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Abstract
This article is concerned with the following class of nonlinear Choquard equations:

{
–�u + a(x)u = (|x|–μ ∗ |u|2∗

μ )|u|2∗
μ–2u + q(x)|u|p–1u, x ∈R

N ,

u ∈ H1(RN),

where 2∗
μ = 2N–μ

N–2 is the critical exponent with N ≥ 4 and 0 <μ < N,
1 < p < 2∗ – 1 = N+2

N–2 , a(x) and q(x) satisfy some assumptions. Through a compactness
analysis of the functional corresponding to the above problem, we obtain the
existence of weak solutions for this problem under certain assumptions on a(x) and
q(x).
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1 Introduction
In this article, we consider the following nonlinear Choquard problem in R

N :

–�u + a(x)u =
(|x|–μ ∗ |u|2∗

μ
)|u|2∗

μ–2u + q(x)|u|p–1u, u ∈ H1(
R

N)
, (1.1)

where 2∗
μ = 2N–μ

N–2 is the critical exponent in the sense of the Hardy–Littlewood–Sobolev
inequality, 0 < μ < N , 1 < p < 2∗ – 1 = N+2

N–2 and N ≥ 4.
This nonlocal elliptic equation is closely related to the nonlinear Choquard equation

–�u + V (x)u =
(|x|–μ ∗ |u|p)|u|p–2u in R

3. (1.2)

Different from the fractional Laplacian where the pseudo-differential operator causes the
nonlocal phenomena, for the Choquard equation the nonlocal term appears in the non-
linearity and influences the equation greatly. For p = 2 and μ = 1, it goes back to the de-
scription of the quantum theory of a polaron at rest by Pekar in 1954 [25] and the mod-
eling of an electron trapped in its own hole in 1976 in the work of Choquard, as a certain
approximation to Hartree–Fock theory of one-component plasma [14]. In some partic-
ular cases, this equation is also known as the Schrödinger–Newton equation, which was
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introduced by Penrose in his discussion of the self-gravitational collapse of a quantum
mechanical wave function [26]. The existence and qualitative properties of solutions of
(1.2) have been widely studied in the last decades, cf. [1, 2, 8, 12, 14, 16, 18, 20–23] and the
references therein.

By the Hardy–Littlewood–Sobolev inequality (see [15]), the integral

∫
RN

∫
RN

|u(x)|q|u(y)|q
|x – y|μ dx dy

is well defined provided |u|q ∈ Lt(RN ) for some t > 1 satisfying

2
t

+
μ

N
= 2.

Therefore, by a Sobolev embedding, for some u ∈ H1(RN ), we have

2 ≤ tq ≤ 2N
N – 2

,

that is,

2N – μ

N
≤ q ≤ 2N – μ

N – 2
.

So, we call 2N–μ

N the lower critical exponent and 2∗
μ = 2N–μ

N–2 is the upper critical exponent
in the sense of the Hardy–Littlewood–Sobolev inequality.

In [23], Moroz and Van Schaftingen considered the existence and nonexistence of solu-
tions for nonlinear Choquard equation (1.2) in R

N with lower critical exponent. In [11],
Gao and Yang studied the Brezis–Nirenberg type problem for a nonlinear Choquard equa-
tion with upper critical exponent in a bounded domain, that is,

–�u =
(|x|–μ ∗ |u|2∗

μ
)|u|2∗

μ–2u + λu in Ω , (1.3)

where Ω is a bounded domain of RN with Lipschitz boundary, λ is a real parameter. The
main difficulty of solving this problem by critical point theory is the embedding losing
compactness, then the so-called Palais–Smale condition is generally not satisfied for the
related functional. It is shown in [11] that the obstacle of compactness is related to the
function

