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Abstract
The Poisson–Boltzmann equation is derived from the assumption of thermodynamic
equilibrium where the ionic distribution is not affected by fluid flow. Although this is a
reasonable assumption for steady electroosmotic flow through straight
micro-channels, there are some important cases where convective transport of ions
has nontrivial effects. In these cases, it is necessary to adopt the Nernst–Planck
equation instead of the Poisson–Boltzmann equation to model the internal electric
field. The modeled system of equations is transformed by similarity transformation to
derive the equations of flow field, electric potential, electrokinetic force, entropy
generation, and energy equation. The Parametric Continuation Method (PCM) is used
to solve the system of ordinary differential equations. It is concluded that decrease in
the mass diffusion decreases the anion distribution from lower to upper plate. The
Batchelor number decreases the strength of magnetic field. Entropy generation and
the Bejan number are maximum near the two plates because of the maximum
disorderness due to plate movements and have minimum value in the fluid’s center.
Also the Eckert number increases viscous heating, which causes the entropy
production in the vicinity of the two plates to increase.

Keywords: Electric potential; Lorentz force; Entropy generation; Bejan number;
Squeezing flow; Parametric continuation method

1 Introduction
In the analysis of electroosmotic flows, the internal electric potential is usually modeled by
the Poisson–Boltzmann equation. The Poisson–Boltzmann equation is derived from the
assumption of thermodynamic equilibrium where the ionic distribution is not affected
by fluid flow. Although this is a reasonable assumption for steady electroosmotic flows
through straight micro-channels, there are some important cases where convective trans-
port of ions has nontrivial effects. In these cases, it is necessary to adopt the Nernst–Planck
equation instead of the Poisson–Boltzmann equation to model the internal electric field.
Hu [1] studied the steady electro-kinetic flow in squeezing channels in a T-shaped con-
figuration. The nonlinear Poisson–Boltzmann equation for variable electro-kinetic radius
and surface potential was numerically obtained. It was found that fluid flow can be con-
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trolled by applying a potential at each reservoir connected to the end of a channel. The
inter-facial electro-kinetic effects on fluid flow through a micro-channel between parallel
plates was studied by Mala [2]. Experiments were conducted to investigate the effects of
electric double layer on flow characteristics with different potassium chloride concentra-
tions in water and with different plate materials. The fluid flow through a micro-channel
was also studied by Arulanumdum [3] through numerical methods. This investigation was
bounded to the micro-channel flow in the fully developed region. The entry region effects
were neglected and the charge density was assumed to be in the Boltzmann equilibrium
distribution. Yang [4] investigated the entry flow effect induced by an applied electrical
potential through micro-channel between parallel plates. The Nernst–Planck equation
governing the ionic concentration distribution was numerically solved using a finite dif-
ference method.

Ferrohydrodynamics (FHD) deals with the mechanics of fluid motions influenced by
strong forces of magnetic polarization. Magnetic fluids have several applications of heat
transfer through ferrofluids. One such phenomenon is liquid-cooled speakers which in-
volves small bulk quantities of the ferrofluid to conduct heat away from the speaker coils
[1]. This innovation increases the amplifying power of the coil, and hence it leads to the
loudspeaker producing high-fidelity sound. Another use of magnetic fluids is to bring the
drugs to a targeted site in a human body, a magnetic field can pilot the path of a drop of
ferrofluid in the human body [2]. Mutua [5] studied Stokes problem of a convective flow
past a vertical infinite plate in a rotating system in the presence of variable magnetic field.
They concluded that some or all of the parameters affect the fluid velocity and tempera-
ture. Consequently, their effect alters the rate of heat transfer and skin friction along the
axes. Increase in magnetic parameter M and the Eckert number leads to an increase in the
velocity profiles for both free convection cooling and heating at the plate. Seth [3] studied
MHD flow and heat transfer along a porous flat plate with mass transfer and found that
the fluid velocity component increased with an increasing value of time and Hall param-
eter, but decreased owing to an increasing value of transpiration parameter and magnetic
field parameter. Victor [4] studied unsteady MHD free convection couette flow between
two vertical permeable plates in the presence of thermal radiation using Galerkin’s finite
element method. It was found that the radiation parameter and the Prandtl number have
a greater effect on the temperature than on the velocity. On the other hand, the magnetic
parameter and the Grashof number have no effect on the fluid temperature. Gunakala [6]
investigated unsteady MHD couette flow between two infinite parallel porous plates in an
inclined magnetic field with heat transfer. The lower plate was considered to be porous
and stationary. He found out that an increase in the magnetic number led to a decrease in
the velocity of the fluid. Similarly the effect of magnetic field and heat transfer have also
been studied in detail by [7–17].

