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1 Introduction
Fractional calculus has emerged as an interesting field of investigation in the last few
decades. The subject has been extensively developed and the literature on the topic is
much enriched now, covering theoretical as well as widespread applications of this branch
of mathematical analysis. In fact, the fractional differential equations have attracted more
and more attention for their useful applications in various fields, such as economics, sci-
ence, and engineering; see [1–5]. In the last few decades, much attention has been fo-
cused on the study of the existence of positive solutions for boundary value problems of
Riemann–Liouville type or Caputo type fractional differential equations; see [6–23].

On the other hand, p-Laplacian operator is extensively applied in the mathematical
modeling of several real world phenomena in physics, mechanics, dynamical systems, etc.
While studying the fundamental problem of turbulent flow in a porous medium, Leiben-
son [24] introduced the p-Laplacian operator φp(x(t)) in 1945. Also there has been shown
much interest in obtaining the existence and multiplicity of solutions of this class of prob-
lems by employing different fixed point theorems. Recently, many scholars have paid more
attention to the fractional order differential equation boundary value problems with p-
Laplacian operator; see [25–32].

The system of fractional differential equations boundary value problems with p-
Laplacian operator has also received much attention and has developed very rapidly; see
[33–39]. In [33], He and Song discussed the following fractional order differential system
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with p-Laplacian operator:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα1
0+ (φp1 (Dβ1

0+ u(t))) = λf (t, u(t)), t ∈ (0, 1),

Dα2
0+ (φp2 (Dβ2

0+ u(t))) = μg(t, u(t)), t ∈ (0, 1),

u(0) = 0, u(1) = a1u(ξ1), Dβ1
0+ u(0) = 0, Dβ1

0+ u(1) = b1Dβ1
0+ u(η1),

v(0) = 0, v(1) = a1v(ξ2), Dβ2
0+ v(0) = 0, Dβ2

0+ v(1) = b1Dβ2
0+ v(η2),

where αi,βi ∈ (1, 2], Dαi
0+ and Dβi

0+ are the standard Riemann–Liouville derivatives, ξi,ηi ∈
(0, 1), ai, bi ∈ [0, 1], i = 1, 2, λ and μ are positive parameters. The uniqueness of solution
was established by using the Banach contraction mapping principle. Hao et al. [34] inves-
tigated the existence of positive solutions for a system of nonlinear fractional differential
equations nonlocal boundary value problems with parameters and p-Laplacian operator,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–Dα1
0+ (φp(Dβ1

0+ u(t))) = λf (t, u(t), v(t)), t ∈ (0, 1),

–Dα2
0+ (φp(Dβ2

0+ u(t))) = μg(t, u(t), v(t)), t ∈ (0, 1),

u(0) = u(1) = u′(0) = u′(1) = 0, Dβ1
0+ u(0) = 0, Dβ1

0+ u(1) = b1Dβ1
0+ u(η1),

v(0) = v(1) = v′(0) = v′(1) = 0, Dβ2
0+ v(0) = 0, Dβ2

0+ v(1) = b1Dβ2
0+ v(η2),

where αi ∈ (1, 2], βi ∈ (3, 4] Dαi
0+ and Dβi

0+ are the standard Riemann–Liouville derivatives,

ηi ∈ (0, 1), bi ∈ (0,η
1–αi
pi–1
i ), i = 1, 2, λ and μ are positive parameters.

It has been noticed that most of the above-mentioned work on the topic is based on
Riemann–Liouville or Caputo fractional derivatives. In 1892, Hadamard [40] introduced
another fractional derivative, which differs from the above-mentioned ones because its
definition involves logarithmic function of arbitrary exponent and named the Hadamard
derivative. Although many researchers are paying more and more attention to Hadamard
type fractional differential equation, the study of the topic is still in its primary stage. For
details and recent developments on Hadamard fractional differential equations, see [41–
48].

From the above review of the literature concerning fractional differential equations,
most of the authors investigated only the existence of solutions or positive solutions for
Hadamard fractional differential equations without considering the p-Laplacian opera-
tor. A very few authors established results along with p-Laplacian operator, in [47], Wang
considered the nonlinear Hadamard fractional differential equation with integral bound-
ary condition and p-Laplacian operator

⎧
⎨

⎩

Dβ (φp(Dαu(t))) = f (t, u(t)), t ∈ (1, T),

u(T) = λIαu(η), Dαu(1) = 0, u(1) = 0,

where f grows p – 1 sublinearly at +∞, and by using the Schauder fixed point theorem,
a solution existence result is obtain. In [46], Li and Lin used the Guo–Krasnosel’skii fixed
point theorem to obtain the existence and uniqueness of positive solutions. We have

⎧
⎨

⎩

Dβ (φp(Dαu(t))) = f (t, u(t)), 1 < t < e,

u(1) = u′(1) = u′(e) = 0, Dαu(1) = Dαu(e) = 0,
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where the continuous function f : [1, e] × [0, +∞) → [0, +∞), 2 < α ≤ 3, 1 < β ≤ 2, Dα

denotes the standard Hadamard fractional derivative of order α. Zhang et al. [48] estab-
lished some existence of positive(nontrivial) solutions for integral boundary conditions of
nonlinear Hadamard fractional differential equations with p-Laplacian operator.

⎧
⎪⎪⎨

⎪⎪⎩

Dβ (φp(Dαu(t))) = f (t, u(t)), 1 < t < e,

u(1) = u′(1) = u′(e) = 0, Dαu(1) = 0,

φp(Dαu(e)) = μ
∫ e

1 φp(Dαu(t)) dt
t ,

where α, β , and μ are three real numbers with α ∈ (2, 3], β ∈ (1, 2], and μ ∈ [0,β), and f is
a continuous function on [1, e] ×R.

Motivated by the aforementioned work, we investigate in this paper the existence of
positive solutions for the following nonlinear Hadamard fractional differential equation
with p-Laplacian operator:

⎧
⎪⎪⎨

⎪⎪⎩

HDβ1
1+ (φp(HDα1

1+ u(t))) = λp–1f (t, u(t), v(t), w(t)), t ∈ (1, e),
HDβ2

1+ (φp(HDα2
1+ v(t))) = μp–1g(t, u(t), v(t), w(t)), t ∈ (1, e),

HDβ3
1+ (φp(HDα3

1+ w(t))) = υp–1h(t, u(t), v(t), w(t)), t ∈ (1, e),

(1)

subject to the three-point boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(j)(1) = 0, 0 ≤ j ≤ n – 2, μ1u(p1)(e) = λ1u(p1)(ξ ),

φp(HDα1
1+ u(1)) = 0 = (HDp2

1+ (φp(HDα1
1+ u(e)))),

v(j)(1) = 0, 0 ≤ j ≤ m – 2, μ1v(q1)(e) = λ1v(q1)(ξ ),

φp(HDα2
1+ v(1)) = 0 = (HDq2

1+ (φp(HDα2
1+ v(e)))),

w(j)(1) = 0, 0 ≤ j ≤ l – 2, μ1w(r1)(e) = λ1w(r1)(ξ ),

φp(HDα3
1+ w(1)) = 0 = (HDr2

1+ (φp(HDα3
1+ w(e)))),

(2)

where αi,βi ∈ R, i = 1, 2, 3, α1 ∈ (n – 1, n], α2 ∈ (m – 1, m], α3 ∈ (l – 1, l], n, m, l ∈ N for
n, m, l ≥ 3, βi ∈ (1, 2], i = 1, 2, 3, p1 ∈ [1,α1 – 1), q1 ∈ [1,α2 – 1), γ1 ∈ [1,α3 – 1), p2.q2,γ2 ∈
(0, 1] and p2, q2,γ2 ≤ βi – 1, i = 1, 2, 3, μ1,λ1 ∈ (0,∞), ξ ∈ (1, e) are constants. HDk

1+ denotes
the Hadamard fractional derivative of order k. φp(s) = |s|p–2s, p > 1, φ–1

p = φq, 1
p + 1

q = 1,
f , g, h ∈ C([1, e] × [0, +∞)3, [0, +∞)), λ, μ and υ > 0 are positive parameters.

Under some assumptions on f , g and h, we give intervals for the parameters λ, μ and υ

such that positive solutions of (1)–(2) exist. By a positive solution of the problem (1)–(2),
we mean a triplet of functions (u, v, w) ∈ (C([1, e], [0,∞)))3 satisfying (1)–(2) with u(t) > 0
for all t ∈ [1, e], or v(t) > 0 for all t ∈ [1, e], or w(t) > 0 for all t ∈ [1, e] and (u, v, w) �= (0, 0, 0).

