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Ounaies and Radulescu [1] proved the existence of two solutions of bound state solu-
tions of sublinear Schrödinger equations with lack of compactness. Díaz, Gómez-Castro
and VÆzquez [11] considered the Dirichlet problem for the stationary Schrödinger frac-
tional Laplacian equation posed in a bounded domain with zero outside conditions. Fis-
cella, Pucci and Saldi [13] dealt with the existence of nontrivial nonnegative solutions of
Schrödinger�Hardy systems driven by two possibly di�erent fractional Laplacian oper-
ators, via various variational methods. Bisci and Radulescu [5] studied the existence of
multiple ground state solutions for a class of parametric fractional Schrödinger equations.
Rybalko [28] studied an initial value problem for the one-dimensional non-stationary lin-
ear Schrödinger equation with a point singular potential. Wen and Zhao [39] presented
a medium-shifted splitting iteration method to solve the discretized linear system, in
which the fast algorithm can be utilized to solve the Toeplitz linear system. Chen et al.
[6] investigated the existence of nontrivial solutions and multiple solutions for nonlinear
Schrödinger equations with unbounded potentials. Covei [10] investigated the existence
and symmetry of positive solutions for a modi�ed Schrödinger system under the Keller�
Osserman type conditions. The existence of a Green function and a uniqueness result
for the Cauchy�Dirichlet problem were obtained by Polidoro and Ragusa [25]. Xue, Lv
and Tang [41] employed the mountain pass theorem to obtain the existence of a positive
ground state solution for quasilinear Schrödinger equationswith a general nonlinear term.
Wen and Chen [38] used the non-Nehari manifold method to deal with the ground state
solutions for an asymptotically periodic Schrödinger�Poisson systems involving Hartree-
type nonlinearities.
For Eq. (1.1) it has been proved that it possesseswildly application �elds inHilbert spaces

[18, 43], uniformly convex [12] and uniformly smooth Banach spaces [34, 36]. At present,
there existmany e�ective algorithmsworking in it, such as the traditional Newtonmethod
[4, 21, 31, 32, 48], the wave method [45, 46], the BFGS method [16, 19], the Levenberg�
Marquardt method [3, 42], the trust region method [7, 8, 44], the conjugate gradient algo-
rithm [9, 27], the limited BFGS method [22], etc.
As in [30, 40], we set 	 (x) := 1

2 � � (x)� 2, which is the meromorphic identity for Eq. (1.1).
It is equivalent to the optimization problem de�ned by (see [40, Lemma 2.3] for more
details)

min 	 (x), (1.3)

where x � � n.
Themeromorphic identitymethods have amain objective is to solve the so-calledmero-

morphic identity subproblem model to get the trial step 
 l ,

MinTpl(
 ) =
1
2

�
� � (xl) + � � (xl)


�
� 2

� 
 � 	 
 .

In 2014, an adaptive meromorphic identity model sharing a set with their derivatives
was designed as follows (see [35]):

Min � l(
 ) =
1
2

�
� � (xl) + � � (xl)


�
� 2
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� 
 � 	 cp
�
� � (xl)

�
� � ,

where p is a positive integer.
In 2015, another adaptive meromorphic identity subproblem sharing certain meromor-

phic functions was de�ned by (see [47])

MinTql(
 ) =
1
2

�
� � (xl) +Bl


�
� 2

� 
 � 	 cp
�
� � (xl)

�
� ,

(1.4)

whereBl is de�ned by

Bl+1 =Bl �
BlslsTl Bl

sTl Blsl
+
ylylT

ylTsl
, (1.5)

where

yl = � (xl+1) � � (xl)

and

sl = xl+1 � xl.

Recently, Guillot also considered the value distribution of meromorphic solutions for
the nonlinear system � (x) at xk (see [17]),

� (xk + 
 ) = � (xk) + � � (xk)T
 +
1
2
Tk 
 2, (1.6)

where � � (xk) is the Jacobian matrix of � (x) at xk and Tk is three dimensional symmet-
ric tensor. It is not di�cult to see that the above meromorphic identity model (1.6) has
more approximation than the normal quadratical meromorphic identity model. It has
been proved that the tensor is signi�cantly simpler when only information from one past
iterate is used (see [24, 47] for more details), which obviously decreases the complex com-
putation of the three dimensional symmetric tensor Tk . Then the model (1.6) can be writ-
ten as the following extension:

