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Abstract

In this paper, a linear, stabilized, non-spatial iterative, partitioned time stepping
method is developed and studied for the nonlinear Navier-Stokes/Navier-Stokes
interaction. A backward Euler scheme is utilized for the temporal discretization while
a linear Oseen scheme for the trilinear term is used to affect the spatial discretization
approximated by the equal order elements. Therefore, we only solve a linear Stokes
problem without spatial iterative per time step for each individual domain. Then, the
method exploits properties of the Navier-Stokes/Navier-Stokes system to establish
the stability and convergence by rigorous analysis. Finally, numerical experiments are
presented to show the performance of the proposed method.

MSC: 35Q10; 65N30; 76D05

Keywords: Partitioned time stepping methods; Fluid—fluid interface; Navier-Stokes
equations; Convergence; Numerical experiments

1 Introduction

The Navier—Stokes equations are useful because they describe the physics of many realistic
problems of academic and industrial interest. They may be used to model weather, ocean
currents, water flow, and many other phenomena. Many important applications need an
accurate solution of multi-domain, multi-physics coupling of one fluid with another (e.g.,
the Navier—Stokes with the Navier—Stokes problems) (3, 4, 31, 32]. The uncoupled meth-
ods for two fluids are coupled through their shared interface by a rigid-lid coupling con-
dition, i.e., no penetration and a slip with a friction condition allowing a jump in the tan-
gential velocities across the shared interface [12]. Physics-based uncoupled methods are
different from the traditional ones in the sense that they focus on decomposing different
physical domains by directly using the given physical interface conditions, which is the
key idea of the method proposed in this paper. Moreover, these methods allow existing
highly optimized codes for each subproblem to be used in parallel as black boxes at each
time step to solve the coupled problem.

Efficient stabilized finite element methods have been widely used in scientific computa-
tion to achieve high accuracy for the Navier—Stokes equations approximated by the equal
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order elements in practice. While these methods have been shown to be very successful,
the theory ensuring their convergence and advantages for a coupled problem is still un-
der development. Recently, some results have been obtained for partitioned time stepping
methods for the fluid—fluid interaction by using the finite element methods [12, 13, 25]. In
this paper, we shall follow the state-of-the-art convergence theory by using the geometric
averaging at three time levels of the slip velocity at the interface to compute a friction co-
efficient and further establish stability and convergence of the presented method for the
coupled fluid—fluid model. We stress that the extension of the general convergence theory
to the partitioned time stepping method for the Navier—Stokes/Navier—Stokes interaction
is derived from that in [12]. Here, in order to ensure the balance between the spatial and
temporal computing allocation, an unconditional stable backward Euler scheme is utilized
for the temporal discretization while the linear Oseen scheme is applied for the trilinear
term with a non-spatial iterative correction per time step. The method presented results
in a better coeflicient matrix of the form (a;)nxn = v(V;, V@) + ((C - V)¢, @), improving
the model presented with small viscosity [16, 17]. However, the difficulty for the numeri-
cal analysis arises from the trilinear term and the whole system for the presented discrete
finite element scheme.

The rest of paper is organized as follows. In Sect. 2, we introduce the fluid—fluid model
using two Navier—Stokes problems. In Sect. 3, the stability of the Navier—Stokes/Navier—
Stokes interaction model is analyzed. In Sect. 4, the convergence of the presented method
is analyzed. Finally, we present several numerical examples to illustrate the features of the

proposed method in Sect. 5.

2 Preliminary
A coupled Navier—Stokes/Navier—Stokes problem is stated as follows:

Ui —vildu;+u; - Vu; + Vp; = f;  in £2;, (1)
—vini - V- T = klu; —wl(u; —u;) - T onl, (2)
u;-n;=0 onl, ®3)
V.u;=0 in £, (4)
u;(x,0) = u?(x) in £2;, (5)
u;=0 onl;=08;\1 (6)

Here, i,j=1,2,i #j. Let the domain £2 = £2; U £2; consist of two subdomains £2; and 2, of
R4, d = 2,3, with the outward unit normal vectors #; and 1, respectively, coupled across
the interface 1. The viscosity v; > 0, the body force f; : [0, T]— H'(£2;), and the parameter
k € Rare given, i = 1,2. Also, u; : £2; x [0, T]—R? and p; : £2; x [0, T]— R represent velocity
and pressure on the subdomains £2;, respectively, i = 1,2.