The main aim of this paper is to investigate the above Hadamard fractional differential
equation with p-Laplacian operator boundary value problem (1)–(2). With the help of the
properties of the Green’s functions and the Guo–Krasnosel’skii fixed point theorem on
cones, we established the various existence results for positive solutions were derived in
terms of different values of λ, μ and υ , under different combinations of superlinearity and
sublinearity of the functions f , g and h. At the end, we give an example to illustrate the
feasibility of our proposed theoretical result.
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2 Preliminaries
For convenience of the reader, we present some necessary definitions and lemmas from
Hadamard fractional calculus theory in this section.

Definition 2.1 ([1]) The left-sided Hadamard fractional integrals of order α ∈ R
+ of the

function h(t) are defined by

(HIαh
)
(t) =

1
Γ (α)

∫ t

1

(

ln
t
s

)α–1

h(s)
ds
s

(1 ≤ t ≤ e),

where Γ (·) is the Gamma function.

Definition 2.2 ([1]) The left-sided Hadamard fractional derivatives of order α ∈ (n – 1, n],
n ∈ Z+ of the function h(t) are defined by

(HDαh
)
(t) =

1
Γ (n – α)

(

t
d
dt

)n ∫ t

1

(

ln
t
s

)n–α+1

h(s)
ds
s

(1 ≤ t ≤ e),

where Γ (·) is the Gamma function.

Lemma 2.1 ([1]) If a,α,β > 0 then

(
HDα

a

(

ln
t
a

)β–1)

(x) =
Γ (β)

Γ (β – α)

(

ln
x
a

)β–α–1

.

Lemma 2.2 ([1]) Let q > 0 and u ∈ C[1,∞) ∩ L1[1,∞). Then the Hadamard fractional
differential equation HDqu(t) = 0 has the solution

u(t) =
n∑

i=1

ci(ln t)q–1

and the following formula holds:

HIqHDqu(t) = u(t) +
n∑

i=1

ci(ln t)q–i

where ci ∈ R, i = 1, 2, . . . , n and n – 1 < q < n.

3 Green’s function and bounds
In this section we present the expression and properties of Green’s function associated
with boundary value problem (1)–(2). In order to prove our main results, we need some
preliminary results.

Lemma 3.1 Let �1 = μ1 – λ1(ln ξ )α1–p1–1 > 0, h ∈ C[1, e] and n – 1 < α1 ≤ n, for n ≥ 3.
Then the unique solution of

⎧
⎨

⎩

HDα1
1+ u(t) + h(t) = 0, 1 < t < e,

u(j)(1) = 0, 0 ≤ j ≤ n – 2, μ1u(p1)(e) = λ1u(p1)(ξ ),
(3)
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is u(t) =
∫ e

1 G1(t, s)h(s) ds
s , where

G1(t, s) = G11(t, s) +
λ1(ln t)α1–1

μ1 – λ1(ln ξ )α1–p1–1 G12(ξ , s),

G11(t, s) =
1

Γ (α1)

⎧
⎨

⎩

(ln t)α1–1(1 – ln s)α1–p1–1 – (ln t
s )α1–1, 1 ≤ s ≤ t ≤ e,

(ln t)α1–1(1 – ln s)α1–p1–1, 1 ≤ t ≤ s ≤ e,

G12(t, s) =
1

Γ (α1)

⎧
⎨

⎩

(ln t)α1–p1–1(1 – ln s)α1–p1–1 – (ln t
s )α1–p1–1, 1 ≤ s ≤ t ≤ e,

(ln t)α1–p1–1(1 – ln s)α1–p1–1, 1 ≤ t ≤ s ≤ e.

(4)

Proof It is enough to consider the case when u is a solution of (3). From Lemma 2.1 we
have HIα1

1+
HDα1

1+ u(t) = –HIα1
1+ h(t), so that

u(t) = –
1

Γ (α1)

∫ e

1

(

ln
t
s

)α1–1

h(s)
ds
s

+ c1(ln t)α1–1 + c2(ln t)α1–2 + · · · + cn(ln t)α1–n,

for some ci ∈ R, i = 1, 2, . . . , n. From u(j)(1) = 0, j = 0, 1, 2, . . . , n – 2, we have c2 = c3 = · · · =
cn = 0. Hence

u(j)(t) = c1

p1∏

j=1

(α1 – j)(ln t)α1–p1–1 –
p1∏

j=1

(α1 – j)
1

Γ (α1)

∫ t

1

(

ln
t
s

)α1–p1–1

h(s)
ds
s

.

Then μ1u(p1)(e) = λ1u(p1)(ξ ) implies that

c1 =
1

�1

[
μ1

Γ (α1)

∫ e

1
(1 – ln s)α1–p1–1h(s)

ds
s

–
λ1

Γ (α1)

∫ ξ

1

(

ln
ξ

s

)α1–p1–1

h(s)
ds
s

]

.

As a result,

u(t) =
–1

Γ (α1)

∫ t

1

(

ln
t
s

)α1–1

h(s)
ds
s

+
μ1(ln t)α1–1

�1

∫ e

1

(1 – ln s)α1–p1–1

Γ (α1)
h(s)

ds
s

–
λ1(ln t)α1–1

�1

∫ ξ

1

(ln ξ

s )α1–p1–1

Γ (α1)
h(s)

ds
s

=
–1

Γ (α1)

∫ t

1

(

ln
t
s

)α1–1

h(s)
ds
s

+
(ln t)α1–1

Γ (α1)

∫ e

1
(1 – ln s)α1–p1–1h(s)

ds
s

–
λ1(ln t)α1–1

�1

∫ ξ

1

(ln ξ

s )α1–p1–1

Γ (α1)
h(s)

ds
s

+
λ1(ln t)α1–1

�1

∫ e

1

(ln ξ )α1–p1–1(1 – ln s)α1–p1–1

Γ (α1)
h(s)

ds
s

=
∫ e

1
G1(t, s)h(s)

ds
s

. �

Lemma 3.2 Let n – 1 < α1 ≤ n, 1 < β1 ≤ 2 and y ∈ C[1, e]. Then the unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

HDβ1
1+ (φp(HDα1

1+ u(t))) = y(t), 1 < t < e,

u(j)(1) = 0, 0 ≤ j ≤ n – 2, μ1u(p1)(e) = λ1u(p1)(ξ ),

φp(HDα1
1+ u(1)) = 0 = (HDp2

1+ (φp(HDα1
1+ u(e)))),

(5)
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is u(t) =
∫ e

1 G1(t, s)φq(
∫ e

1 H1(s, τ )y(τ ) dτ
τ

) ds
s , where G1(t, s) is defined as (4).

H1(t, s) =
1

Γ (β1)

⎧
⎨

⎩

(ln t)β1–1(1 – ln s)β1–p2–1 – (ln t
s )β1–1, 1 ≤ s ≤ t ≤ e,

(ln t)β1–1(1 – ln s)β1–p2–1, 1 ≤ t ≤ s ≤ e.
(6)

Proof It is enough to consider the case when u is a solution of (5). From Lemma 2.1 we
have

HIβ1
1+

HDβ1
1+

(
φp

(HDα1
1+ u(t)

))
= φp

(HDα1
1+ u(t)

)
+ c1(ln t)β1–1 + c2(ln t)β1–2

for some constants ci ∈R, i = 1, 2. In view of (5), we obtain

HIβ1
1+

HDβ1
1+

(
φp

(
Dα1

1+ u(t)
))

= Iβ1
1+ y(t).

Also we find

φp
(HDα1

1+ u(t)
)

= HIβ1
1+ y(t) + c1(ln t)β1–1 + c2(ln t)β1–2.

Note that φp(HDα1
1+ u(1)) = 0, we have c2 = 0, then

HDp2
1+

(
φp

(HDα1
1+ u(t)

))

= HDp2
1+

H Iβ1
1+ y(t) + c1

HDp2
1+ (ln t)β1–1

= HI(β1–p2)
1+ y(t) + c1

Γ (β1)
Γ (β1 – p2)

(ln t)β1–p2–1

=
1

Γ (β1 – p2)

∫ t

1

(

ln
t
s

)β1–p2–1

y(s)
ds
s

+ c1
Γ (β)

Γ (β1 – p2)
(ln t)β1–p2–1.

Consequently, (HDp2
1+ (φp(HDα1

1+ u(e)))) = 0, implies that

c1 =
–1

Γ (β1)

∫ e

1
(1 – ln s)β1–p2–1y(s)

ds
s

.