� (xl + 
 ) = � (xl) + � � (xl)T
 +
3
2

�
sTl�1


� 2sl�1. (1.7)

Here our meromorphic identity subproblem model is de�ned as follows (see [14]):

MinNl(
 ) =
1
2

�
�
�
� � (xl) +Bl
 +

3
2

�
sTl�1


� 2sl�1
�
�
�
�

2

� 
 � 	 cp
�
� � (xl)

�
� � ,

(1.8)

whereBl =H�1
l and

Hl+1 =V
T
l HlVl + 
 lslsTl

=V
T
l

�
V

T
l�1Hl�1Vl�1 + 
 l�1sl�1sTl�1

�
Vl + 
 lslsTl
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= · · ·

=
�
V

T
l · · ·VT

l�m+1
�
Hl�m+1[Vl�m+1 · · ·Vl]

+ 
 l�m+1
�
V

T
l�1 · · ·VT

l�m+2
�
sl�m+1sTl�m+1[Vl�m+2 · · ·Vl�1]

+ · · ·

+ 
 lslsTl , (1.9)

where (see, e.g., [20, 33, 37])


 l =
1

sTl yl
, Vl = I � 
 lylsTl .

Let 
 p
l be the solution of (1.8). De�ne

A
 l
�

 p
l
�
= 	

�
xl + 
 p

l
�
� 	 (xl), (1.10)

and the predict reduction by

P
 l
�

 p
l
�
=Nl

�

 p
l
�
�Nl(0). (1.11)

Based on the de�nitions of A
 l(

p
l ) and P
 l(


p
l ), their radio can be de�ned by

rpl =
A
 l(


p
l )

P
 l(

p
l )

. (1.12)

Therefore, themeromorphic identity model algorithm for solve (1.1) is stated as follows.

Algorithm
Initialization: Let B0 =H�1

0 � � n × � n is a symmetric and positive definite matrix.
x0 � � n and � = 0. 
 , c and � are three positive constants. Let l := 0;
Step 1: Stops if � � (xl)� < � holds;
Step 2: Solve (1.8) with 
 = 
 l to obtain 
 �

l ;
Step 3: Compute A
 l(


�
l ), P
 l(


�
l ), and the radio r�

l . If r�
l < 
 , let � = � + 1, go to

Step 2. If r�
l � 
 , go to the next step;

Step 4: Set xl+1 = xl + 
 �
l , yl = � (xl+1) � � (xl), update Bl+1 =H�1

l+1 by (1.9) if yTl 
 p
l > 0,

otherwise set Bl+1 =Bl ;
Step 5: Let l := l + 1 and � = 0. Go to Step 1.

In this paper, we shall focus on convergence results of the above algorithm under the
following assumptions.

Assumptions
(A) The level set � defined by

� =
�
x | 	 (x) 	 	 (x0)

�
(1.13)

is bounded.
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(B) On an open convex set � 1 containing � , the nonlinear system � (x) is twice
continuously differentiable in � 1.

(C) The approximation relation

�
� �

� � (xl) �Bl
�
� (xl)

�
� =O

� �� 
 p
l

�
� �

(1.14)

is true, where 
 p
l is the solution of the model (1.8).

(D) On � 1, the sequence matrices {Bl} are uniformly bounded, namely there exist
constants 0 <M0 	 M satisfying

Ms 	 � Bl� 	 Ml. (1.15)

Assumption (B) means that there exists a positive real numberML satisfying (see [15])

�
� � � (xl)T� � (xl)

�
� 	 ML. (1.16)

2 Preliminaries
In this section, we recall some preliminary results. For any 0 < � < 1, we de�ne the space
� � (Rn) by

� � �
R

n� =
	

� � L2
�
R

n� :
|� (x) � � (z)|

|x � z|
n+2�
2

� L2
�
R

n × R
n�




with

� � � 2� =
�

Rn

�
�� (x)

�
�2 dx +

�

Rn

�

Rn

|� (x) � � (z)|2

|x � z|n+2�
dzdx.

Remark 2.1 Consider

(�� )� � + 
V(x)� =
f (x, � ),

� � � � �
R

n,R
�
,

(2.1)

where 
V(x) = V(x) + a0 and 
F(x, � ) = F(x, � ) + a0
2 � 2.

Then (2.1) is equivalent to (1.8) and it easy to check that Assumptions (A) and (B), (C)
still hold for 
V and 
F provided that those hold for V and F. Hence, in what follows, we
always assume that we have

�

Rn

1
V(x)

dx < � .