For the mathematical problem (1)—(6), the following Hilbert spaces are introduced [1]:

X = {Vi € [Hl(.Qi)]d:vi=Oon1}andw-ni=Oon1},

M; = {ql‘GLZ(Ql’)I/ qldeO}
2;
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Multiplying (1) by v; € X; and (4) by g; € M;, integrating and applying the divergence the-
orem, the above coupled problem is equivalent to finding (u;, p;) € (X;, M;) such that

(i, vi) + alui, vi) — d(vi, pi) + bluiy uiy vi) + & /I [u]|[u]v;ds = (f, vi),
! (7)
d(ui’qi) = 01 V(Vi) 611) € (XirMi))

where [-] denotes the jump of the indicated quantity across the interface I: [u] = u; — u;

and

du; .
Uiy vi) = . a_tlvi dx, i=1,2.

The continuous bilinear forms a(-, ) and d(-, -) are defined on X; x X; and X; x M, respec-
tively, by
ﬂ(ui’ Vi) = vi(vui, VVZ'), u;Vv; € Xi’

dvi,qi) =-vi, Vq:) = ([divvi, qi),  vi € Xi,qi € M;.
These bilinear terms satisfy the following continuity and inf-sup properties:

|a(ui, vi)| < vIIVuilloll Villo,

|d(vi,pi)| < ClIVvillollpillo,

|d(vir %)
viex; IVvillo

= Bligillo  Vqi € Mi, >0,

where the positive constants C and 8 only depend on £2. Similarly, by using the divergence
theorem, (3) and (6), the trilinear term b(, -,-) can be defined as follows [36]:

1 1
b(ui,vi, w;) = E(ui Vv, w) + 5((diV wi)vi W;)

1 1
= 5(”1’ Vv, w;) - 5(”1’ “Vw,vi),  upvi,w; € X;. )
Obviously, the trilinear term b(:, -, -) satisfies the following skew-symmetry property [36]:
b(ui, vi, wi) = =b(u;, wi, v;).

A realistic model would contain many more complex terms. Here, we mainly focus on an
algorithmic issue so we assume that the solution of (1)—(6) to be approximated is a strong

solution. Moreover, the energetic stability of the monolithic problem is valid:

2

1d 9 2 3 2
Z(wnmno + vi||vMi||0) +K/I![u]! ds = ;(ﬂ,m (10)

i=1
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3 Stabilizations for Galerkin approximations

Given a respective shape-regular and conforming triangulation 7, of £2;, the finite ele-
ment method is to solve (7) in two pairs of finite dimensional spaces (Xl-h,Mf’) C (X;, M)
[9, 11, 15, 36].

Stabilization of the Stokes’ problem using local pressure projections dates back to the
papers of Silvester [33, 34], Brecker and Braack [2], Brezzi and Fortin [6], Brezzi and Pitki-
ranta [7], Dohrmann and Bochev [14], Connors [23] and [8]. They provide a wide theoret-
ical framework for these methods. The aim of the section is to give an elementary applica-
tion in the spirit of these papers for a class of pressure projection method with equal order
distribution for both velocity and pressure, which are computationally convenient and ef-
ficient in a parallel and multigrid context. Then, the unstable velocity—pressure pairs of
the equal-order finite elements are defined as follows [22, 2629, 38]:

X = {vp € X vyl € [RAK)] VK € Ky),

M} ={qn e M:qulx € R,(K),YK €K}, r=1,2.

In order to analyze the stabilzation of the Galerkin approximations for the Navier—
Stokes/Navier—Stokes interaction, we assume that 7 denotes the interpolation operator
from the richer space Mj, into the smaller space M, C My, such that X, x M, satisfies the
inf-sup condition and div Xj, C Mj,.