Therefore,

φp
(HDα1

1+ u(t)
)

=
1

Γ (β1)

∫ t

1

(

ln
t
s

)β1–1

y(s)
ds
s

–
(ln t)β1–1

Γ (β1)

∫ e

1
(1 – ln s)β1–p2–1y(s)

ds
s

= –
∫ e

1
H1(t, s)y(s)

ds
s

.

Also we have

HDα1
1+ u(t) + φq

(∫ e

1
H1(t, s)y(s)

ds
s

)

= 0.

Noting Lemma 3.1 and the conditions u(j)(1) = 0, 0 ≤ j ≤ n – 2, μ1u(p1)(e) = λ1u(p1)(ξ ), we
have u(t) =

∫ e
1 G1(t, s)φq(

∫ e
1 H1(t, τ )y(τ ) dτ

τ
) ds

s . �
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Lemma 3.3 Let �1 > 0. Then the Green’s function G1(t, s) given by (4) satisfies the following
inequalities:

(i) G1(t, s) ≥ 0, for all (t, s) ∈ [1, e] × [1, e],
(ii) G1(t, s) ≤ G1(e, s), for all (t, s) ∈ [1, e] × [1, e],

(iii) G1(t, s) ≥ ( 1
4 )α1–1G1(e, s), for all (t, s) ∈ [e1/4, e3/4] × (1, e).

Proof Consider the Green’s function G11(t, s) given by (4).
(i) For 1 ≤ t ≤ s ≤ e. It is easy to see that G11(t, s) ≥ 0.
Let 1 ≤ s ≤ t ≤ e. Then

G11(t, s) =
1

Γ (α1)

[

(ln t)α1–1(1 – ln s)α1–p1–1 –
(

ln
t
s

)α1–1]

=
1

Γ (α1)

[

(ln t)α1–1(1 – ln s)α1–p1–1 –
(

1 –
ln s
ln t

)α1–1

(ln t)α1–1
]

≥ (ln t)α1–1

Γ (α1)
[
(1 – ln s)α1–p1–1 – (1 – ln s)α1–1]

=
(ln t)α1–1

Γ (α1)

[

p1 ln s +
p1(p1 + 1)

2
(ln s)2 + · · ·

]

(1 – ln s)α1–1 ≥ 0

=
(ln t)α1–1

Γ (α1)
[
p1 ln s + O(ln s)2](1 – ln s)α1–1 ≥ 0.

On the other hand, if 1 ≤ s ≤ ξ ≤ e,

G12(ξ , s) =
1

Γ (α1)

[

(ln ξ )α1–p1–1(1 – ln s)α1–p1–1 –
(

ln
ξ

s

)α1–p1–1]

=
1

Γ (α1)

[

(ln ξ )α1–p1–1(1 – ln s)α1–p1–1 –
(

1 –
ln s
ln ξ

)α1–p1–1

(ln ξ )α1–p1–1
]

≥ (ln ξ )α1–p1–1

Γ (α1)
[
(1 – ln s)α1–p1–1 – (1 – ln s)α1–p1–1] = 0,

which implies G1(t, s) ≥ 0. Hence the inequality (i) is proved.
(ii) For 1 ≤ t ≤ s ≤ e. It is easy to see that dG11(t,s)

dt ≥ 0.
Let 1 ≤ s ≤ ξ ≤ e. Then we have

dG11(t, s)
dt

=
(α1 – 1)
Γ (α1)

[

(ln t)α1–2(1 – ln s)α1–p1–1 –
(

ln
t
s

)α1–2]

≥ (α1 – 1)(ln t)α1–2

Γ (α1)
[
(1 – ln s)α1–p1–1 – (1 – ln s)α1–2]

=
(α1 – 1)(ln t)α1–2

Γ (α1)

[

1 – (1 – (p1 – 1) ln s +
(p1 – 1)(p1 – 2)

2
(ln s)2

+ · · ·
]

(1 – ln s)α1–p1–1

=
(α1 – 1)(ln t)α1–2

Γ (α1)
[
(p1 – 1) ln s + O(ln s)2](1 – ln s)α1–p1–1 ≥ 0.

On the other hand, consider ξ ≤ s. It is easy to see that G12(ξ , s) ≥ 0.
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For s ≤ ξ one has

(ln ξ )α1–p1–1(1 – ln s)α1–p1–1 –
(

ln
ξ

s

)α1–p1–1

≥ (ln ξ )α1–p1–1(1 – ln s)α1–p1–1 – (ln ξ – ln ξ ln s)α1–p1–1 ≥ 0.

Therefore

dG1(t, s)
dt

=
dG11(t, s)

dt
+

λ1(α1 – 1)(ln t)α1–2

μ1 – λ1(ln ξ )α1–p1–1 G12(ξ , s) ≥ 0,

which implies that G1(t, s) is the monotone nondecreasing function, so

G1(t, s) ≤ G1(e, s) for all (t, s) ∈ [1, e] × [1, e].

Hence the inequality (ii) is proved.
(iii) For 1 ≤ t ≤ s ≤ e,

G11(t, s)
G11(e, s)

=
(ln t)α–1(1 – ln s)α–β–1

(1 – ln s)α–β–1 = (ln t)α–1.

For 1 ≤ s ≤ t ≤ e,

G11(t, s)
G11(e, s)

=
(ln t)α1–1(1 – ln s)α1–p1–1 – (ln t

s )α1–1

(1 – ln s)α1–p1–1 – (1 – ln s)α1–1

≥ (ln t)α1–1(1 – ln s)α1–p1–1 – (ln t – ln s ln t)α1–1

(1 – ln s)α1–p1–1 – (1 – ln s)α1–1

=
(ln t)α1–1[(1 – ln s)α1–p1–1 – (1 – ln s)α1–1]

(1 – ln s)α1–p1–1 – (1 – ln s)α1–1 = (ln t)α1–1.

Therefore

G11(t, s) ≥ (ln t)α1–1G11(e, s) for all (t, s) ∈ [1, e] × (1, e). (7)

From (4) and (7) we have

G1(t, s) = G11(t, s) +
λ1(ln t)α1–1

μ1 – λ1(ln ξ )α1–p1–1 G12(ξ , s)

≥ (ln t)α1–1G11(e, s) +
λ1(ln t)α1–1

μ1 – λ1(ln ξ )α1–p1–1 G12(ξ , s)

= (ln t)α1–1G1(e, s) ≥
(

1
4

)α1–1

G1(e, s) for all (t, s) ∈ [
e1/4, e3/4] × (1, e).

Therefore G1(t, s) ≥ ( 1
4 )α1–1G1(e, s). Hence the inequality (iii) is proved. �

Lemma 3.4 Let �1 > 0. Then the Green’s function H1(t, s) given by (6) satisfies the following
inequalities:

(i) 0 ≤ H1(t, s) ≤ H1(s, s), for all (t, s) ∈ [1, e] × [1, e],
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(ii) H1(t, s) ≥ δ1(s)H1(s, s), for all (t, s) ∈ [e1/4, e3/4] × (1, e),

δ1(s) =

⎧
⎨

⎩

( 3
4 )β1–1(1–ln s)β1–p2–1–( 3

4 –ln s)β1–1

(ln s)β1–1(1–ln s)β1–p2–1 H1(s, s), s ∈ (1, r],
1

(4 ln s)β–1 H1(s, s), s ∈ [r, e).

Proof (i) For 1 ≤ t ≤ s ≤ e, it is easy to show that d
dt H1(t, s) ≥ 0 for all (t, s) ∈ [1, e] × [1, e],

then

0 = H1(1, s) ≤ H1(t, s) ≤ H1(s, s) for all t ≤ s.

Let s ≤ t. Then

d
dt

H1(t, s) =
1

Γ (β1)

[

(β1 – 1)(ln t)β1–2(1 – ln s)β1–p2–1 – (β1 – 1)
(

ln
t
s

)β1–2]

≤ (β1 – 1)
Γ (β1)

[
(1 – ln s)β1–p2–1 – (1 – ln s)β1–2]

=
(β1 – 1)
Γ (β1)

[
(1 – ln s)–p2+1 – 1

]
(1 – ln s)β1–2

=
(β1 – 1)
Γ (β1)

[

(p2 – 1) ln s +
(p2 – 1)(p2)

2!
(ln s)2 + · · ·

]

(1 – ln s)β1–2

=
(β1 – 1)
Γ (β1)

[
(p2 – 1) ln s + O(ln s)2](1 – ln s)β1–2 ≤ 0.

Therefore, H1(t, s) is decreasing in t for s ∈ [1, e], which implies that H1(t, s) ≤ H1(s, s).
Hence, the inequality (i) is proved.

