constants, and q, r > 1 and p < α + β < p∗. Let γ be any positive real number. Then f (u, v)
satisfies the Palais–Smale condition: if (un, vn)n ∈ ΛG is any sequence such that f (un, vn) →
γ and Df (un, vn) → θ , θ = (0, 0), then (un, vn) has a convergent subsequence (uni , vni ) such
that (uni , vni ) converges strongly to (u0, v0) ∈ ΛG.

Proof Let (un, vn)n be any sequence in ΛG such that f (un, vn) → γ , γ > 0 and Df (un, vn) →
θ . By Lemma 3.4, limn→∞ ‖(un, vn)‖Lα+β (Ω) is finite. Thus (un, vn)n is bounded in Lα+β (Ω).
Then, up to subsequence, (un, vn)n converges weakly to some (u0, v0). Since Df (un, vn) → θ ,
we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

limn→∞ un = – limn→∞ �–1
p (a|un|p–2un – gradu

1
(|un|2+|vn|2)q – gradu

1
(|un–e1|2+|vn–e2|2)r

+ 2α
α+β

|un|α–1|vn|β ),

limn→∞ vn = – limn→∞ �–1
p (b|vn|p–2vn – gradv

1
(|un|2+|vn|2)q – gradv

1
(|un–e1|2+|vn–e2|2)r

+ 2β

α+β
|un|α|vn|β–1).

By Lemma 3.4, (un, vn)n,

(

a|un|p–2un – gradu
1

(|un|2 + |vn|2)q – gradu
1

(|un – e1|2 + |vn – e2|2)r

+
2α

α + β
|un|α–1|vn|β

)

n

and
(

b|vn|p–2vn – gradv
1

(|un|2 + |vn|2)q – gradv
1

(|un – e1|2 + |vn – e2|2)r

+
2β

α + β
|un|α–1|vn|β

)

n

are bounded in Lα+β (Ω). Since the embedding ΛG into Lα+β (Ω), p < α+β < p∗, is compact,
–�–1

p is a compact operator, it follows that (un, vn)n has a convergent subsequence (uni , vni )
converging strongly to some (u0, v0) such that

DF(u0, v0) = lim
n→∞ DF(uni , vni ) = (0, 0).
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We claim that (u0, v0) = θ and (u0, v0) = (e1, e2). By contradiction, we suppose that (u0, v0) =
θ or (u0, v0) = (e1, e2). Then f (u0, v0) = ∞, which is absurd. Thus (u0, v0) = θ and (u0, v0) =
(e1, e2). �

Proof of Theorem 1.1 Assume that a, b, p, q, r, α, and β are real constants, and 1 < p < ∞,
q, r > 1, p < α + β < p∗, 2λ

(p)
i > a + b, and q

λ
(p)
i

(a, b) > 0. By Lemma 3.3, f (u, v) is continuous
and Fréchet differentiable in ΛG and Df ∈ C. By Lemma 3.6, f (u, v) satisfies the Palais–
Smale condition. We claim that γ > 0 is a critical value of f (u, v), that is, f (u, v) has a critical
point (u0, v0) such that

f (u0, v0) = γ ,

Df (u0, v0) = 0.

In fact, by contradiction, we suppose that γ > 0 is not a critical value of f (u, v). Then by
Theorem A.4 in [6], for any ε̄ ∈ (0,γ ) > 0, there exist a constant ε ∈ (0, ε̄) and a deformation
η ∈ C([0, 1] × ΛG,ΛG) such that

(i) η(0, (u, v)) = (u, v) for all (u, v) ∈ ΛG,
(ii) η(s, (u, v)) = (u, v) for all s ∈ [0, 1] if f (u, v) /∈ [γ – ε̄,γ + ε̄],

(iii) f (η(1, (u, v))) ≤ γ – ε if f (u, v) ≤ γ + ε.
We can choose h ∈ Γ such that

sup
u∈Q

f
(
h(u, v)

) ≤ γ + ε

and

f
(
h(u, v)

)
< γ – ε̄ on ∂Q.

This leads to f (h(u, v)) /∈ [γ – ε̄,γ + ε̄]. Thus by (ii),

η
(
1, h(u, v)

)
= h(u, v) on ∂Q.

Hence η(1, h(u, v)) ∈ Γ . By (iii) and the definition of γ ,

γ ≤ sup
u∈Q

f
(
η
(
1, h(u, v)

))
= sup

u∈Q
f
(
h(u, v)

) ≤ γ – ε,

which is a contradiction. Thus γ is a critical value of f (u, v). Thus f (u, v) has a critical point
(u0, v0) with a critical value

γ = F(u0, v0)

such that

0 < inf
u∈∂Bρ∩X2

f (u, v) ≤ γ ≤ sup
u∈Q

f (u, v) < ∞.
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By Lemma 3.4,

(u0, v0) = θ = (0, 0), (u0, v0) = (e1, e2).

Thus (1.1) has at least one nontrivial solution (u0, v0) such that (u0, v0) = θ and (u0, v0) =
(e1, e2). Thus Theorem 1.1 is proved. �
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