Lemma 3.1 It holds that

dl,q"
up M N Guz(q;«,qf) > Bo ||6Ifq

3 q eM,
srext 1VVillo

0’

where the positive constant By only depends on §2 and the stabilized term G(-,-) is defined

as follows:

”qlh—niqf’ 0’ r=1 (11)

||hV(qlh - mqf’) r=2.

G(qhq!) ~

0’

Proof For a bounded Lipschitz connected domain §2 and for any p/ € L%(£2), there exist a
positive constant Cy > 0 and v; € [H*(£2;)] satisfying

divv; = p!
such that

vill: < Colp! |,
and

[t o= d(vip).
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Then, there exists a linear operator ﬁl.h : [H'(£2;)]* — X, such that the orthogonality rela-
tion holds [5, 10]:

(vi-7lviqn) =0, Yau € My, (12)

[V#villy < Cllvilh <GB

”o (13)

where C; only depends on §2. Noting that div 77,v € M), and thus d(ﬁhv,pih - m,pf) =0,and
using the definition of 77, we obtain

|21 = d(vip)

~ h ho h ~ W h
Vi—TpVipp; —T; Pi) + d(ﬂhVirﬂi PL')

d
d
d

(
(vip} - mipt) + d(vi,mip})
(
(

Vi — ﬁhv,-,pf‘ - nihpf’) + d(ﬁihvi,pf'), (14)
where

d(vi — v, pl - ml'pl) < C|lpl = 7lpl | Ivilla

= Gl/z(pt’pt)”pz (15)
and
d(vi~lvipl = n!pl) = ~(V(p! ~nlpl)vi—7lv)
< Ch|V (g} = =!p}) [ ylIvill
= Gl/z(pl’pt)”pl “0’ r=2.
Therefore,

d(Vzhfqlh) 2(,h A7 viq?)
sup ——~*2L 4+ G hoph) > SD0Ei | G2 (h
sext 19V 1o #p) = [z, + € eP)

> ol

For more details, the result related to the well-posedness of the Navier—Stokes/Navier—
Stokes interaction can be found in [12, 13, 18, 20, 30, 37]. O

4 Stability
In this section, we are now in a position to state a discrete finite element scheme. We let
(u}, p}) = (u}),p},), i = 1,2, denote a discrete approximation to u;(t"), where the discrete
time ¢" is calculated from the uniform time step size t = T/N by t" =nt,n=0,1,...,N.
From the point of view of implementation, the method presented consists of several
subroutines for solving the nonlinear fluid—fluid interaction. First, the first guess u? can be
defined by (5). Then, we solve the Stokes equations approximated by the lower order finite
element pairs to obtain the second initial datum ull Furthermore, the following solution
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uf‘*l, n=0,1,2,..., can be obtained by the following equations (16) and (17). For the nu-
merical treatment of the time derivative term, we use the fully discrete backward Euler ap-
proximation. As for the partitioned scheme, we apply the Oseen scheme with a non-spatial
iterative correction to simplify the trilinear term per time step and further obtain a better
stiffness matrix. Especially, recalling the standard geometric averaging of the jump in [12,
13], we replace the term u”*l |+t — ”+1| by |u} -] |u*! and ul|uf - u}’l”zlu;"l - u;"l |1/2
in order to decouple the ﬂu1d fluid interaction, wh1ch is also a key idea to obtain the un-
conditionally stable partitioning.