U(x) = C
(

b
b2 + |x – a|2

) N–2
2

, (1.4)

where C > 0 is a fixed constant, a ∈R
N and b ∈ (0,∞) are parameters. In [11], the authors

also proved that U is the minimizer of the problem

SH,L = inf
u∈D1,2(RN )\{0}

∫
RN |∇u(x)|2 dx

(
∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x–y|μ dx dy)
1

2∗
μ

, (1.5)

and U solves

–�u =
(|x|–μ ∗ |u|2∗

μ
)|u|2∗

μ–2u in R
N . (1.6)
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It is proved in [11] that the associated functional of problem (1.3)

I(u) =
1
2

∫
RN

(|∇u|2 – λu2)dx –
1

2 · 2∗
μ

∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x – y|μ dx dy (1.7)

may lose the compactness in

[
N + 2 – μ

4N – 2μ
S

2N–μ
N–μ+2
H,L , +∞

)
,

and this is fully caused by the solution of the “limit equation” (1.6). We also refer the reader
to [7, 19, 24, 28, 29] for related work.

In this article, we study the global compactness of critical nonlinear Choquard equation
in R

N ; no such results for the problem can be found in the literature as far as we know.
A global compact result for a semilinear elliptic problem with critical Sobolev nonlinear-

ities on the bounded domains was obtained by Struwe [31] and Lions [17]. It was known
that the sub-level which makes the Palais–Smale conditions hold is determined by a com-
pactness result [17, 31]. Pierrotti and Terracini [27] studied a class of critical elliptic equa-
tions with Neumann boundary conditions through a compact analysis. Ye and Yu [34]
considered critical elliptic equations with lower order terms. Cao and Peng [6], Jin and
Deng [13] got a global compact result for a class of critical elliptic equations with critical
Sobolev and Hardy exponents in bounded domains and in R

N , respectively.
Inspired by the work of [6, 13, 17, 31, 34], we study the global compactness result of

problem (1.1) in this paper. We make the following assumptions:
(A1) a(x), q(x) are two positive continuous functions, such that infx∈RN a(x) > a0 > 0

and q(x) ∈ L∞(RN ).
(A2) lim|x|→∞ a(x) = ā, lim|x|→∞ q(x) = q̄.
In the following, we assume that ā = q̄ = 1 without of loss generality. The functional

corresponding to (1.1) is

J(u) =
1
2

∫
RN

∣∣∇u(x)
∣∣2 + a(x)

∣∣u(x)
∣∣2 dx –

1
2 · 2∗

μ

∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x – y|μ dx dy

–
1

p + 1

∫
RN

q(x)
∣∣u(x)

∣∣p+1 dx. (1.8)

We will show that the loss of compactness of J is caused both by the critical exponent and
the unbounded domain. To state the result more precisely, it is convenient to introduce
the problems “at infinity”—the first one is problem (1.6) and the second is

–�u + u =
(|x|–μ ∗ |u|2∗

μ
)|u|2∗

μ–2u + |u|p–1u, u ∈ H1(
R

N)
. (1.9)

Let

J∞(u) =
1
2

∫
RN

∣∣∇u(x)
∣∣2 +

∣∣u(x)
∣∣2 dx –

1
2 · 2∗

μ

∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x – y|μ dx dy

–
1

p + 1

∫
RN

∣∣u(x)
∣∣p+1 dx, (1.10)
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for u ∈ H1(RN ) and

I∞(u) =
1
2

∫
RN

|∇u|2 dx –
1

2 · 2∗
μ

∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x – y|μ dx dy, (1.11)

for u ∈ D1,2(RN ).
Our main result is the following.

Theorem 1.1 Let {un} ⊂ H1(RN ) be a sequence such that J(un) → c and J ′(un) → 0, then
there are sequences of points {yj

n} (1 ≤ j ≤ k1), xj
n (1 ≤ j ≤ k2), sequences of numbers {Rj

n}
(1 ≤ j ≤ k2), sequences of functions {uj

n} (1 ≤ j ≤ k1), {vj
n} (1 ≤ j ≤ k2), such that, for a

subsequence of {un}, still denoted by {un},
(i) un(x) = u0

n(x) +
∑k1

1 uj
n(x – yj

n) +
∑k2

1 (Rj
n) N–2

2 vj
n(Rj

nx – xj
n);

(ii) u0
n → u0(x) as n → ∞ strongly in H1(RN );

(iii) uj
n → uj as n → ∞ strongly in H1(RN ) for 1 ≤ j ≤ k1, vj

n – (Rj
n) N–2

2 vj(Rj
nx – xj

n) → 0
as n → ∞ strongly in H1(RN ) for 1 ≤ j ≤ k2,

where u0 is a solution of (1.1), uj (1 ≤ j ≤ k1) are solutions of (1.9) and vj(1 ≤ j ≤ k2) are
solutions of (1.6).