The existing information on the topic witnesses that the electric potential and magnetic
field dependent entropy generation of a viscous fluid between squeezing plates has never
been reported and is the very first study in the literature. In the following sections, the
problem is formulated, analyzed, and discussed through graphs and tables.

2 Formulation of the problem
Consider the axisymmetric and fully developed pressure driven flow of an incompressible
elecroviscous fluid between the gap of the squeezing plates as shown in Fig. 1. The paral-
lel plates are separated by a distance a(t) = l

√
1 – βt, where l is the representative length
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Figure 1 Geometry of the problem

equivalent to the plates separation at t = 0. Furthermore, we assume that fluid contains
symmetric anions (+) and cations (–) with valencies z+ = –z– = z = 1, equal diffusivities
D+ = D– = D and that the bulk ion concentration of each ionic species is no. Electro-kinetic
flows of fluid containing ionic species are described by the equation of continuity and the
Navier–Stokes equations with an electrical body force term. These flow field equations
are coupled with the Poisson equation relating the electrical potential to the charge distri-
bution, and Nernst–Planck equations for conservation of each ion species. The induced
magnetic field (Bx, By, 0) in the fluid is generated by the applied magnetic field defined as

Hx =
βrMo

μ2(1 – βt)
, Hy =

rNo

μ2(1 – βt)
,

where Mo and No are used to dimensionless Hx, Hy and μ1, μ2 are the magnetic perme-
abilities of outside and inside media between the two plates respectively. Following exper-
imental study, the above parameters of magnetic field are zero on the lower plate [18].

The electro-kinematic flow equations have been nondimensionalized by introducing d,
ϑ , d

ϑ
, no, and kbT

ze as scaling variables for length, velocity, time, ion number density, and
electrical potential, respectively, so the governing equations become as follows.

Continuity equation [7]:

�∇ .�u = 0; (1)

Momentum equation with electro-kinetic effect [7–11]:

∂�u
∂t

+ (�u. �∇)�u = –
1
ρ

�∇�p + ν �∇2�u – δ
(
n+ – n–) �∇ �U + �C; (2)

Magnetic induction equation [16, 17]

∂ �C
∂t

= �∇ × (�u × C̆) +
1

σμe
�∇2 �C; (3)

Poisson equation:

�∇2 �U =
–1
2

K2
1
(
n+ – n–)

; (4)
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The Nernst–Plank equations [3–6, 18–26]:

∂n+

∂t
+ �∇ .

(�un+)
=

ν

Sc

( �∇2n+ + �∇ .
(
n+ �∇ �U))

, (5)

∂n–

∂t
+ �∇ .

(�un–)
=

ν

Sc

( �∇2n– + �∇ .
(
n–∇U

))
; (6)

Equations of energy [12–17]:

ρCp

(
∂T̄
∂t

+ �u. �∇T
)

= κ �∇2 �T + Trac(T .L), (7)

where ℵe is the Reynolds number, Sch is the Schmidt number, D is ion diffusivity, z is
valency, e is elementary charge, kB is the Boltzmann constant, T is absolute temperature,
U is local total electrical potential induced by ions, εo is the permittivity of vacuum, ε is
a dielectric constant, d is the distance between disks, ςo is the surface electric potential
at a reference position, κd is an inverse Debye constant, B is fixed for a given fluid at a
constant temperature, and n+, n– are the number per unit volume of anions and cations,
respectively.