Meanwhile, we consider the following space:

� �
V

�
R

n� =
	
u � � � �

R
n� :

�

Rn

�

Rn

|� (x) � � (z)|2

|x � z|n+2�
dzdx

+
�

Rn
V(x)

�
�� (x)

�
�2 dx < +�
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equipped with

� � � 2V =
�

Rn

�

Rn

|� (x) � � (z)|2

|x � z|n+2�
dzdx +

�

Rn
V(x)

�
�� (x)

�
�2 dx < +� .

Lemma 2.1 Let V satisfy (A). Then the following properties hold:
(I) � �

V is continuously embedded in � � (R).
(II) � �

V is continuously embedded in L1.
(III) � �

V is compactly embedded in L1.

Proof It follows from (A) and Hölder�s inequality that

�

Rn
|� | dt =

�

Rn

�
�� V(x)

� �1/2� V(x)
� 1/2u

�
� dx

	
�

Rn

�
V(x)

� �1/2��� V(x)
� 1/2u

�
� dx

	
� �

Rn

�
V(x)

� �1 dt
� 1/2� �

Rn
V(x)� 2 dx

� 1/2

	
� �

Rn

�
V(x)

� �1 dx
� 1/2

� � � 2V (2.2)

for all u � � �
V , which means (I) and (II) hold.

Let (� n) � � �
V be a bounded sequence such that � n � u in � �

V .Wewill show that � n � u
in L1. It follows from Hölder�s inequality that

�

Rn
|� n � � | dx

	 2R
� �

|x|	 R
|� n � � |2 dx

� 1/2

+
�

|x|>R

�
� � V(x)

� �1/2� V(x)
� 1/2(� n � � )

�
� dx

	 2R
� �

|x|	 R
|� n � � |2 dx

� 1/2

+
�

|� |>R

�
V(x)

� � 1
2
�
�� V(x)

� 1/2(� n � � )
�
� dx

	 2R
� �

|x|	 R
|� n � � |2 dx

� 1/2

+
� �

|x|>R

�
V(x)

� �1 dx
� 1/2� �

|x|>R
V(x)(� n � � )2 dx

� 1/2

	 2R
� �

|x|	 R
|� n � � |2 dx

� 1/2

+
� �

|x|>R

�
V(x)

� �1 dx
� 1/2

� � n � u� V , (2.3)

where R > 0. Since the embedding is compact on bounded domain then, by Assumption
(A) and (2.3), we have � n � u in L1. Thus (III) holds. �

3 Convergence results
To obtain the existence of an in�nite sequence for the algorithm, we give some lemmas
and propositions.

Lemma 3.1 Let Assumptions (A), (B), (C) and (D) hold. We conclude that the algorithm
does not in�nitely circle in the inner cycle.
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Proof It is easy to see that the algorithm in�nitely circles in the inner cycle, which implies
that � gl� � � , or the algorithm stops. Namely, the conclusion

�
� 
 p

l

�
� 	 
 l = cp� gl� � 0

is true.
So

�
�rpl � 1

�
� =

|A
 l(

p
l ) � P
 l(


p
l )|

|P
 l(

p
l )|

	
2O(� 
 p

l � 2)

 l� Bl� (xl)� +O(
 2

l )
� 0

and

rpl � 
 (3.1)

for p su�ciently large, which yields a contradiction. �

The following result follows from the de�nition of the model (1.8).

Lemma 3.2 Under the conditions of Lemma 3.1, {xl} � � is true and {	 (xl)} converges.

Now we can state our result.

Theorem 3.1 Let the conditions of Lemma 3.1 hold and {xl} be de�ned as in the algorithm.
Then there exists an in�nite sequence {xl} such that

lim
l��

�
� � (xl)

�
� = 0 (3.2)

for this algorithm.

Proof Suppose that

lim
l��

�
� Bl� (xl)

�
� = 0 (3.3)

holds.
By applying (1.15), we know that (3.2) holds from Lemma 2.1(I). So

�
� Blj � (xlj )

�
� � � . (3.4)

Set

K =
�
l |

�
� Bl� (xl)

�
� � �

�
.