Moreover, as m → ∞,

‖un‖2
H1(RN ) → ∥∥u0∥∥2

H1(RN ) +
k1∑
j=1

∥∥uj∥∥2
H1(RN ) +

k2∑
j=1

∥∥vj∥∥2
D1,2(RN ),

J(un) → J
(
u0) +

k1∑
j=1

J∞
(
uj) +

k2∑
j=1

I∞
(
vj).

Using the above compact results and some delicate analysis, we have the following corol-
lary.

Corollary 1.2 The functional J satisfies the (PS)c for c ∈ (0, c∞), where c∞ is the least energy
of J∞.

Finally, applying the mountain pass theorem (cf. [3]), we can get the following existence
result of problem (1.1).

Corollary 1.3 Assume a(x) ≤ ā and a(x) < ā in a positive measure set or q(x) ≥ q̄ and
q(x) > q̄ in a positive measure set, then problem (1.1) has at least one solution.

This paper is organized as follows. In Sect. 2, we get an existence result of problem (1.9)
in H1

r (RN ). We prove our main results in Sect. 3.

2 Existence results of problem (1.9)
In order to obtain our results, we first need to show the existence of solutions to equation
(1.9). In this section, we prove that there exists at least one solution to Eq. (1.9) via the
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mountain pass theorem in a radially symmetry Sobolev space, that is,

H1
r
(
R

N)
=

{
u ∈ H1(

R
N)

: u(x) = u
(|x|)}.

More generally, we consider the following equation:

–�u + u =
(|x|–μ ∗ |u|2∗

μ
)|u|2∗

μ–2u + f (u), u ∈ H1(
R

N)
, (2.1)

with f satisfying:
(f1) f (t) ∈ C2(R1), limt→0

f (t)
t = 0, limt→∞ f (t)

t2∗–1 = 0;
(f2) there exists an ε ≥ 0 which is small enough, such that

t
(
f (t)

)′ ≥ (1 + ε)f (t) ≥ 0 (2.2)

for all t ≥ 0;
(f3) f (t) is odd.

Remark 2.1 Assumptions (f1)–(f3) are introduced by Deng, Guo and Wang in [9] which
studied the nodal solutions for the p-Laplacian.

The variational functional corresponding to (2.1) is

Φ(u) =
1
2

∫
RN

∣∣∇u(x)
∣∣2 +

∣∣u(x)
∣∣2 dx –

1
2 · 2∗

μ

∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x – y|μ dx dy

–
∫
RN

F(u) dx, (2.3)

where

F(u) =
∫ u

0
f (t) dt.

By adapting the mountain pass theorem to (2.3), we can prove the following.

Theorem 2.2 Let f (t) satisfy (f1)–(f3), then (2.1) possesses a nontrivial solution w ∈
H1

r (RN ) such that

Φ(u) <
N + 2 – μ

4N – 2μ
S

2N–μ
N–μ+2
H,L (2.4)

provided N ≥ 4.

To prove the (PS) condition, we need two key lemmas.