3 Boundary conditions
The boundary conditions are chosen as follows:

u = v = 0, U = 0, n+ = c1, n– = 0,

β0 = 0, b = 0, T = 0 at y = 0,

u = 0, v = –
βl

2
√

1 – βt
, U =

x
l
√

1 – βt
, n+ = 0, n– =

n0

1 – βt
,

β0 =
μ

l
√

1 – βt
, b =

xμ

l2(1 – βt)
, T = Th at y = h(t),

(8)

where nw is the outward unit vector normal to the disks surface, scd is the dimensionless
surface charge density, and Ψ is the total electric potential.

The following similarity transformations [16, 17] are chosen for reducing the partial
differential Eqs. (1)–(7) to a system of ordinary differential equations:

u =
βx

2(1 – βt)
f ′(η), v = –

βl√
1 – βt

f (η), β0 =
μ

l
√

1 – βt
M(η),

b =
xμ

l2(1 – βt)
N(η), n+ =

n0

1 – βt
H(η),

n– =
n0

1 – βt
K(η), U =

xP(η)
l
√

1 – βt
, T = Thθ (η), where η =

y
l
√

1 – δt
.

(9)

Equation (1) is identically satisfied and Eqs. (2)–(7) take the following form:

f ′′′′ = S
(
2f ′′ + ηf ′′′ + f ′f ′′ – ff ′′′)

– BK2
1
√

δ
[
α2

(
P′H – P′K

)
+ α1

(
P′H + PH ′ – P′K – PK ′)]

– 2M′f ′′ – Mf ′′′ – f ′′N – 2f ′N ′ – S2Bt
(
Mf ′ + ηM′f ′) – BtS

(
ff ′N + f ′2M

)
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– S2Bt
(
2fN + ηfN ′) + BtS

(
ff ′′M + ff ′M′ + ff ′N + f 2N ′), (10)

N ′′ = S2Bt
(
2N + ηN ′) – BtS

(
Mf ′′ + f ′M′ + f ′N + fN ′), (11)

M′′ = S2Bt
(
M + ηM′) + BtS

(
fN + f ′M

)
, (12)

P′′ = –
1
2

K2
2
√

δ(H – K), (13)

H ′′ = SSc
(
2H + ηH ′ – fH ′) –

1√
δ

[
P′H ′ –

1
2

K2
2
√

δ
(
H2 – KH

)]
, (14)

K ′′ = SSc
(
2K + ηK ′ – fK ′) –

1√
δ

[
P′K ′ –

1
2

K2
2
√

δ
(
KH – K2)

]
, (15)

θ ′′ = PrS
(
ηθ ′ – f θ ′) + PrEc

(
4δf ′2 + f ′′2), (16)

and the boundary conditions are reduced to

f (0) = 0, f ′(0) = 0, P(0) = 0, H(0) = c1, K(0) = 0,

N(0) = 0, M(0) = 0, θ (0) = 0

f (1) = 0.5, f ′(1) = 0, P(1) = 1, H(1) = 0, K(1) = 1,

N(1) = 1, M(1) = 1, θ (1) = 1,

(17)

where S = βl2
2ν

is the squeeze number, Sc = μ

ρD is the Schmidt number, Bt = σμ0ν is the
Batchelor number, Pr = μCp

κ
is the Prandtl number, Ec = 1

CpTh
[ βx

2(1–βt) ]2 is the Eckert num-

ber, δ = l2(1–βt)
x2 , B = ρk2T2ε0ε

2z2e2μ2 , K2
1 = 2z2e2n0

ε0εkbT , K2
2 = 2z2e2l2n0

ε0εkbT , α1 = 2un0
βρ

, α1 = 2xun0
βρ

, and λ = l2
μμ0

.