Using Assumption (D) and the case � Bl� (xl)� � � (l � K), � � (xl)� (l � K) is bounded
away from 0, we assume that

�
� � (xl)

�
� � �

holds for any l � K.
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It follows from Assumption (B), Lemma 2.1(II), (2.2) and the Hölder inequality that

I(� ) �
1
2

� � � 2V � c3
�

Rn
|� | dx

�
1
2

� � � 2V � c3
� �

Rn

�
V(x)

� �1 dx
� 1/2

� � � V (3.5)

for all � � � �
V .

Then it follows that I is bounded from below. Moreover, if we take (� n) � � �
V to be a

(PS)-sequence, then we have

c4 �
1
2

� � n� 2V � c5
� �

Rn

�
V(x)

� �1 dx
� 1/2

� � � V

from (3.4) and (3.5), which implies that (� n) is bounded in � �
V .

So there exists a subsequence (� nl ) such that � nl � � 0 as l � � for some � 0 � � �
V . It

follows from Lemma 2.1(III) that

� nl � � 0,

in L1 as l � � , which together with (3.3) yields

�
�
�
�

�

Rn

��f (x, � nl ) ��f (x, � 0)
�
(� nl � � 0)dx

�
�
�
� 	 c6

�

Rn
|� nl � � 0| dx � 0 (3.6)

as l � � .
Noting that the sequence (� n) is bounded, we know that

�
I

�(� nl ) � I
�(� 0)

�
(� nl � � 0) � 0 (3.7)

as l � � .
It follows from (3.6) and (3.7) that

� � nl � � 0� 2V =
�
I

�(� nl ) � I
�(� 0)

�
(� nl � � 0)

+
�

Rn

��f (x, � nl ) ��f (x, � 0)
�
.(� nl � � 0)dx � 0.

De�ne

� (x) = � (x1)� (x2)� (x3) · · · � (xn),

where (x1,x2,x3, . . . ,xn) � R
n.

Then supp � � [0,a]n. Now for each 1 	 i 	 l, we can choose a suitable yi � R
n and de�ne

� i(x) = � (x � yi), for all x � R
n;
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such that

supp � i � 
 i, supp � i 
 supp � j = � (i �= j),

� i(x) = 1
(3.8)

for any x � Ei and

0 	 � i(x) 	 1

for any x � R
n.

Set

� l �
�
(l1, l2, . . . , ll) � R

l; max
1	 i	 l

|li| = 1
�
,

Sl �

� l�

i=1

li� i; (l1, l2, . . . , ll) � � l

�

.
(3.9)

Then � l is homeomorphic to the unit sphere in R
l by an odd mapping. Thus � (� l) = l.

If we de�ne the odd and homeomorphic mapping � : � l � Sl by

� (l1, l2, . . . , ll) =
l�

i=1

li� i,

where (l1, l2, . . . , ll) � � l , then � (Sl) = � (� l) = l. Moreover, it is obvious thatSl is compact
and hence

� � � V 	 � l (3.10)

for any u � Sl , where � l > 0.
It follows from (3.8) and (3.10) that

I(s� ) 	
s
2

� x� 2V �
�

Rn
F

�

x, s
l�

i=1

li� i

�

dx

	
s2� 2

l

2
�

l�

i=1

�


 i

F(x, sli� i)dx (3.11)

for any s � (0, � ) and

u =
l�

i=1

li� i � Sl.

So there exists an integer i0 � [1,k] such that |li0 | = 1. It follows from (3.7) and (3.11) that

l�

i=1

�


 i

F(x, sli� i)dx =
�

Ei0

F(x, sli0 � i0 )dx +
�


 i0 \ Ei0

F(x, sli0 � i0 )dx

+
�

i�=i0

�


 i

F(x, sli� i)dx. (3.12)
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Noting that |li0 | = 1, � i0 � 1 on Ei0 and F(x, � ) is even in � , we have

�

Ei0

F(x, sli0 � i0 )dx =
�

Ei0

F(x, s)dx. (3.13)

By Assumption (B), we have

�


 i0 \ Ei0

F(x, sli0 � i0 )dx +
�

i�=i0

�


 i

F(x, sli� i)dx � �cls2, (3.14)

where cl > 0 depends only on l.
It follows from (3.10)�(3.14) that

I(s� ) 	
s2� 2

l

2
+ cls2 �

�

Ei0

F(x, s)dx.

Substituting s = � n and using Assumption (D), we obtain

I(� n� ) 	 � 2n

�
s2� 2

l

2
+ cl �

�
a
2

� 2

Mn

�
.