The linear, stabilized, non-spatial iterative, partitioned time stepping method is defined
as follows:

Step L. Find (u},p}) € X x M satisfying the following Stokes equations:

a(u},vi) —d(vip}) +d(u},q:) + Gpj,q:) = (F.vi) Y(vigi) € X! x MY

Moreover, set the iterative step m = 1,2,..., the error of two successive solutions

¢ = \/(”zm —u )+ (- pr ) <o

with a sufficiently small iterative tolerance ¢ > 0.
Step IL. Solve the Navier—Stokes/Navier—Stokes interaction: Given t >0, f; € [H™1(£2;)]*
=1,2), find (U, p*t) € XI' x M? such that

n+l _ n
I o m) —d(n ) + dle™ ) + 6o )

+b1(u1,u'1’+1,v1) +l</|[ ”] '”lvl ds—k /| 1/2 | 1]|1/2u§’ vids

= (ﬁ(tn+1); Vl)) V(Vl,m) € X{q X Milr (16)

and (', ps*t) € X2 x MY such that

(uEHI Mg; VZ)

T

+b2(u2, ”*1,1/2 +kf| {ug”vzds—k/| 1/2 u” 1]|1/2 " . vy ds

ra(uy™vs) —d(va,py™) +d(u3", 42) + G(p3", 42)

= (L(E"),vs) Y(vaqo) € X) x M. (17)

This, of course, dictates that the overall structure of the linear, stablized, non-spatial
iterative, partition time step method will be much the same as for a standard finite el-
ement method, as described in [12]. The key point of the presented method is to use a
linear, non-spatial iterative, partitioned time stepping method for the nonlinear Navier—
Stokes/Navier—Stokes interaction model.

Routine:

(1)), p})] = Stokes(7y.f);
fori=0,1,2,...,T/dt;
while (e, > ¢) do
(”hm:ph )—>( :ph );
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[l/lhm;th] = LNS(E; uhm—l’f);
end while
end for
In this section, we aim to establish a result concerning the unconditional stability of the

scheme (16)—(17).

Lemma4.1 Letu!,i=1,2,n=1,2,...,m, bethe solutions of equations (16) and (17). Then
we have the following energy inequality:

m m
TS DR FERD (A N FRRM A

n=1
n n+1|2 n+l|2
et I o g ) s
= Hu1||§+f<ff|[u°]|(}ui|2+ ju3|) ds

3 (EBE A1) a9

where u!' = (i}, ull) with the norm ||0"||o = (Y=, lu?[2)"2.

Proof Noting that
b(u,u*t, u*t) =0,

we start by testing (16) and (17) with (v;,¢;) = 2(tul"*!, p!*1), respectively, to obtain

2(u(1+1 L[ un+1)+2VZT||VMM+1”0+2G(pn+1 n+l)

12

+2/<r</|uf’+1| |ds—/| 1/2 ! muf’ﬂ u"”ds)

=2t (fi(¢"), ul™) Y(viq) e X! x Mli=1,2, (19)
where 3 = u; when the index is out of bounds. Using the identity
2a—-b,a)=a*+ (a-b)*-b? (20)
and combing with (19) with i = 1,2, we obtain the following result:
Pl -+ 2 | Va2 2vae Vi

+2KTZ</} n+1| | |ds—/| 1/2 a’ 1 1/2M:4+1 n+1ds>

+2G( 7n+1 p:ﬁl)

i

u

2

=2t Z(ﬁ(t”“),uf’*l), (21)

i=1
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where

<f| n+1| ‘ ’ds—/| 1/2 e 1/2u:“+1 u”*lds)
=5 [l P ds= 5 [l Pl as

I e e
2

Z (ﬁ (tn+1)’ ulml)

i=1

2T (22)

2
=20y Y IAE ) o Vel
i=1

- 2, v’ 1
=3 (eulvar o+ e ;)

i=1

where the positive constant is derived from the Poincaré inequality. Then, substituting
these into (21), we infer that

o g a1 w97 e 97

et [l [ g [ ds— o [+ g} ) ds
1 1

2
e ol [a) o

2 n+1 2
Ifi(t
=ey O @)
Vi
i=1
Summing over n = 1,2,...,m yields the desired result. g

5 Convergence

In this section, we consider the convergence of the presented method for the Navier—
Stokes/Navier—Stokes interaction. First, we provide the discrete Gronwall’s inequality [21,
24], which will be useful in the subsequent analysis.