4 Entropy generation
The volumetric rate of local entropy generation, in the case of the existence of a magnetic
field, can be expressed in the following form [27]:

Ns =
κ

T2∞
(∇T)2 +

T : ∇V
T∞

+
1

T∞

[
(J – QC)(E + V × C)

]
, (18)

which can be expressed in its dimensionless form by the following expression:

Ng =
κ

T2∞l2

[(
∂T
∂x

)2

+
(

∂T
∂y

)2]
+

μ

T∞

[
4
(

∂�u
∂x

)2

+
(

∂�u
∂y

+
∂�v
∂x

)2]

+
1

T∞
σ
[
u2B2

0 – 2uvbB0 + v2b2]. (19)

After transformation it can be written as

Ns = θ ′2 + ΩPrEc
(
4δf ′2 + f ′′2) +

ΩPrEcBtλ
S

(
f ′2M2 + f 2N2 + 2ff ′MN

)
, (20)

where T∞ is a reference temperature, κ is the thermal conductivity, Q is the electric charge
density, J is the electric current, E is the electric field, V is the velocity vector, the entropy
generation rate is Ns = Ng

Ng0
, the characteristic entropy generation rate is Ng0 = knf TH

T2∞a2 , the
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dimensionless temperature difference is Ω = T∞
TH

, respectively. Therefore the local entropy
generation in a dimensionless form can be written as

Ns = NH + Nf + Nmf , (21)

where the local entropy generation due to heat transfer is NH , the local entropy generation
due to fluid friction is Nf , and the local entropy generation due to magnetic field is Nmf .
In order to get the idea of relative importance of heat transfer effects and viscous effects,
the Bejan number is defined:

Be =
NH

Ns
=

θ ′2

θ ′2 + ΩPrEc(4δf ′2 + f ′′2) + ΩPrEcBtλ
S (f ′2M2 + f 2N2 + 2ff ′MN)

. (22)

In the absence of magnetic field (G = H = 0), Eqs. (14)–(16) were solved.
Physical quantities of interest are the skin friction coefficient and the Nusselt number

which are defined as follows:

Cf =
μ( ∂u

∂y )y=h(t)

ρυ2 , Nu =
–lk( ∂T

∂y )y=h(t)

kTh
. (23)

It terms of Eq. (13), we obtain

2ν(1 – βt) 3
2

βx
Cf = f ′′(1), (1 – βt)

1
2 Nu = –θ ′(1). (24)

5 Analytic solution by parametric continuation method
Application of the parametric continuation method to nonlinear equations (10)–(16) with
boundary conditions in Eq. (17) and optimal choice of continuation parameter is applied
in this section. The following algorithm is presented as a sequence of steps to be followed
for the application of this method.

• Canonical form of BVP as a first order ODE. To convert Eqs. (10)–(16) into a first
order ODE, suppose the following:

f = h1, f ′ = h2, f ′′ = h3, f ′′′ = h4,

N = h5, N ′ = h6, M = h7, M′ = h8,

P = h9, P′ = h10, H = h11, H ′ = h12,

K = h13, K ′ = h14, θ = h15, θ ′ = h16.

(25)

By putting these transformations in Eqs. (10)–(16), they become

h′
4 = S(2h3 + ηh4 + h2h3 – h1h4)

– BK2
1
√

δ
[
α2(h10h11 – h10h13) + α1(h10h11 + h9h12 – h10h13 – h9h14)

]

– 2h8h3 – h7h4 – h3h5 + 2h2h6

+ S2Bt(h2h7 + ηh2h8) + BtS
(
h1h2h5 + h2

2h7
)

+ S2Bt(2h1h5 + ηh1h6)

– BtS
(
h1h3h7 + h1h2h8 + h1h2h5 + h2

1h6
)
, (26)
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h′
6 = S2Bt(ηh6 + 2h5) – BtS(h3h7 + h2h8 + h2h5 + h1h6), (27)

h′
8 = S2Bt(ηh8 + h7) + BtS(h1h5 + h2h7), (28)

h′
10 = –

1
2

BK2
2
√

δ(h11 – h13), (29)

h′
12 = ScS(2h11 – ηh12 – h1h12) –

1√
δ

[
h10h12 –

1
2

BK2
2
√

δ
(
h2

11 – h11h13
)]

, (30)

h′
14 = ScS(2h13 – ηh14 – h1h14) –

1√
δ

[
h10h14 –

1
2

BK2
2
√

δ
(
h2

13 – h11h13
)
]

, (31)

h′
16 = PrS(ηh16 – h1h16) + PrEc

(
4δh2

2 + h2
3
)

(32)

and the boundary conditions become

h2(0) = 0, h1(0) = 0, h2(1) = 0, h1(1) = 1, h5(0) = 0,

h5(1) = 1, h7(0) = 0, h7(1) = 1, h9(0) = 0, h9(1) = 1,

h11(0) = c1, h11(1) = 0, h13(0) = 0, h13(1) = 1,

h15(0) = 0, h15(1) = 1.