(ii) For s ∈ (1, e). H1(t, s) is increasing in t for t ≤ s and decreasing in t for s ≤ t. We define

h11(t, s) =
1

Γ (β1)

[

(ln t)β1–1(1 – ln s)β1–p2–1 –
(

ln
t
s

)β1–1]

,

h12(t, s) =
1

Γ (β1)
[
(ln t)β1–1(1 – ln s)β1–p2–1],

and applying the monotonicity of H1(t, s), we have

min
e1/4≤t≤e3/4

H1(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

h11(e3/4, s), s ∈ (1, e1/4],

min{h1(e3/4, s), h12(e1/4, s)}, s ∈ [e1/4, e3/4],

h12(e1/4, s), s ∈ [e3/4, e),

=

⎧
⎨

⎩

h11(e3/4, s), s ∈ (1, r),

h12(e1/4, s), s ∈ [r, e)

=

⎧
⎨

⎩

1
Γ (β1) [( 3

4 )β1–1(1 – ln s)β1–p2–1 – ( 3
4 – ln s)β1–1], s ∈ (1, r],

1
Γ (β1) [( 1

4 )β1–1(1 – ln s)β1–p2–1], s ∈ [r, e),
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≥
⎧
⎨

⎩

( 3
4 )β1–1(1–ln s)β1–p2–1–( 3

4 –ln s)β1–1

(ln s)β1–1(1–ln s)β1–p2–1 H1(s, s), s ∈ (1, r],
1

(4 ln s)β1–1 H1(s, s), s ∈ [r, e),

= δ1(s)H1(s, s) for s ∈ (1, e).

Hence, the inequality (ii) is proved. �

We can also formulate similar results to Lemmas 3.1–3.4 for the Hadamard fractional
boundary value problems

⎧
⎪⎪⎨

⎪⎪⎩

HDβ2
1+ (φp(HDα2

1+ v(t))) = μp–1g(t, u(t), v(t), w(t)), t ∈ (1, e),

v(j)(1) = 0, 0 ≤ j ≤ m – 2, μ1v(q1)(e) = λ1v(q1)(ξ ),

φp(HDα2
1+ v(1)) = 0 = (HDq2

1+ (φp(HDα2
1+ v(e)))),

(8)

and

⎧
⎪⎪⎨

⎪⎪⎩

HDβ3
1+ (φp(HDα3

1+ w(t))) = υp–1h(t, u(t), v(t), w(t)), t ∈ (1, e),

w(j)(1) = 0, 0 ≤ j ≤ l – 2, μ1w(r1)(e) = λ1w(r1)(ξ ),

φp(HDα3
1+ w(1)) = 0 = (HDr2

1+ (φp(HDα3
1+ w(e)))).

(9)

Remark In a similar manner, the results of the Green’s functions G2(t, s), G3(t, s), H2(t, s)
and H3(t, s) for the homogeneous BVP corresponding to the Hadamard fractional differ-
ential equations (8) and (9) are obtained.

Consider the following conditions:
(i) Gi(t, s) ≥ mGi(e, s), for all (t, s) ∈ [1, e] × [1, e], i = 1.2.3,

(ii) Hi(t, s) ≥ δ(s)Hi(e, s), for all (t, s) ∈ I × (1, e), i = 1, 2, 3,
where I = [e1/4, e3/4], m = min{( 1

4 )α1–1, ( 1
4 )α2–1, ( 1

4 )α3–1}, δ(s) = min{δ1(s), δ2(s), δ3(s)}.
Our main results are based on the following Guo–Krasnosel’skii fixed point theorem on

cones.

Theorem 3.5 (Krasnosel’skii [49, 50]) Let X be a Banach space, K ⊆ X be a cone, and
suppose that Ω1, Ω2 are open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose furthermore
that T : K ∩ (Ω2\Ω1) → K is a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2,

holds. Then T has a fixed point in K ∩ (Ω2\Ω1).

4 Positive solutions in a cone
In this section, we shall give sufficient conditions on λ, μ, υ , f , g and h such that positive
solutions with respect to a cone for our problem (1)–(2) exist.

We present the assumptions that we shall use in the sequel:
(A1) The functions f , g, h : [1, e] × [0, +∞)3 → [0, +∞) are continuous.
(A2) αi,βi ∈ R, i = 1, 2, 3, α1 ∈ (n – 1, n], α2 ∈ (m – 1, m], α3 ∈ (l – 1, l], n, m, l ∈ N for

n, m, l ≥ 3, βi ∈ (1, 2], i = 1, 2, 3, p1 ∈ [1,α1 – 1), q1 ∈ [1,α2 – 1), γ1 ∈ [1,α3 – 1),
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p2.q2,γ2 ∈ (0, 1], p2, q2,γ2 ≤ βi – 1, i = 1, 2, 3, μ1,λ1 ∈ (0,∞), ξ ∈ (1, e) are con-
stants and �1 = μ1 – λ1(ln ξ )α1–p1–1 > 0, �2 = μ1 – λ1(ln ξ )α2–q1–1 > 0, �3 = μ1 –
λ1(ln ξ )α3–r1–1 > 0.

(A3) For I = [e1/4, e3/4] ⊂ (1, e), we introduce the following extreme limits:

f s
0 = lim sup

u+v+w→0
max
t∈[1,e]

f (t, u, v, w)
(u + v + w)p–1 , gs

0 = lim sup
u+v+w→0

max
t∈[1,e]

g(t, u, v, w)
(u + v + w)p–1 ,

hs
0 = lim sup

u+v+w→0
max
t∈[1,e]

h(t, u, v, w)
(u + v + w)p–1 , f i

0 = lim inf
u+v+w→0

min
t∈I

f (t, u, v, w)
(u + v + w)p–1 ,

gi
0 = lim inf

u+v+w→0
min
t∈I

g(t, u, v, w)
(u + v + w)p–1 , hi

0 = lim inf
u+v+w→0

min
t∈I

h(t, u, v, w)
(u + v + w)p–1 ,

f s
∞ = lim sup

u+v+w→∞
max
t∈[1,e]

f (t, u, v, w)
(u + v + w)p–1 , gs

∞ = lim sup
u+v+w→∞

max
t∈[1,e]

g(t, u, v, w)
(u + v + w)p–1 ,

hs
∞ = lim sup

u+v+w→∞
max
t∈[1,e]

h(t, u, v, w)
(u + v + w)p–1 , f i

∞ = lim inf
u+v+w→∞ min

t∈I

f (t, u, v, w)
(u + v + w)p–1 ,

gi
∞ = lim inf

u+v+w→∞ max
t∈I

g(t, u, v, w)
(u + v + w)p–1 , hi

∞ = lim inf
u+v+w→∞ min

t∈I

h(t, u, v, w)
(u + v + w)p–1 .

Let X = C[1, e], then X is a Banach space with the norm ‖u‖ = supt∈[1,e] |u(t)|. Let Y =
X × X × X, then Y is a Banach space with the norm ‖(u, v, w)‖Y = ‖u‖ + ‖v‖ + ‖w‖.

Define a cone P ⊂ Y by

P =
{

(u, v, w) ∈ Y : u(t) ≥ 0, v(t) ≥ 0, w(t) ≥ 0,∀t ∈ [1, e],

min
t∈I

{
u(t) + v(t) + w(t)

} ≥ m
∥
∥(u, v, w)

∥
∥

Y

}
,

where I = [e1/4, e3/4]. For λ,μ,υ > 0, we define now the operator Q : P → Y by Q(u, v, w) =
(Q1(u, v, w), Q2(u, v, w), Q3(u, v, w)) with

Q1(u, v, w)(t) = λ

∫ e

1
G1(t, s)

(∫ e

1
H1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s
, t ∈ [1, e],

Q2(u, v, w)(t) = μ

∫ e

1
G2(t, s)

(∫ e

1
H2(s, τ )g

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s
, t ∈ [1, e],

Q3(u, v, w)(t) = υ

∫ e

1
G3(t, s)

(∫ e

1
H3(s, τ )h

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s
, t ∈ [1, e].

Lemma 4.1 Q : P → P is a completely continuous operator.