Since � n � 0+ and Mn � � , we can choose n0 large enough such that the right side of
the last inequality is negative.
Put

Al = {� n0u; � � Sl}.

Then

� (Al) = � (Sl) = l

and

sup
x� Al

I(x) < 0.

By Lemma 3.2, there exists a sequence of nontrivial critical points (� l) of I such that
I(� l) 	 0 for all l � N and � l � 0 in � �

V as l � � . Hence, (� l) is a sequence of solutions
of (1.1). So they are also the solutions of (1.1) for large enough l.
It follows from Lemma 3.1 and the de�nitions of the algorithm that

�

l� K

�
	 (xl) � 	 (xl+1)

�
� �

�

l� K


 P
 l
�

 pl
l

�
�

�

l� K



1
2

min

	
cpl � ,

�
M2

l



� .

Meanwhile, Lemma 3.2 also shows that the sequence {	 (xl)} is convergent, from which
one deduces that

�

l� K



1
2

min

	
cpl � ,

�
M2

l



� < +� .
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So pl � +� as l � +� and l � K. So it is reasonable for us to assume pl � 1 for all
l � K.
So

minql(
 ) =
1
2

�
�
�
� � (xl) +Bl
 +

3
2

�
sTl�1


� 2sl�1
�
�
�
�

2

s.t. � 
 � 	 cpl�1
�
� � (xl)

�
� ,

(3.15)

is unacceptable.
Setting x�

l+1 = xl + 
 �
l one has

	 (xl) � 	 (x�
l+1)

�P
 l(
 �
l )

< 
 . (3.16)

By applying Lemma 3.1 and the de�nition 
 l , we know that

�P
 l
�

 �
l
�

�
1
2

min

	
cpl�1� ,

�
M2

l



� .

By applying Lemma 3.2, we know that

	
�
x�
l+1

�
� 	 (xl) � P
 l

�

 �
l
�
=O

� �� 
 �
l
�
� 2� =O

�
c2(pl�1)

�
.

So

�
�
�
�
	 (x�

l+1) � 	 (xl)
P
 l(
 �

l )
� 1

�
�
�
� 	

O(c2(pl�1))
0.5min{cpl�1� , �

M2
l
}� +O(c2(pl�1)� 2)

.

By applying pl � +� when l � +� and l � K, we get

	 (xl) � 	 (x�
l+1)

�P
 l(
 �
l )

� 1,

which yields a contradiction to (3.16), where l � K. �

Remark 3.1 Our algorithm extends and improves Algorithm YL in [44] in the following
ways.

(I) The iterative scheme in Algorithm YL is extended for Problem (1.1). The iterative
scheme in our algorithm is more advantageous and more flexible than the iterative
scheme in Algorithm YL because it involves solving four problems: a finite family
of BFGSs, a finite family of Schrödinger inclusions, a general system of Schrödinger
inequalities and the fixed point problem of a countable family of Schrödinger
mappings.

(II) The iterative scheme in our algorithm is very different from the iterative scheme in
Algorithm YL because the iterative scheme in Theorem 3.1 involves modified
subgradient extragradient method and projection method. In addition, the iterative
scheme in Algorithm YL is an iterative one involving neither modified subgradient
extragradient method nor projection method but the iterative scheme in
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Theorem 3.1 is an iterative one involving both modified subgradient extragradient
method and projection method.

(III) The convergence analysis of Theorem 3.1 is based on modified subgradient
extragradient method, projection method, viscosity approximation method, and
Schrödinger mapping and strongly positive bounded Schrödinger operator
approaches to solving a finite family of BFGSs, a finite family of Schrödinger
inclusions and the fixed point problem of a countable family of Schrödinger
mappings.

(IV) The argument and technique in Theorem 3.1 are different from the argument ones
in Algorithm YL because we make use of the properties of the Schrödinger
mappings, the properties of strongly positive boundedness Schrödinger operators
and the maximum principle approach with respect to the Schrödinger operator.

4 Existence of nontrivial meromorphic solutions for the problem (1.2)
Putting

� (x) = sup
�
� > 0 : B(x, � ) � K

�

for all x � K, we can show that there exists x0 � K such that B(x0,I) � K, where

I = sup
x� K

� (x). (4.1)

We introduce the following condition:
(E) There exist µ > 0 and � > 0 with |� |2� 2

nI
n�2sM < 1 such that (see [23])

aC1
�
2µ +

aCq
q (2µ )q/2

q
<
I2s infx� K F(x, � )

2N � 2� nM
,

where I is given in (4.1), � n is the volume of

B(x0,I) :=
�
x � R

n : |x � x0| < I
�

in R
n,

M =
22+n�2s

(1 � s)(n � 2s + 2)
+

1
2n�2ss(n � 2s + 2)

+
1

2s(n � 2s)
.