(33)

• Introduction of a parameter p and imbedding of the obtained ODE in a p-parameter
family. To obtain ODE in a p-parameter family, let us introduce the p-parameter in
Eqs. (18)–(24), and so

h′
4 = S

[
2h3 + ηh4 + h2h3 – h1(h4 – 1)p

]

– BK2
1
√

δ
[
α2(h10h11 – h10h13) + α1(h10h11 + h9h12 – h10h13 – h9h14)

]

– 2h8h3 – h7h4 – h3h5 + 2h2h6

+ S2Bt(h2h7 + ηh2h8) + BtS
(
h1h2h5 + h2

2h7
)

+ S2Bt(2h1h5 + ηh1h6)

– BtS
(
h1h3h7 + h1h2h8 + h1h2h5 + h2

1h6
)
, (34)

h′
6 = S2Bt(ηh6 + 2h5) – BtS

[
h3h7 + h2h8 + h2h5 + h1(h6 – 1)p

]
, (35)

h′
8 = S2Bt

[
η(h8 – 1)p + h7

]
+ BtS(h1h5 + h2h7), (36)

h′
10 = –

1
2

BK2
2
√

δ
[
h11 – h13 + h10 – (h10 – 1)p

]
, (37)

h′
12 = ScS

[
2h11 – ηh12 – h1(h12 – 1)p

]

–
1√
δ

[
h10h12 –

1
2

BK2
2
√

δ
(
h2

11 – h11h13
)]

, (38)

h′
14 = ScS

[
2h13 – ηh14 – h1(h14 – 1)p

]

–
1√
δ

[
h10h14 –

1
2

BK2
2
√

δ
(
h2

13 – h11h13
)]

, (39)

h′
16 = PrS

[
ηh16 – h1(h16 – 1)p

]
+ PrEc

(
4δh2

2 + h2
3
)
. (40)
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• Differentiation by p leads to the following system with respect to sensitivities to the
parametric p. Differentiate Eqs. (26)–(32) with respect to p

V ′
1 = A1V1 + R1, (41)

where A1 is a coefficient matrix, R1 is a remainder, and V1 = dhi
dτ

, 1 ≤ i ≤ 16.
• Application of the supposition principle and specifying the Cauchy problem for each

component

V1 = aU + W1. (42)

Here U , W1 are unknown vector functions. Solving the following two Cauchy
problems for each component, we satisfy then automatically the original ODE

(aU + W1)′ = A1(aU + W1) + R1 (43)

and left boundary conditions.
• Numerical solution of Cauchy problem. An implicit scheme is used for the solution of

this problem as follows:

Ui+1 – Ui

	η
= A1Ui+1, (44)

W i+1 – W i

	η
= A1W i+1 + R1. (45)

• Selection of corresponding blend coefficient. Since given boundary conditions are
applied only for hi, where 1 ≤ i ≤ 16, when solving ODE for sensitivities, we need to
apply V2 = 0, which in a matrix form looks as

J1.V1 = 0 or J1.(aU + W1) = 0, (46)

where a = –J1.W1
J1.U .

6 Results and discussions
The mathematical formulation for the constitutive expressions of unsteady Newtonian
fluid is employed to model the flow between the rectangular space of squeezing plates
in the form of Eqs. (10)–(16) subject to the boundary conditions given in Eq. (17). These
equations are solved and compared for numerical investigations through PCM and BVP4c.
Parametric analysis is carried out for the dimensionless involved physical parameters.
The effects of these parameters are shown in the form of Tables 1–2 and Figs. 2–13. The
squeeze Reynolds number S is the ratio between the normal velocity of the upper plate and
kinematic viscosity of the fluid. It is important to note that small or big values of S mean
slow or rapid vertical velocity of the upper plate toward the lower plate. Positive values of
S also mean that the upper plate is moving away from the lower plate, or the increase in
the distance between the plates where negative values of S mean that the upper plate is
moving toward the lower plate, or decrease of distance between the plates.
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Table 1 Comparison of the different values of f ′′(η), N′(η), M′(η),m′(η), H′(η), K ′(η), and θ ′(η) using
the parametric continuation method approximation for the case Sc = 1.5, δ = 1.0, α1 = 1.2, α2 = 1.8,
Bt = 0.3, B = 1.7, K1 = 1.8, K2 = 2.6, Pr = 0.6, Ec = 0.3