Proof The continuity of functions Gi(t, s), Hi(t, s), i = 1, 2, 3 and f , g , h implies that Q : P →
P is continuous. For all (t, s) ∈ I × [1, e], where I = [e1/4, e3/4], we have

min
t∈I

{
Q1(u, v, w)(t) + Q2(u, v, w)(t) + Q3(u, v, w)(t)

}

= min
t∈I

{

λ

∫ e

1
G1(t, s)

(∫ e

1
H1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

+ μ

∫ e

1
G2(t, s)

(∫ e

1
H2(s, τ )g

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s
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+ υ

∫ e

1
G3(t, s)

(∫ e

1
H3(s, τ )h

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

}

≥ m
{

λ

∫ e

1
G1(e, s)

(∫ e

1
H1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

+ μ

∫ e

1
G2(e, s)

(∫ e

1
H2(s, τ )g

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

+ υ

∫ e

1
G3(e, s)

(∫ e

1
H3(s, τ )h

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

}

≥ m
(∥
∥Q1(u, v, w)

∥
∥ +

∥
∥Q2(u, v, w)

∥
∥ +

∥
∥Q3(u, v, w)

∥
∥
)

= m
∥
∥
(
Q1(u, v, w), Q2(u, v, w), Q3(u, v, w)

)∥
∥

= m
∥
∥Q(u, v, w)

∥
∥.

Thus Q(P) ⊂ P. So, we can easily show that Q : P → P is a completely continuous operator
by the Arzela–Ascoli theorem. �

If (u, v, w) ∈ P is a fixed point of operator Q, then (u, v, w) is a solution of problem (1)–(2).
So, we will investigate the existence of fixed points of operator Q.

First, for f s
0 , gs

0, hs
0f i∞, gi∞, hi∞ ∈ (0,∞) and positive numbers σ1,σ2,σ3 > 0 such that σ1 +

σ2 + σ3 = 1, we define the positive numbers L1, L2, L3, L4, L5 and L6 by

L1 = σ1

[

m2
∫

t∈I
G1(e, s)

(∫

t∈I
δ(τ )H1(τ , τ )f i

∞
dτ

τ

) 1
p–1 ds

s

]–1

,

L2 = σ1

[∫ e

1
G1(e, s)

(∫ e

1
H1(s, τ )f s

0
dτ

τ

) 1
p–1 ds

s

]–1

,

L3 = σ2

[

m2
∫

t∈I
G2(e, s)

(∫

t∈I
δ(τ )H2(τ , τ )gi

∞
dτ

τ

) 1
p–1 ds

s

]–1

,

L4 = σ2

[∫ e

1
G2(e, s)

(∫ e

1
H2(s, τ )gs

0
dτ

τ

) 1
p–1 ds

s

]–1

,

L5 = σ3

[

m2
∫

t∈I
G3(e, s)

(∫

t∈I
δ(τ )H3(τ , τ )hi

∞
dτ

τ

) 1
p–1 ds

s

]–1

,

L6 = σ3

[∫ e

1
G3(e, s)

(∫ e

1
H3(s, τ )hs

0
dτ

τ

) 1
p–1 ds

s

]–1

.

Theorem 4.2 Assume that (A1)–(A3) hold, σ1,σ2,σ3 > 0 with σ1 + σ2 + σ3 = 1.
(a) If f s

0 , gs
0, hs

0, f i∞, gi∞, hi∞ ∈ (0,∞), L1 < L2, L3 < L4 and L5 < L6, then for each
λ ∈ (L1, L2), μ ∈ (L3, L4) and υ ∈ (L5, L6) there exists a positive solution
(u(t), v(t), w(t)), t ∈ [1, e], for problem (1)–(2).

(b) If f s
0 = gs

0 = hs
0 = 0, f i∞, gi∞, hi∞ ∈ (0,∞), then for each λ ∈ (L1,∞), μ ∈ (L3,∞) and

υ ∈ (L5,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [1, e], for problem
(1)–(2).
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(c) If f s
0 , gs

0, hs
0 ∈ (0,∞), f i∞ = gi∞ = hi∞ = ∞ then for each λ ∈ (0, L2), μ ∈ (0, L4) and

υ ∈ (0, L6) there exists a positive solution (u(t), v(t), w(t)), t ∈ [1, e], for problem
(1)–(2).

(d) If f s
0 = gs

0 = hs
0 = 0, f i∞ = gi∞ = hi∞ = ∞, then for each λ ∈ (0,∞), μ ∈ (0,∞) and

υ ∈ (0,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [1, e], for problem
(1)–(2).

Proof Because the proofs of these cases are similar, in what follows we will prove two of
them, namely cases (a) and (b).

(a) For any λ ∈ (L1, L2), μ ∈ (L3, L4), υ ∈ (L5, L6) let ε > 0 be a positive number such that
0 < ε < min{f i∞, gi∞, hi∞} and

σ1

[

m2(f i
∞ – ε

) 1
p–1

∫

t∈I
G1(e, s)

(∫

t∈I
δ(τ )H1(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≤ λ,

σ1

[
(
f s
0 + ε

) 1
p–1

∫ e

1
G1(e, s)

(∫ e

1
H1(s, τ )

dτ

τ

) 1
p–1 ds

s

]–1

≥ λ,

σ2

[

m2(gi
∞ – ε

) 1
p–1

∫

t∈I
G2(e, s)

(∫

t∈I
δ(τ )H2(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≤ μ,

σ2

[
(
gs

0 + ε
) 1

p–1

∫ e

1
G2(e, s)

(∫ e

1
H2(s, τ )

dτ

τ

) 1
p–1 ds

s

]–1

≥ μ,

σ3

[

m2(hi
∞ – ε

) 1
p–1

∫

t∈I
G3(e, s)

(∫

t∈I
δ(τ )H3(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≤ υ,

σ3

[
(
hs

0 + ε
) 1

p–1

∫ e

1
G3(e, s)

(∫ e

1
H3(s, τ )

dτ

τ

) 1
p–1 ds

s

]–1

≥ υ.

By the definitions of f s
0 , gs

0 and hs
0 there exists R1 > 0 such that

f (t, u, v, w) ≤ (
f s
0 + ε

)
(u + v + w)p–1, t ∈ [1, e], 0 ≤ u + v + w ≤ R1,

g(t, u, v, w) ≤ (
gs

0 + ε
)
(u + v + w)p–1, t ∈ [1, e], 0 ≤ u + v + w ≤ R1,

h(t, u, v, w) ≤ (
hs

0 + ε
)
(u + v + w)p–1, t ∈ [1, e], 0 ≤ u + v + w ≤ R1.

Let (u, v, w) ∈ P with ‖(u, v, w)‖Y = R1 i.e. ‖u‖ + ‖v‖ + ‖w‖ = R1, then we have

Q1(u, v, w)(t) = λ

∫ e

1
G1(t, s)

(∫ e

1
H1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

≤ λ

∫ e

1
G1(e, s)

(∫ e

1
H1(s, τ )

(
f s
0 + ε

)(
u(τ ) + v(τ ) + w(τ )

)p–1 dτ

τ

) 1
p–1 ds

s

≤ λ
(
f s
0 + ε

) 1
p–1

∫ e

1
G1(e, s)

(∫ e

1
H1(s, τ )

(‖u‖ + ‖v‖ + ‖w‖)p–1 dτ

τ

) 1
p–1 ds

s

≤ σ1
∥
∥(u, v, w)

∥
∥

Y , for all t ∈ [1, e],
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Q2(u, v, w)(t) = μ

∫ e

1
G2(t, s)

(∫ e

1
H2(s, τ )g

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

≤ μ

∫ e

1
G2(e, s)

(∫ e

1
H2(s, τ )

(
gs

0 + ε
)(

u(τ ) + v(τ ) + w(τ )
)p–1 dτ

τ

) 1
p–1 ds

s

≤ μ
(
gs

0 + ε
) 1

p–1

∫ e

1
G2(e, s)

(∫ e

1
H2(s, τ )

(‖u‖ + ‖v‖ + ‖w‖)p–1 dτ

τ

) 1
p–1 ds

s

≤ σ2
∥
∥(u, v, w)

∥
∥

Y , for all t ∈ [1, e],

Q3(u, v, w)(t) = υ

∫ e

1
G3(t, s)

(∫ e

1
H3(s, τ )h

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

≤ υ

∫ e

1
G3(e, s)

(∫ e

1
H3(s, τ )

(
hs

0 + ε
)(

u(τ ) + v(τ ) + w(τ )
)p–1 dτ

τ

) 1
p–1 ds

s

≤ υ
(
hs

0 + ε
) 1

p–1

∫ e

1
G3(e, s)

(∫ e

1
H3(s, τ )

(‖u‖ + ‖v‖ + ‖w‖)p–1 dτ

τ

) 1
p–1 ds

s

≤ σ3
∥
∥(u, v, w)

∥
∥

Y , for all t ∈ [1, e].