Let a™t, b™*1, ¢"*1, @1 and D", n = 0,1,2,..., m, be five nonnegative sequences satis-

fying

m m m m
Ly Zb’”l +T Zc”“ <C+GCyt ZD”“a”” +CstT Zd"“. (24)
n=0

n=0 n=0 n=0

Then we have the following result:

y Zb’”l +T Zc”“ <exp (Czt Za””) <C1 +CsT Zd”“), (25)
n=0

n=0 n=0 n=0
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where

Dn+1
- 1 - tDn+l :

n+l

In order to analyze convergence of the partitioned time stepping methods for the
fluid—fluid interaction, we introduce the following Stokes projection by finding (R (v;, q.),
Qu(vi,q)) € X" x M" such that

a(vi — Ru(vi» i), vir) — d(vi, @i — Qu(vi @) + d(vi — Ru(vi, q), qn) =
(Vi qn) € X' x M, (26)

which is well-defined and satisfies the following optimal approximation property:

|vi = Ru(vingi) |, + 1 (| V (vi = Ruvisa)) || + | — Qu(virg)| )

< CH(Ivilla + llgill),  i=1,2. 27)
Theorem 5.1 Assume that the initial data u and u! satisfy the following estimate:
[V (@) =)o+ [V (i) =) [ = Chi= 1,2 (28)

Moreover, the time step T satisfies the relation v < 1/D"! with D" defined by (43) be-
low. Let (w;,p;) and (u!**,p"?') be the solutions of (1)-(6) and (16)—(17), respectively,
with u; € L*>([0, T], H*(£2,)) N X;), p; € L*([0, T, H(£2;)) N M), u;; € L*([0, T), X;) and u; s €
L*([0, T1,L*(£2;)). Then it holds that

m

2l () - g+ [V (a7 — ) )
n=0
<C(z*+h”), r=12 (29)

where C denotes a positive constant depending on the data (v;, 2, u;, pi,fi), i = 1,2, which
may stand for different values at different occurrences.

Proof Here, we analyze convergence on each subdomain independently. For convenience,
we set (€] r/ (Ryu; (t) u’ Qupi(t) p/) and E’ = u;()) — Ryu;(¥). First, using the Stokes
projection, we subtract (16) or (17) from (7) with (v;, q;) = (¢/*1,n/*!) € Xih X Mlh to obtain

u: tn+1 Mr'z+l —y"
( zgt )_( i . l),C:Hl) +61(€?+1 n+l)+2G( n+1 ln+1)

+ b(ui(tm-l)’ui(tn+l),el(t+l) _ b(u un+l en+1)

£M?|[un]|l/2|[un—1]|l/2 . e;q+1 dS— /uj(tn+l)|[u(tn+1)]| . e:1+1 dS)
=2G(pi(¢*), mi), (30)

Page 9 of 19
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wherei=1,j=2ori=2,j=1. We analyze each term in the above equality. Note that

(8ui(t”*1) ~ (M;ﬁl _ uf’) en+1)
&

at T
= () ) = () =)o) = () = (7))
(aui(ttﬂl) n+1>
" o i

i i'%i

S (B B v (e o) - (RS,
T T

(Y (41 (41 .
where (RHS"*,v) = (e’ z wt _ au’gt ) v,),i=1,2. Also, we see that

(B — e < meE?” B, e Ve (31)
1
(RS i) = 5 | RS} 12, + 2w VeI, (32)
where ¢; > 0, i = 1,2. For the trilinear terms, it is easy to see that
b(u[(t”“),ui(t””),e;’”) - b(u?, uf’”,e;”l)
= b(ui(t”*l) - ui(t”),ui(t””),e?”) + b(El-”, ui(t””),ef”)
+ b(e;’, ui(twrl)’e;ul) _ b(u;’,ui(t””) _ u;ﬂl’elml)
:[1 +12 +13 +14. (33)

To estimate these trilinear terms, using a classical result in [36], we see that

1 = 9 ) - (@D o9 ) || 94,

Va9 () - (@) |

< &3v; ||Ve;“1 Hé + e,
1

Applying the Young inequality and the skew-symmetry of the trilinear term yields that

o ol = BB () )~ (a EE )