S f ′′(1) N′(1) M′(1) m′(1) H′(1) K ′(1) θ ′(1)
0.2 –4.4659 1.0031 1.0378 1.8676 –0.5952 0.1377 2.2402
0.4 –4.5614 1.0295 1.0915 1.8390 –0.5413 0.3469 2.2451
0.6 –4.6585 1.0784 1.1611 1.8133 –0.4945 0.5409 2.2505
0.8 –4.7573 1.1494 1.2467 1.7900 –0.4536 0.7222 2.2564
1 –4.8580 1.2419 1.3487 1.7686 –0.4175 0.8926 2.2628

Table 2 Comparison of the different values of f ′′(η), N′(η), M′(η),m′(η), H′(η), K ′(η), and θ ′(η) using
the parametric continuation method approximation for the case Sc = 1.5, δ = 1.0, α1 = 1.2, α2 = 1.8,
Bt = 0.3, B = 1.7, K1 = 1.8, K2 = 2.6, Pr = 0.6, Ec = 0.3, Ω = 1.2, λ = 0.3

S Ns(1) Be(1) Pr Ns(1) Be(1) Ec Ns(1) Be(1) Ω Ns(1) Be(1)

0.2 9.4238 0.5325 0.2 2.0260 0.6531 0.2 5.3760 0.6095 0.1 5.4411 0.9035
0.4 9.5832 0.5260 0.4 5.3812 0.6099 0.4 11.0860 0.6213 0.1 5.9659 0.8241
0.6 9.7846 0.5176 0.6 8.0652 0.6096 0.6 18.1219 0.6525 0.1 6.4908 0.7574
0.8 10.0041 0.5089 0.8 11.0781 0.6210 0.8 26.4837 0.6829 0.1 7.0156 0.7008
1 10.2372 0.5002 1 14.4195 0.6360 1 36.1715 0.7098 0.1 7.5404 0.6520

Figure 2 Profile of f ′(η) and θ (η) for different values of S and fixed values of Sc = 1.5, δ = 1.0, α1 = 1.2,
α2 = 1.8, Bt = 0.3, B = 1.7, K1 = 1.8, K2 = 0.6, Pr = 1.6, Ec = 0.5

Figure 3 Profile of N(η) and M(η) for different values of S and fixed values of Sc = 1.5, δ = 2.0, α1 = 1.2,
α2 = 0.4, Bt = 0.3, B = 1.7, K1 = 1.8, K2 = 2.6, Pr = 0.6, Ec = 3.5
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Figure 4 Profile of H(η) and K (η) for different values of S and fixed values of Sc = 0.5, δ = 2.0, α1 = 1.2,
α2 = 0.4, Bt = 0.3, B = 1.7, K1 = 1.8, K2 = 2.6, Pr = 0.6, Ec = 3.5

Figure 5 Profile of N(η) and M(η) for different values of Bt and fixed values of Sc = 1.5, δ = 4.0, α1 = 1.2,
α2 = 1.8, B = 1.7, S = –1.1, K1 = 1.8, K2 = 2.6, Pr = 1.6, Ec = 0.5

Figure 6 Profile of H(η) and K (η) for different values of Sc and fixed values of Bt = 0.3, δ = 4.0, α1 = 1.2,
α2 = 1.8, B = 1.7, S = –1.1, K1 = 1.8, K2 = 2.6, Pr = 1.6, Ec = 0.5