Therefore,

∥
∥Q(u, v, w)

∥
∥

Y =
∥
∥
(
Q1(u, v, w), Q2(u, v, w), Q3(u, v, w)

)∥
∥

Y

=
∥
∥Q1(u, v, w)

∥
∥ +

∥
∥Q2(u, v, w)

∥
∥ +

∥
∥Q3(u, v, w)

∥
∥

≤ σ1
∥
∥(u, v, w)

∥
∥

Y + σ2
∥
∥(u, v, w)

∥
∥

Y + σ3
∥
∥(u, v, w)

∥
∥

Y

= (σ1 + σ2 + σ3)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y .

Hence, ‖Q(u, v, w)‖Y ≤ ‖(u, v, w)‖Y . Define the set

Ω1 =
{

(u, v, w) ∈ Y :
∥
∥(u, v, w)

∥
∥

Y < R1
}

,

then

∥
∥Q(u, v, w)

∥
∥

Y ≤ ∥
∥(u, v, w)

∥
∥

Y , for (u, v, w) ∈ P ∩ ∂Ω1. (10)

On the other hand, by the definitions of f i∞, gi∞ and hi∞, there exists R2 > 0 such that

f (t, u, v) ≥ (
f i
∞ – ε

)
(u + v + w)p–1, t ∈ I, u, v, w ≥ 0, u + v + w ≥ R2,

g(t, u, v) ≥ (
gi
∞ – ε

)
(u + v + w)p–1, t ∈ I, u, v, w ≥ 0, u + v + w ≥ R2,

h(t, u, v) ≥ (
hi

∞ – ε
)
(u + v + w)p–1, t ∈ I, u, v, w ≥ 0, u + v + w ≥ R2,

Let R2 = max{2R1, R2
m }. Choose (u, v, w) ∈ P with ‖(u, v, w)‖Y = R2. Then

min
t∈I

(
u(t) + v(t) + w(t)

) ≥ m
∥
∥(u, v, w)

∥
∥

Y = mR2 ≥ R2.
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Also we have

Q1(u, v, w)(t)

= λ

∫ e

1
G1(t, s)

(∫ e

1
H1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

≥ λm
∫

t∈I
G1(e, s)

(∫ e

1
H1(s, τ )

(
f i
∞ – ε

)(
u(τ ) + v(τ ) + w(τ )

)p–1 dτ

τ

) 1
p–1 ds

s

≥ λm2(f i
∞ – ε

) 1
p–1

∫

t∈I
G1(e, s)

(∫

t∈I
δ(τ )H1(τ , τ )

(∥
∥(u, v, w)

∥
∥

Y

)p–1 dτ

τ

) 1
p–1 ds

s

≥ σ1
∥
∥(u, v, w)

∥
∥

Y ,

Q2(u, v, w)(t)

= λ

∫ e

1
G2(t, s)

(∫ e

1
H2(s, τ )g

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

≥ μm
∫

t∈I
G2(e, s)

(∫ e

1
H2(s, τ )

(
gi
∞ – ε

)(
u(τ ) + v(τ ) + w(τ )

)p–1 dτ

τ

) 1
p–1 ds

s

≥ μm2(gi
∞ – ε

) 1
p–1

∫

t∈I
G2(e, s)

(∫

t∈I
δ(τ )H2(τ , τ )

(∥
∥(u, v, w)

∥
∥

Y

)p–1 dτ

τ

) 1
p–1 ds

s

≥ σ2
∥
∥(u, v, w)

∥
∥

Y ,

Q3(u, v, w)(t)

= λ

∫ e

1
G3(t, s)

(∫ e

1
H3(s, τ )h

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

≥ υm
∫

s∈I
G3(e, s)

(∫ e

1
H3(s, τ )

(
hi

∞ – ε
)(

u(τ ) + v(τ ) + w(τ )
)p–1 dτ

τ

) 1
p–1 ds

s

≥ υm2(hi
∞ – ε

) 1
p–1

∫

t∈I
G3(e, s)

(∫

τ∈I
δ(τ )H3(τ , τ )

(∥
∥(u, v, w)

∥
∥

Y

)p–1 dτ

τ

) 1
p–1 ds

s

≥ σ3
∥
∥(u, v, w)

∥
∥

Y .

Therefore,

∥
∥Q(u, v, w)

∥
∥

Y =
∥
∥
(
Q1(u, v, w), Q2(u, v, w), Q3(u, v, w)

)∥
∥

Y

=
∥
∥Q1(u, v, w)

∥
∥ +

∥
∥Q2(u, v, w)

∥
∥ +

∥
∥Q3(u, v, w)

∥
∥

≥ σ1
∥
∥(u, v, w)

∥
∥

Y + σ2
∥
∥(u, v, w)

∥
∥

Y + σ3
∥
∥(u, v, w)

∥
∥

Y

= (σ1 + σ2 + σ3)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y .

Hence, ‖Q(u, v, w)‖Y ≥ ‖(u, v, w)‖Y . Define the set

Ω2 =
{

(u, v, w) ∈ Y :
∥
∥(u, v, w)

∥
∥

Y < R2
}



Alesemi Boundary Value Problems        (2019) 2019:101 Page 16 of 23

then

∥
∥Q(u, v, w)

∥
∥

Y ≥ ∥
∥(u, v, w)

∥
∥

Y , for (u, v, w) ∈ P ∩ ∂Ω2. (11)

Therefore, by (10), (11) and Theorem 3.5, we conclude that Q has at least one fixed point
(u, v, w) ∈ P ∩ (Ω2 \ Ω1) with R1 ≤ ‖(u, v, w)‖Y ≤ R2.

(b) Let λ ∈ (L1,∞), μ ∈ (L3,∞), υ ∈ (L5,∞) and let ε > 0 be a positive number such that
ε < f i∞, ε < gi∞, ε < hi∞. We have

σ1

[

m2(f i
∞ – ε

) 1
p–1

∫

t∈I
G1(e, s)

(∫

t∈I
δ(τ )H1(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≤ λ,

σ2

[

m2(gi
∞ – ε

) 1
p–1

∫

t∈I
G2(e, s)

(∫

t∈I
δ(τ )H2(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≤ μ,

σ3

[

m2(hi
∞ – ε

) 1
p–1

∫

t∈I
G3(e, s)

(∫

t∈I
δ(τ )H3(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≤ υ,

ε ≤ σ1

λ

[∫ e

1
G1(e, s)

(∫ e

1
H1(s, τ )

dτ

τ

) 1
p–1 ds

s

]–1

,

ε ≤ σ2

μ

[∫ e

1
G2(e, s)

(∫ e

1
H2(s, τ )

dτ

τ

) 1
p–1 ds

s

]–1

,

ε ≤ σ3

υ

[∫ e

1
G3(e, s)

(∫ e

1
H3(s, τ )

dτ

τ

) 1
p–1 ds

s

]–1

.

By the definitions of f s
0 = 0, gs

0 = 0 and hs
0 = 0, there exists R1 > 0 such that

f (t, u, v, w) ≤ εp–1(u + v + w)p–1, 0 ≤ u + v + w ≤ R1,

g(t, u, v, w) ≤ εp–1(u + v + w)p–1, 0 ≤ u + v + w ≤ R1,

h(t, u, v, w) ≤ εp–1(u + v + w)p–1, 0 ≤ u + v + w ≤ R1.

Let (u, v, w) ∈ P with ‖(u, v, w)‖Y = R1 i.e. ‖u‖ + ‖v‖ + ‖w‖ = R1. Then we have

Q1(u, v, w)(t) = λ

∫ e

1
G1(t, s)

(∫ e

1
H1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

≤ λ

∫ e

1
G1(e, s)

(∫ e

1
H1(s, τ )εp–1(u(τ ) + v(τ ) + w(τ )

)p–1 dτ

τ

) 1
p–1 ds

s

≤ λε

∫ e

1
G1(e, s)

(∫ e

1
H1(s, τ )

(‖u‖ + ‖v‖ + ‖w‖)p–1 dτ

τ

) 1
p–1 ds

s

≤ σ1
∥
∥(u, v, w)

∥
∥

Y , for all t ∈ [1, e].

Hence, ‖Q1(u, v, w)‖ ≤ σ1‖(u, v, w)‖Y . In a similar manner, we conclude that

∥
∥Q2(u, v, w)

∥
∥ ≤ σ2

∥
∥(u, v, w)

∥
∥

Y ,
∥
∥Q3(u, v, w)

∥
∥ ≤ σ3

∥
∥(u, v, w)

∥
∥

Y .
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Therefore,

∥
∥Q(u, v, w)

∥
∥

Y =
∥
∥
(
Q1(u, v, w), Q2(u, v, w), Q3(u, v, w)

)∥
∥

Y

=
∥
∥Q1(u, v, w)

∥
∥ +

∥
∥Q2(u, v, w)

∥
∥ +

∥
∥Q3(u, v, w)

∥
∥

≤ σ1
∥
∥(u, v, w)

∥
∥

Y + σ2
∥
∥(u, v, w)

∥
∥

Y + σ3
∥
∥(u, v, w)

∥
∥

Y

= (σ1 + σ2 + σ3)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y .