Before proceeding to the proof of the main result, we give some nonlinear examples.
Functions listed in Examples 4.1, 4.2 and 4.3 satisfy all Assumptions (A), (B), (C), (D) and
(E), which shows that the interval in the following result is not empty.

Example 4.1 f (x, s) = V� (x)min{|s|� , 1}s, where � � (0, 2� � 2), V� � C(Rn) is 1-periodic
in each of x1,x2, . . . ,xn and inf V� > � .

Example 4.2 f (x, s) = V� (x)s[1 � 1
ln(e+|s|� ) ]s, where � � (0, 2� � 2), V� � C(Rn) is 1-periodic

in each of x1,x2, . . . ,xn and inf V� > � .
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Example 4.3 f (x, s) = h(x)min{ 1
� 1

|s|� 1�2, 1
� 2

|s|� 2�2}s, where 2 < � 1 < � 2 < 2� and h � C(Rn)
is 1-periodic in each of x1,x2, . . . ,xn with infh > 0.

Theorem 4.1 Let Assumptions (A), (B), (C) and (D) hold. Assume also that the condition
(E) is satis�ed. Then

� � �� :=
�

2N � 2� nM
I2s infx� K F(x, � )

,
q

qaC1
�
2µ + aCq

q (2µ )q/2

�
,

and the problem (1.2) admits at least one meromorphic solutions.

Proof Let

�� (x) =

�
���

���

0 if x � R
n \ B(x0,I),

� if x � B(x0, I2 ),
2�
I
(I � |x � x0|) if x � B(x0,I) \ B(x0, I2 ),

(4.2)

where | · | denotes the Euclidean norm on R
n.

Then it is clear that �� � Xs(K) and 0 	 �� (x) 	 � for all x � K, and so �� � Xs(K). Denote
BI := B(x0,I).
Then it follows that

� s( �� ) =
1
2

�

Rn

�

Rn

| �� (x) � �� (y)|2

|x � y|n+2s
dxdy

=
1
2

�

BI\ BI
2

�

BI\ BI
2

| �� (x) � �� (y)|2

|x � y|n+2s
dxdy

+
�

BI\ BI
2

�

Rn\ BI

| �� (x) � �� (y)|2

|x � y|n+2s
dxdy

+
�

BI
2

�

BI\ BI
2

| �� (x) � �� (y)|2

|x � y|n+2s
dxdy

+
�

Rn\ BI

�

BI
2

| �� (x) � �� (y)|2

|x � y|n+2s
dxdy

=:
1
2

I 1 + I 2 + I 3 + I 4.

Next we estimate I 1�I 4, by direct calculations.
€ Estimate of I 1: For any positive constant � small enough,

I 1 =
�

BI\ BI
2

�

BI\ BI
2

| �� (x) � �� (y)|2

|x � y|n+2s
dxdy

	
22|� |2

I2

�

BI\ BI
2

�

BI\ BI
2

|x � y|2

|x � y|n+2s
dxdy

	
22|� |2� n

I2

�

BI\ BI
2

� I+|y|

�
r2�2s�1 dr dy
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22|� |2� n

I2

�

BI\ BI
2

(I + |y|)2�2s

2 � 2s
dy

=
22|� |2� 2

n

(2 � 2s)I2

� 2I

3
2I

r2+n�2s�1 dr

=
2|� |2� 2

nI
n�2s

(1 � s)(2 + n � 2s)

�
22+n�2s �

�
3
2

� 2+n�2s�
.

€ Estimate of I 2:

I 2 =
�

BI\ BI
2

�

Rn\ BI

| �� (x) � �� (y)|2

|x � y|n+2s
dxdy

	
22|� |2

I2

�

BI\ BI
2

�

Rn\ BI

|I � |y � x0||2

|x � y|n+2s
dxdy

=
22|� |2� n

I2

�

BI\ BI
2

� �

I�|y�x0|

|I � |y � x0||2

r2s+1
dr dy

=
22|� |2� n

I22s

�

BI\ BI
2

�
�I � |y � x0|

�
�2�2s dy

=
2|� |2� 2

n

I2s

� I
2

0
rn+2�2s�1 dr

=
|� |2� 2

nI
n�2s

2n�2s+1s(n � 2s + 2)
.