Figures 2 and 3 are made to depict the influence of squeeze Reynolds number S on the
horizontal component of velocity field. It is clear from Fig. 2(a) that moving the upper
plate toward the lower one pushes the fluid in horizontal direction. Increase in the nor-
mal velocity (S = –0.1, –3.1, –10.1) of the upper plate toward the lower plate is creating
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Figure 7 Profile of θ (η) for different values of Pr , Ec and fixed values of Sc = 1.5, Bt = 0.3, δ = 4.0, α1 = 1.2,
α2 = 1.8, B = 1.7, S = –1.1, K1 = 1.8, K2 = 2.6

Figure 8 Profile of Ns(η) and Be(η) for different values of S and fixed values of Sc = 0.5, δ = 2.0, α1 = 1.2,
α2 = 0.4, Bt = 0.3, B = 1.7, K1 = 1.8, K2 = 2.6, Pr = 1.6, Ec = 0.5, Ω = 1.2, λ = 0.3

Figure 9 Profile of Ns(η) and Be(η) for different values of Pr , Ec and fixed values of Sc = 1.5, Bt = 0.3, δ = 4.0,
α1 = 1.2, α2 = 1.8, B = 1.7, S = –1.1, K1 = 1.8, K2 = 2.6, Ω = 1.2, λ = 0.3, Ec = 0.5

an opposing force to the vertical component, and so the fluid tends to move in horizon-
tal direction. The effect of this normal velocity dominates the vertical velocity near the
lower plate. However, as fluid crosses the central region, the vertical velocity overcomes
the horizontal velocity and so f ′(η) starts decreasing. The effect of S is also investigated
for temperature distribution as shown in Fig. 2(b). The temperature at upper plate at η = 1
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Figure 10 Profile of Ns(η) and Be(η) for different values of Ec and fixed values of Sc = 1.5, Bt = 0.3, δ = 4.0,
α1 = 1.2, α2 = 1.8, B = 1.7, S = –1.1, K1 = 1.8, K2 = 2.6, Ω = 1.2, λ = 0.3, Pr = 1.6

Figure 11 Profile of Ns(η) and Be(η) for different values of Ω and fixed values of Sc = 1.5, Bt = 0.3, δ = 4.0,
α1 = 1.2, α2 = 1.8, B = 1.7, S = –1.1, K1 = 1.8, K2 = 2.6, Ec = 0.5, λ = 0.3, Pr = 1.6

Figure 12 (a) The effect of skin friction for different values of S. (b) The effect of skin friction for different
values of Bt. With fixed values are Sc = 1.5, Bt = 0.3, δ = 1.0, α1 = 1.2, α2 = 1.8, B = 1.7, S = –1.1, K1 = 1.8,
K2 = 2.6, Ω = 1.2, λ = 0.3, Ec = 0.3, Pr = 0.6

is 1, and so by diffusion it is deceasing from layer to layer toward the lower plate. This
decrease in temperature starts increasing after the central region due to decrease in fluid’s
kinetic viscosity.

The effect of S on magnetic field components M(η) and N(η) is shown in Fig. 3. An
increase in the magnitude of squeeze Reynolds number S leads to decrease in kinetic vis-
cosity of the fluid. This decrease in kinetic viscosity means an increase in the fluid’s density,
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Figure 13 (a) The effect of Nusselt number for different values of Pr. (b) The effect of Nusselt number for
different values of Ec. With fixed values are Sc = 1.5, Bt = 0.3, δ = 1.0, α1 = 1.2, α2 = 1.8, B = 1.7, S = –1.1,
K1 = 1.8, K2 = 2.6, Ω = 1.2, λ = 0.3, Ec = 0.3, Pr = 0.6

which gives strength to the magnetic field from the lower to the upper plate as depicted
in Fig. 3(a–b). Similarly this increase in density gives strength to the electric field because
a strong magnetic field could be created due to strong electric field. Figure 4(a–b) clearly
show that the cations distribution is getting stronger from the lower to the upper plate.

Figure 5 is made to investigate the effect of Batchelor number Bt on magnetic field com-
ponents. The Batchelor number Bt for moderate values of the squeeze Reynolds number
S is a measure of how easily the fluid slips from the magnetic field. When Bt is very large, a
small current will create a large induced magnetic field. When Bt is very small, moderate-
sized currents will only produce induced fields, which essentially have small perturbations
on the applied field [28]. Clearly Fig. 5a shows that an increase in Bt decreases the horizon-
tal component of magnetic field. This is due to the fact that magnetic field effect is weaker
near the lower plate which is getting stronger as fluid moves toward the upper plate.