Hence, ‖Q(u, v, w)‖Y ≤ ‖(u, v, w)‖Y . Define the set

Ω1 =
{

(u, v, w) ∈ Y :
∥
∥(u, v, w)

∥
∥

Y < R1
}

,

then

∥
∥Q(u, v, w)

∥
∥

Y ≤ ∥
∥(u, v, w)

∥
∥

Y , for (u, v, w) ∈ P ∩ ∂Ω1. (12)

By the definitions of f i∞, gi∞, hi∞ ∈ (0,∞), there exists R2 > 0 such that

f (t, u, v, w) ≥ (
f i
∞ – ε

)
(u + v + w)p–1, u + v + w ≥ R2,

g(t, u, v, w) ≥ (
gi
∞ – ε

)
(u + v + w)p–1, u + v + w ≥ R2,

h(t, u, v, w) ≥ (
hi

∞ – ε
)
(u + v + w)p–1, u + v + w ≥ R2.

Define the set

Ω2 =
{

(u, v, w) ∈ Y |∥∥(u, v, w)
∥
∥

Y < R2
}

and proceeding in a similar manner of proof (a), we get

∥
∥Q(u, v, w)

∥
∥

Y ≥ ∥
∥(u, v, w)

∥
∥

Y , for (u, v, w) ∈ P ∩ ∂Ω2. (13)

Therefore, by (12), (13) and Theorem 3.5, we conclude that Q has at least one fixed point
(u, v, w) ∈ P ∩ (Ω2 \ Ω1) with R1 ≤ ‖(u, v, w)‖Y ≤ R2. Similarly, we can prove the remain-
ing. �

Prior to our next result, we define the positive numbers M1, M2, M3, M4, M5 and M6 by

M1 = ρ1

[

m2(f i
0 – ε

) 1
p–1

∫

s∈I
G1(e, s)

(∫

τ∈I
δ(τ )H1(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

,

M2 = ρ1

[
(
f s
∞ + ε

) 1
p–1

∫ e

1
G1(e, s)

(∫ e

1
H1(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

,

M3 = ρ2

[

m2(gi
0 – ε

) 1
p–1

∫

s∈I
G2(e, s)

(∫

τ∈I
δ(τ )H2(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

,

M4 = ρ2

[
(
gs
∞ + ε

) 1
p–1

∫ e

1
G2(e, s)

(∫ e

1
H2(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

,
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M5 = ρ3

[

m2(hi
0 – ε

) 1
p–1

∫

s∈I
G3(e, s)

(∫

τ∈I
δ(τ )H3(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

,

M6 = ρ3

[
(
hs

∞ + ε
) 1

p–1

∫ e

1
G3(e, s)

(∫ e

1
H3(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

,

where ρ1,ρ2,ρ3 > 0 are three positive numbers with ρ1 + ρ2 + ρ3 = 1.

Theorem 4.3 Assume that the conditions (A1)–(A3) hold.
(a) If f i

0 , gi
0, hi

0f s∞, gs∞, hs∞ ∈ (0,∞), M1 < M2, M3 < M4 and M5 < M6 then for each
λ ∈ (M1, M2), μ ∈ (M3, M4) and υ ∈ (M5, M6) there exists a positive solution
(u(t), v(t), w(t)), t ∈ [1, e], for problem (1)–(2).

(b) If f s∞ = gs∞ = hs∞ = 0, f i
0 , gi

0, hi
0 ∈ (0,∞), then for each λ ∈ (M1,∞), μ ∈ (M3,∞) and

υ ∈ (M5,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [1, e], for problem
(1)–(2).

(c) If f s∞, gs∞, hs∞ ∈ (0,∞), f i
0 = gi

0 = hi
0 = ∞ then for each λ ∈ (0, M2), μ ∈ (0, M4) and

υ ∈ (0, M6) there exists a positive solution (u(t), v(t), w(t)), t ∈ [1, e], for problem
(1)–(2).

(d) If f s∞ = gs∞ = hs∞ = 0, f i
0 = gi

0 = hi
0 = ∞, then for each λ ∈ (0,∞), μ ∈ (0,∞) and

υ ∈ (0,∞) there exists a positive solution (u(t), v(t), w(t)), t ∈ [1, e], for problem
(1)–(2).

Proof (a) For any λ ∈ (M1, M2), μ ∈ (M3, M4), υ ∈ (M5, M6), there exists 0 < ε < min{f i
0 ,

gi
0, hi

0} such that

ρ1

[

m2(f i
0 – ε

) 1
p–1

∫

s∈I
G1(e, s)

(∫

τ∈I
δ(τ )H1(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≤ λ,

ρ1

[
(
f s
∞ + ε

) 1
p–1

∫ e

1
G1(e, s)

(∫ e

1
H1(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≥ λ,

ρ2

[

m2(gi
0 – ε

) 1
p–1

∫

s∈I
G2(e, s)

(∫

τ∈I
δ(τ )H2(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≤ μ,

ρ2

[
(
gs
∞ + ε

) 1
p–1

∫ e

1
G2(e, s)

(∫ e

1
H2(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≥ μ,

ρ3

[

m2(hi
0 – ε

) 1
p–1

∫

s∈I
G3(e, s)

(∫

τ∈I
δ(τ )H3(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≤ υ,

ρ3

[
(
hs

∞ + ε
) 1

p–1

∫ e

1
G3(e, s)

(∫ e

1
H3(τ , τ )

dτ

τ

) 1
p–1 ds

s

]–1

≥ υ.

By the definitions of f i
0 , gi

0 ∈ (0,∞) and hi
0 ∈ (0,∞), we deduce that there exists R3 > 0

such that

f (t, u, v, w) ≥ (
f i
0 – ε

)
(u + v + w)p–1, t ∈ I, u, v, w ≥ 0, u + v + w ≤ R3,

g(t, u, v, w) ≥ (
gi

0 – ε
)
(u + v + w)p–1, t ∈ I, u, v, w ≥ 0, u + v + w ≤ R3,

h(t, u, v, w) ≥ (
hi

0 – ε
)
(u + v + w)p–1, t ∈ I, u, v, w ≥ 0, u + v + w ≤ R3.
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Let (u, v, w) ∈ P with ‖(u, v, w)‖Y = R3, that is, ‖u‖ + ‖v‖ + ‖w‖ = R3. Because u(t) + v(t) +
w(t) ≤ ‖u‖ + ‖v‖ + ‖w‖ = R3 for all t ∈ [1.e], we have

Q1(u, v, w)(t)

= λ

∫ e

1
G1(t, s)

(∫ e

1
H1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

≥ λm
∫

s∈I
G1(e, s)

(∫

τ∈I
δ1(τ )H1(τ , τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

) 1
p–1 ds

s

≥ λm
∫

s∈I
G1(e, s)

(∫

τ∈I
H1(τ , τ )

(
f i
0 – ε

)(
u(τ ) + v(τ ) + w(τ )

)p–1 dτ

τ

) 1
p–1 ds

s

≥ λm2(f i
0 – ε

) 1
p–1

∫

s∈I
G1(e, s)

(∫

τ∈I
δ(τ )H1(τ , τ )

dτ

τ

) 1
p–1 ds

s
(‖u‖ + ‖v‖ + ‖w‖)

≥ ρ1
∥
∥(u, v, w)

∥
∥.

Hence, ‖Q1(u, v, w)‖ ≥ ρ1‖(u, v, w)‖. In a similar manner, we conclude that ‖Q2(u, v, w)‖ ≥
ρ2‖(u, v, w)‖, ‖Q3(u, v, w)‖ ≥ ρ3‖(u, v, w)‖. Therefore,

∥
∥Q(u, v, w)

∥
∥

Y =
∥
∥
(
Q1(u, v, w), Q2(u, v, w), Q3(u, v, w)

)∥
∥

Y

=
∥
∥Q1(u, v, w)

∥
∥ +

∥
∥Q2(u, v, w)

∥
∥ +

∥
∥Q3(u, v, w)

∥
∥

≥ ρ1
∥
∥(u, v, w)

∥
∥

Y + ρ2
∥
∥(u, v, w)

∥
∥

Y + ρ3
∥
∥(u, v, w)

∥
∥

Y

= (ρ1 + ρ2 + ρ3)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y .