= ([vatlo + Vi@ D) IVE o + [VE o) [Ver o

lo

C

< ean| Ver g+ (| Vup o + [ Ve (e ) o) (I g + 12 o)-

484Vi
For the third term I3, using the following inequality [20]:

3-1d-2 3+1d-2)

)
ol = Cligll Vel V¢ € Xi,d =2,3, (34)
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and applying the Young inequality and the Cauchy—Schwarz inequality, we have

1/2
0

1/2

5] = Clléf| 0

[Verlo ™ Ivu(e ) o[ Vel

< esu| Ve[ [+ Cllef [ Ve o Vaur(e*) [

< esui| Vel o+ sovil| Vel [+ Cllef o | Vau(e™!) [
ford =2, and

1 = Cler [ v |2 9|

0 0 H Ve “ 0

0

[ver o Vel g

1/2

< esv| Vel g + Cllef g

< esui]| Ve o + eovil Vel [ + Cler o V(") I
ford=3.

Setting

1

[[u(e )]} = 5 (@] + |[u()]
)

),

n-1

o] = 2 (ju| + [
and using the same approach as in [12], we get

O e | G Ry P S (R

= [ )] - [fae)]) e ds

e )@ - 2] - ds

[ Pae)]] - [w]) -eds

e e et se [ifler s
< [ue)(aE )] - [l - dss [u(er ) [E]] -t s
[t -4t as
e et se [if]fler s (35)

Noting that

1wl = [w( ]|

(I[w(e) = (@ )]+ [[u() - a@E@)]), (36)

Page 11 of 19
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and

LI o= 1 = L]l

S UG R (R

< el = 1)

< Sl

< 5l - () < (e ) w3 fu(e) - u@e )

) (37)

the following error bound holds:

16 — /Iu;l|[un]|1/2|[un—l]|1/2 . e;q+1 ds—[uj(t”+1)|[u(t”+l)]| . e;fz+1 ds
< [Tl - e [ (] - i) -
o [ @ (e e
1

o+ [ (Taer T - (e )] - s

o [ - s [ -

< [wlfa) -u@e et ass [T ase o] eras

1

- [ et e as @8)

Applying the same approach as in [12], we obtain

|75 + I
< equi| Vel o+ o1+ gy + ([ )1 e I

2
+ &g Z Ui(HVE:I ||(2) + ||Ve§”1 ”3) + CLr

i=1

2
+CM™ Y (e g+ e

i=1

o) (39)
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where L™, M"*1 and P"*! can be defined by the following bound terms on interface I as
follows:

2

2= () +

i=1

{0

2

Mt =3 (e )+

i=1

2= S )+ ) - )

(L P e P A

p

Obviously, || - ||; is bounded by the corresponding L2-norm. In addition, we can infer that
the estimate of P"*! has the order of O(z? + h*), r=1,2.
Choosing €1 + &3 + €3 + €4 + €5 + &7 = 1/4, &6 = 1/8, and g = 1/16, and combining all these

inequalities with (30) yields that

1
57 (e I =Tt lg + et et ) +

C(HEr -+ RS+ - Mo
I () 9 ™) - )

d
+ ([ g+ [ Fuse ) o) B g + 1B 1) + Clef ol Ve (e ) g

v
0

O (L s |+ [La(e )] e G + cLmt et

2
v 2 112 Vi 2
#2917 )+ 1l

2
#CM™ Y v (el o+ e o) (40)

i=1

Summing over i = 1,2 for the above inequality and moving the term on the 5th line on the
right-hand side of (40) to its left-hand side, t the term % IVe! |2 can be exactly absorbed.
Thus we find that