The effect of Schmidt number Sc on H(η) and K(η) is depicted in Fig. 6. The Schmidt
number is the ratio of the momentum to the mass diffusivities. An increase in Sc means
increase in momentum or decrease in the mass diffusion. It is noticed that decreasing the
mass diffusion is decreasing the anion distribution from the lower to the upper plate. Also
it can be seen that near the lower plate, the anion distribution increases with increase in
the Schmidt number due to smaller mass diffusion with greater Sc. The influence of Pr and
Ec on temperature distribution θ (η) is depicted in Fig. 7. The Prandtl number is the ratio
of momentum and thermal diffusivities. It is noticed that increase in Pr causes decrease in
temperature because of decrease in thermal diffusion. The temperature is increasing after
the central region because of heat diffusion from the upper plate at η = 1. Similarly an
increase in Ec means increase in the kinetic energy of fluid molecules which is maximum
near the upper plate due to their motion.

Figures 8–12 are made to study the entropy generation and the Bejan number of squeez-
ing flow for the effect of different involved parameters. The effect of squeezing parameter
is depicted in Fig. 9. It is investigated that both entropy and Bejan number are maximum
near the two plates because of the maximum disorderness due to plate movements and
have minimum value in the center at η = 0.5. The effects of Prandtl number and Eckert
number on Ns(η) and Be(η) are almost same and are shown in Figs. 9–10. An increase
in the Prandtl number means an increase in the momentum diffusivity that reaches its
maximum value near the two movable plates. The pace of this diffusion is in the descend-
ing order from one layer to the other, which clearly shows that the rate of the entropy
generation and the Bejan number are maximum near the adjacent plate due to maximum
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disorderness of molecules and are minimum in the middle of the liquid domain. An in-
crease in Ω increases the rate of the entropy generation due to the thermal propagation
(due to the friction of liquid and plates) of the moving plates. This thermal diffusion is
higher near the plates, and so the entropy generation rate decreases gradually from one
layer to another, and thus constitutes the minimum in the center of the liquid domain as
shown in Fig. 11. Results of physical interest for the skin friction and the Nusselt number
for different values of S, Bt , Pr , and Ec are plotted in Figs. 12–13. Here it is shown that
the skin friction decreases with an increase in S, while the heat transfer increases with an
increase in S. The reason is that heat generation increases with increase in S due to col-
lision of molecules. Also this phenomenon increases the fluid velocity due to which the
skin friction decreases. No change is noticed for the Prandtl number on skin.

7 Concluding remarks
The mathematical formulation for the constitutive expressions of unsteady Newtonian
fluid is employed to model the flow between the rectangular space of porous and squeezing
plates in the form of Eqs. (10)–(16) subject to the boundary conditions given in Eq. (17).
Parametric continuation method is used to determine the solution of velocity components
f (η), f ′(η), magnetic field components M(η), N(η), electric field components H(η), K(η),
electric potential m(η), and temperature distribution θ (η). Parametric analysis is carried
out for the involved dimensionless parameters.

Main upshots of this paper are presented below:
• It is concluded that an increase in the magnitude of squeeze Reynolds number S leads

to increase in fluid’s density, which gives strength to the magnetic field from the lower
plate to the upper plate.

• The Batchelor number decreases the strength of the horizontal component of
magnetic field; this is due to the fact that magnetic field effect is weaker near the lower
plate which is getting stronger as fluid moves towards the upper plate.

• Decreasing the mass diffusion decreases the anion distribution from the lower to the
upper plate.

• Entropy generation and the Bejan number are maximum near the two plates because
of the maximum disorderness due to plate movements and have minimum value in
the fluid’s center.

• Furthermore, the variations of entropy generation with an increasing value of the
Prandtl number. It is analyzed that for a fixed value of domain, entropy generation
amplifies with increase in Pr . Heat is a disorganized form of energy, and increasing the
Eckert number increases viscous heating, therefore entropy production increases near
the plates.
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