Hence, ‖Q(u, v, w)‖Y ≥ ‖(u, v, w)‖Y . Define the set

Ω3 =
{

(u, v, w) ∈ Y :
∥
∥(u, v, w)

∥
∥

Y < R3
}

,

then

∥
∥Q(u, v, w)

∥
∥

Y ≥ ∥
∥(u, v, w)

∥
∥

Y , for (u, v, w) ∈ P ∩ ∂Ω3. (14)

On the other hand, we define f �, g�.h� : [1, e] ×R
+ ×R

+ ×R
+ →R

+ as follows:

f �(t, x) = max
0≤u+v+w≤x

f (t, u, v, w),

g�(t, x) = max
0≤u+v+w≤x

g(t, u, v),

h�(t, x) = max
0≤u+v+w≤x

h(t, u, v), for all x ∈R
+.

Then

f (t, u, v, w) ≤ f �(t, x), g(t, u, v, w) ≤ g�(t, x), h(t, u, v, w) ≤ h�(t, x), u + v + w ≤ x.
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It follows that the functions f �, g�, h� are nondecreasing and satisfy the conditions

lim sup
x→+∞

max
t∈[1,e]

f �(t, x)
xp–1 ≤ f s

∞,

lim sup
x→+∞

max
t∈[1,e]

g�(t, x)
xp–1 ≤ gs

∞,

lim sup
x→+∞

max
t∈[1,e]

h�(t, x)
xp–1 ≤ hs

∞.

Next, by the definitions of f s∞, gs∞, hs∞ ∈ (0,∞), there exists R4 > 0 such that, for any t ∈
[1, e], x ≥ R4, we have

f �(t, x) ≤ (
f s
∞ + ε

)
xp–1, g�(t, x) ≤ (

gs
∞ + ε

)
xp–1,

h�(t, x) ≤ (
hs

∞ + ε
)
xp–1, x ≥ R4.

Let R4 = max{2R3, R4} and Ω4 = {(u, v, w) ∈ Y : ‖(u, v, w)‖Y < R4}. For any (u, v, w) ∈ P∩∂Ω4

and t ∈ [1, e], we have

f
(
t, u(t), v(t), w(t)

) ≤ f �
(
t,

∥
∥(u, v, w)

∥
∥

Y

)
, t ∈ [1, e],

g
(
t, u(t), v(t), w(t)

) ≤ g�
(
t,

∥
∥(u, v, w)

∥
∥

Y

)
, t ∈ [1, e],

h
(
t, u(t), v(t), w(t)

) ≤ h�
(
t,

∥
∥(u, v, w)

∥
∥

Y

)
, t ∈ [1, e],

then

Q1(u, v)(t) ≤ λ

∫ e

1
G1(e, s)

(∫ e

1
H1(s, τ )f �

(
τ ,

∥
∥(u, v, w)

∥
∥

Y

)dτ

τ

) 1
p–1 ds

s

≤ λ

∫ e

1
G1(e, s)

(∫ e

1
H1(τ , τ )

(
f s
∞ + ε

)(∥
∥(u, v, w)

∥
∥

Y

)p–1 dτ

τ

) 1
p–1 ds

s

= λ
(
f s
∞ + ε

) 1
p–1

∫ e

1
G1(e, s)

(∫ e

1
H1(τ , τ )

dτ

τ

) 1
p–1 ds

s
∥
∥(u, v, w)

∥
∥

Y

≤ ρ1
∥
∥(u, v, w)

∥
∥

Y ,

so ‖Q1(u, v, w)‖ ≤ ρ1‖(u, v, w)‖Y , (u, v, w) ∈ P ∩ ∂Ω4. In a similar manner, we deduce
‖Q2(u, v, w)‖ ≤ ρ2‖(u, v, w)‖Y , ‖Q3(u, v, w)‖ ≤ ρ3‖(u, v, w)‖Y . Therefore,

∥
∥Q(u, v, w)

∥
∥

Y =
∥
∥
(
Q1(u, v, w), Q2(u, v, w), Q3(u, v, w)

)∥
∥

Y

=
∥
∥Q1(u, v, w)

∥
∥ +

∥
∥Q2(u, v, w)

∥
∥ +

∥
∥Q3(u, v, w)

∥
∥

≤ ρ1
∥
∥(u, v, w)

∥
∥

Y + ρ2
∥
∥(u, v, w)

∥
∥

Y + ρ3
∥
∥(u, v, w)

∥
∥

Y

= (ρ1 + ρ2 + ρ3)
∥
∥(u, v, w)

∥
∥

Y

=
∥
∥(u, v, w)

∥
∥

Y .

Hence, ‖Q(u, v, w)‖Y ≤ ‖(u, v, w)‖Y . Define the set

Ω4 =
{

(u, v, w) ∈ Y :
∥
∥(u, v, w)

∥
∥

Y < R4
}

,
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then

∥
∥Q(u, v, w)

∥
∥

Y ≤ ∥
∥(u, v, w)

∥
∥

Y , for (u, v, w) ∈ P ∩ ∂Ω4. (15)

Therefore, by (14), (15) and Theorem 3.5, we conclude that Q has at least one fixed point
(u, v, w) ∈ P ∩ (Ω4 \ Ω3) with R3 ≤ ‖(u, v, w)‖Y ≤ R4. The proofs of the cases (b)–(d) are
similar to that of (a) and we shall omit them. �

5 Example
Let us consider an example to illustrate the above result.

Here n = m = l = 3, α1 = α2 = α3 = 5
2 , β1 = β2 = β3 = 3

2 , p1 = q1 = r1 = 5
4 , p2 = q2 = r2 = 1

2 ,
μ1 = 1

2 , λ1 = 1
3 , ξ = 3

2 . Let p = 2, we consider the Hadamard fractional differential equations

⎧
⎪⎪⎨

⎪⎪⎩

HD3/2
1+ (φp(HD5/2

1+ u(t))) = λp–1f (t, u(t), v(t), w(t)), t ∈ (1, e),
HD3/2

1+ (φp(HD5/2
1+ v(t))) = μp–1g(t, u(t), v(t), w(t)), t ∈ (1, e),

HD3/2
1+ (φp(HD5/2

1+ w(t))) = υp–1h(t, u(t), v(t), w(t)), t ∈ (1, e),

(16)

with the three-point boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(1) = u′(1) = 0, (1/2)u5/4(e) = (1/3)u5/4(3/2),

φp(HD5/2
1+ u(1)) = 0 = (HD1/2

1+ (φp(HD5/2
1+ u(e)))),

v(1) = v′(1) = 0, (1/2)v5/4(e) = (1/3)v5/4(3/2),

φp(HD5/2
1+ v(1)) = 0 = (HD1/2

1+ (φp(HD5/2
1+ v(e)))),

w(1) = w′(1) = 0, (1/2)w5/4(e) = (1/3)w5/4(3/2),

φp(HD5/2
1+ w(1)) = 0 = (HD1/2

1+ (φp(HD5/2
1+ w(e)))),

(17)

where

f (t, u, v, w) =
(ln t + 1)[800(u + v + w) + 1](u + v + w)(4 + sin v)

u + v + w + 1
,

g(t, u, v, w) =
(
√

ln t + 1)[400(u + v + w) + 1](u + v + w)(3 + cos w)
u + v + w + 1

,

h(t, u, v, w) =
(ln t + 2)[200(u + v + w) + 1](u + v + w)(2 + sin u)

u + v + w + 1
.

After simple calculations, we get

f s
0 = 8, f i

0 = 5, f s
∞ = 8000, f i

∞ = 3000,

gs
0 = 5.6569, gi

0 = 4.4722, gs
∞ = 37085, gi

∞ = 894.43,

hs
0 = 6, hi

0 = 4.5, hs
∞ = 1800, hi

∞ = 450, m = 0.125,

L1 = 0.05903556919σ1, L2 = 0.1282828756σ1, L3 = 0.08446316582σ2,

L4 = 0.1195672885σ2, L5 = 0.094532722σ3, L6 = 0.1076892453σ3,

where σ1,σ2,σ3 > 0 are three positive real numbers such that σ1 + σ2 + σ3 = 1.
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Employing Theorem 4.2 of (a), for each λ ∈ (L1, L2), μ ∈ (L3, L4) and υ ∈ (L5, L6), there
exists a positive solution (u(t), v(t), w(t)) of the Hadamard fractional differential equation
(16)–(17).
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