1 2 .
L o P R e ) A DT
i=1

2

2
Vi % _
Zz [ver 1o~ 1ver] +Z§ (Iverls =l ver 1)

i=1 i=
2
I CLES A L T

+C ZH Vi (i) [GIV () = () g

i=1

Page 13 0of 19
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2

2
+CY (| var g+ [ Vur(e ) [ (1 g + B ) + € Dot
i=1 i=1

2 2

d

+ €Yo (1 a7+ Nm@ DT et G + € 3o lef ol vae () g
i=1 i=1

2

+CY M (e + e o)
i=1

Noting the bounds of || Vu;(t"+1)||o, an:_ol Va1 lo, and [ugllo yields
n+1 |2 n+l |2
|E*! - ”_1 + 7| RHS; ”_1
2,72 2
= C(* + 1) (el 01,2020

1l 20t ni220) + WP ) 200):

n+l pn+l
L™ P

2 2, 2 2
< C(*+ h) (el 2, g2y * 102 i)

Summing over n = 1,2,...,m — 1, multiplying by 27, using the classical estimates, and
rewritting the last term of the right-hand side of the above inequality as

mzl(i v M (e g+ et ||§))

n=1 i=1
2 m-1
=CYovP M) (el o + €fllg) + € Do v (Mt + M) e, (41)
i=1 n=1
we obtain
m-1 m-1 2 i
lem o+ > e e+ T D> [ ver
n=1 n=1 i=1 2
2 Vi 2 2
v (Ve o+ 4] verly)
i=1
2 Vi 2 2
=71 Uvello+4veil)
i=1
+ (1 Cov? (M2 4 M) ([0 + ')
m—1
+C(t*+h”)+Ct ZD"*I H et H(Z), (42)
n=1

where D"*! is defined by

D= (P (1 + M+ M+ ||y ||11L + [ [u(@)] ”f)

s |va@E)|2), d-23, (43)
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and C is dependent of the data (£2;, v;,f;). Setting

2

Iy =3 Ive"

i=1

ﬂ]+1 |

+1 _ ”em_

and using Gronwall’s inequality in Lemma 4.1, (28) and (42) yields the desired result. [J

6 Numerical results

In this section, we assess numerical performance of the stabilized methods for the pre-
sented model. It will be checked by a known analytical solution problem. The main goal
of the experiment is to verify convergence rates of the scheme (16)—(17). Here, we denote
errors by

1/2
Err(u;) ( ZHV ml n+1)”o:2> ’
. 1/2
e = (+2lp ) -7l )
n=0

where i = 1,2. All numerical computations are implemented by open source software
Freefem [19].

Example 1 The computations of the experiment are carried out in the domains £2; =
(0,1) x (0,1) and £2; = (0,1) x (=1,0). The prescribed exact solutions are given [13, 37]
by

p1(6:x,y) = pa(t,%,y) = exp(~t) cos(mx) sin(rry),

ui1(t,%,9) = —ax*exp(-t)(x — 1)*(y - 1),

u12(t,%,y) = axyexp(—t) (6x +y—3xy + 2%y — da® — 2),

12,1 (8%, y) = —axexp(—£)(x — 1)<y2x(x - 1)(% + 1)
2

CmPPeeE) o mPexp) e 1)
()12 (k)12 Ha ’
ayexp(—t)(2x — 1)
s, %,9) = — =2 35 (k)12 (6pax* (i) = 6puam(aric)'* = 3y’ y expl(t/2)
2

)1/2 )1/2 )1/2

- 2M1x2y2(ouc)1/2 — 2paxy* (i) + 3pixy(o ) + 2u1xy* (auk

1/2 1/2

=31y (k)" + 20y (k) + oy exp(t/2)),

with an arbitrary positive constant «. Here, (u;, p;), i = 1,2 are the solutions of the original
problem (1)—(6) and the right-hand sides f = (f1,f2) can be obtained by (1). Moreover,
uy = (ug,1, Uy ) satisfies the three interface conditions in [13].

Firstly, in the first example, we choose the same parameter values p; = 0.5, py = 0.05,
o =1and « = 100 as in [13]. The Euler scheme is used for the time discretization at 7 =1,
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Table 1 Errors for stabilized P1-P; pairwith T =h

1/h Err(uy) Rate Err(un) Rate Err(py) Rate Err(py) Rate
8 72271E-2 - 29717E-1 - 1.4967E-2 - 1.1617E-2 -

32 1.7025E-2 1.043 7.0463E-2 1.038 1.8549E-3 1.506 1.9019E-3 1.305

64 84129E-3 1.017 3.4862E-2 1.015 6.8180E-4 1444 7.2067E-4 1.400

Table 2 Errors for stabilized P,—P, pair with T = h?