€ Estimate of I 3:

I 3 =
�

BI
2

�

BI\ BI
2

| �� (x) � �� (y)|2

|x � y|n+2s
dxdy

=
22|� |2

I2

�

BI
2

�

BI\ BI
2

| � I

2 + |x � x0||2

|x � y|n+2s
dxdy

=
22|� |2

I2

�

BI\ BI
2

�

BI
2

| � I

2 + |x � x0||2

|x � y|n+2s
dydx

=
22|� |2� n

I2

�

BI\ BI
2

�
�
�
��

I

2
+ |x � x0|

�
�
�
�

2 � |x�x0|+I
2

|x�x0|�I
2

1
r2s+1

dr dx

	
2|� |2� n

I2s

�

BI\ BI
2

�
�
�
��

I

2
+ |x � x0|

�
�
�
�

2�2s

dx

=
2|� |2� 2

n

I2s

� I
2

0
tn�2s+1 dt

=
|� |2� 2

nI
n�2s

2n�2s+1s(n � 2s + 2)
.
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€ Estimate of I 4:

I 4 =
�

BI
2

�

Rn\ BI

| �� (x) � �� (y)|2

|x � y|n+2s
dxdy

= |� |2
�

BI
2

�

Rn\ BI

1
|x � y|n+2s

dxdy

= |� |2� n

�

BI
2

� �

I�|y�x0|
r�2s�1 dr dy

= |� |2� n

�

BI
2

1
2s(I � |y � x0|)2s

dy

=
|� |2� 2

n

2s

� I

I
2

tn�2s�1 dt

=
|� |2� 2

nI
n�2s

2s(n � 2s)

�
1 �

1
2n�2s

�

=
|� |2� 2

nI
n�2s

2s(n � 2s)
.

Hence, it follows from Assumption (A) that

� s( �� ) 	 | � |2� 2
nI

n�2sM < 1.

Owing to Assumption (C) and the de�nition (4.2), we deduce that

� ( �� ) �
�

BI
2

F(x, �� )dx � inf
x� K

F(x, � )
�

� NI
n

2n

�

and thus

� ( �� )
� s( �� )

�
I2s infx� K F(x, � )

2n� 2� nM
. (4.3)

Also by Assumption (B), Theorem 3.1 and the best constants C1, Cq, we have

� (� ) =
�

K

F(x, � )dx

	 a
�

K

	 �
�� (x)

�
� +

1
q

�
�� (x)

�
�q



dx

= a� � � L1(K) +
a
q

� � � qLq(K)

	 aC1� � � Xs(K) +
a
q
Cq
q � � � qXs(K).

For each � � � �1
s ((�� ,µ ]), it follows that

� (� ) 	 aC1
�
2µ +

aCq
q (2µ )q/2

q
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and hence

sup
u� � �1

s ((�� ,µ ])
� (� ) 	 aC1

�
2µ +

aCq
q (2µ )q/2

q
.

From inequality (4.3) and Assumption (C), we have

sup
u� � �1

s ((�� ,1])
� (� ) <

� ( �� )
� s( �� )

.

So

�� �
�

� s( �� )
� ( �� )

,
1

sup� s(� )	 1 � (� )

�
.

Since condition (E) is easily veri�ed and J� = � s � �� is coercive by (B), all condi-
tions of Theorem 4.1 are satis�ed for every � � �� . Hence, by applying Theorem 4.1 and
Lemma 3.2, we know that J� is the critical points which is the meromorphic solution for
the problem (1.2). �

5 Conclusions
In this paper we were concerned with nonlinear boundary value problem for a class of
quasilinear Schrödinger equation (�� )� � +V(x)� = f (x, � ) with nonlinear boundary con-
dition in R

n. We �rstly studied a new algorithm for �nding the meromorphic solution for
the mentioned equation via meromorphic inequalities. Then we dealt with the necessary
and su�cient conditions of convergence and obtain the general solutions and the condi-
tions of solvability for the mentioned equation by means of the meromorphic inequalities
for the classical boundary value problems. These results generalized some previous re-
sults concerning the asymptotic behavior of solutions of non-delay systems of Schrödinger
equations by applying the maximum principle approach with respect to the Schrödinger
operator.
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