1/h Err(uy) Rate Err(uy) Rate Err(py) Rate Err(py) Rate
4 2.6926E-2 - 1.7999E-1 - 1.7270E-2 - 1.6852E-2 -
8 5.7926E-3 2.215 3.4207E-2 2.396 4.2766E-3 2014 4.2613E-3 1.984
16 1.3445E-3 2.107 6.9341E-3 2.303 1.0623E-3 2.009 1.1131E-3 1914

Table 3 Errors for the different small viscosities based on stabilized Py—P; pair

Wy = 1.06-4 w1 =1.06-4 w1 = 10E-5

Wy =1.0F-4 W2 = 1.0E=5 Wy =10E-5
Err(uy) 1.3843E-2 1.3838E-2 1.3864E-2
Err(us) 20461E-2 53043E-2 2.0475E-2
Err(pr) 1.9068E-3 1.9070E-3 1.9063E-3
Err(pa) 9.7819E-4 26972E-3 9.7897E-4

Table 4 Errors for the different small viscosities based on stabilized P,—P, pair

w1 =10E-4 w1 =10F—4 w1 =10E-5
o =10E-4 Uy =10E-5 po=10E-5
Err(uy) 4.9393E-2 4.9283E-2 54135E-2
Err(ua) 49196E-2 5.3924E-2 5.3904E-2
Err(py) 301894 3.0190E-4 3.0190E-4
Err(pa) 3.1022E-4 7.7659E—4 3.1042E-4

with the time step © = /4. Three values of space size & = 1/8,1/32,1/64 are chosen. We
display the convergence orders and errors of the presented method in Tables 1-2 by P,—
P,, r=1,2. From Tables 1-2, it can be easily seen that the method completely agree with
the expected results in theory.

Secondly, we test the presented method with small viscosities. Here, we choose o = 1,
k =100, & = 1/20 and the time step T = 0.005. Then, we list the numerical errors with
different small viscosities at T = 0.1 in Tables 3—4. Obviously, the presented method can
deal with these problems involving small viscosities.

Example2 Inthis example, we test the presented method for a submarine mountain prob-
lem. This problem describes the fluid, which flows in a domain including the submarine
mountain. In this case, the subdomain £2; is nonconvex. As is known, the viscosity of the
fluid at submarine location is bigger than that at surface location. So we take w7 = 0.001
and py = 0.01 in this example.

Set £2; =[0,1] x [0,0.1] and £2; = {(x, ) : %(1 —(2x—1)sin(7x—3.5)) < y < 0}. The initial
conditions are chosen as follows:

p1(0,%,9) = p2(0,%,y) = cos(mx) sin(wy),
u11(0,%,9) = x*(1 —x)*(0.1 — y),
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Figure 1 The numerical streamlines and isobars: the stabilized P,—P, pair (the first line), the P,—P; pair (the
second line) and the stabilized P;-P; pair (the third line)

u1,2(0,%,9) = xy(=0.2 + y + 0.6x — 3xy — 0.4a” + 24°y),
uy1(0,%,9) = x*(1 —%)*(0.1 + ),

12,2(0,%,) = xy(—0.2 — y + 0.6x + 3wy — 0.40% — 2x2y).
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We apply the presented method to get the numerical solution with /2 = 1/70 and 7 = 1/40.
In Fig. 1, we present profiles for the numerical velocity and pressure with different methods
at the final time T = 5 and « = 100. From this figure, we can see that the stabilized methods
are stable and the unphysical oscillations do not appear, and the numerical results of these
stabilized methods completely agreement with those obtained by the classical P,—P; pair
[35]. Besides, we can find that the presence of the submarine mountain affects the fluid.
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