Lemma 2.3 ([33], Proposition 5.4.7) Let N ≥ 3, 1 < q < ∞ and {un} is a bounded sequence
in Lq(RN ). If un → u a.e. in R

N as n → ∞, then un ⇀ u weakly in Lq(RN ) as n → ∞.
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Lemma 2.4 ([11], Lemma 2.2) Let N ≥ 3 and 0 < μ < N . If {un} is a bounded sequence in
L

2N
N–2 (RN ) such that un → u a.e. in R

N as n → ∞, then

∫
RN

(|x|–μ ∗ |un|2∗
μ
)|un|2∗

μ dx –
∫
RN

(|x|–μ ∗ |un – u|2∗
μ
)|un – u|2∗

μ dx

→
∫
RN

(|x|–μ ∗ |u|2∗
μ
)|u|2∗

μ dx

as n → ∞.

In order to get a critical point of (2.3), we need some lemmas as follows.

Lemma 2.5 Let (f1)–(f3) hold. If

c ∈
(

0,
N + 2 – μ

4N – 2μ
S

2N–μ
N–μ+2
H,L

)
,

then Φ(u) satisfies (PS)c condition.

Proof Let {uj}j≥1 ⊂ H1
r (RN ) be a (PS)c sequence, then, by a similar argument to Lemma 2.2

in [9] and Lemma 2.4 in [11], we know {uj}j≥1 is bounded in H1
r (RN ). Thus by subtract-

ing a subsequence of {uj}j≥1, still denoted by {uj}, we have uj ⇀ u weakly in H1
r (RN )

as j → ∞. By a Sobolev embedding, we know uj ⇀ u weakly in L2∗ (RN ) as j → ∞.
Then

|uj|2∗
μ ⇀ |u|2∗

μ weakly in L
2N

2N–μ
(
R

N)

as j → ∞. By the Hardy–Littlewood–Sobolev inequality, we know that

|x|–μ ∗ |uj|2∗
μ ⇀ |x|–μ ∗ |u|2∗

μ weakly in L
2N
μ

(
R

N)

as j → ∞. Combining with the fact

|uj|2∗
μ–2uj ⇀ |u|2∗

μ–2u weakly in L
2N

N–μ+2
(
R

N)

as j → ∞, we have

(|x|–μ ∗ |uj|2∗
μ
)|uj|2∗

μ–2uj ⇀
(|x|–μ ∗ |u|2∗

μ
)|u|2∗

μ–2u weakly in L
2N

N+2
(
R

N)

as j → ∞.
On the other hand, by Strauss’ lemma (Lemma 2.1 in [30]), one can easily deduce that

F(uj) → F(u) strongly in L1(
R

N)
, (2.5)

f (uj)uj → f (u)u strongly in L1(
R

N)
. (2.6)
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Since Φ ′(uj) → 0,

∫
RN

(∇u∇φ + uφ) dx –
∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ–2u(y)φ(y)
|x – y|μ dx dy

–
∫
RN

f (u)φ dx = 0, (2.7)

for any φ ∈ C∞
0 (RN ), which means u is a weak solution of problem (2.1).

By (f2), we have

F(u) ≤ uf (u)
2 + ε

.

Combining this and (2.7) with φ = u, then

Φ(u) =
(

1
2

–
1

2 · 2∗
μ

)∫
RN

∫
RN

|u(x)|2∗
μ |u(y)|2∗

μ

|x – y|μ dx dy

+
1
2

∫
RN

f (u)u dx –
∫
RN

F(u) dx

≥ 0. (2.8)

Since {uj} is a (PS)c sequence, {uj} is bounded and thus (2.5)–(2.6) hold, we have

1
2
‖uj‖2

H1(RN ) –
1

2 · 2∗
μ

∫
RN

∫
RN

|uj(x)|2∗
μ |uj(y)|2∗

μ

|x – y|μ dx dy –
∫
RN

F(u) dx = c + o(1)

and

‖uj‖2
H1(RN ) –

∫
RN

∫
RN

|uj(x)|2∗
μ |uj(y)|2∗

μ

|x – y|μ dx dy –
∫
RN

f (u)u dx = o(1).

Set vj = uj – u. By the Brezis–Lieb lemma (see [5]) and Lemma 2.4, we infer that

Φ(u) +
1
2
‖vj‖2

H1(RN ) –
1

2 · 2∗
μ

∫
RN

∫
RN

|vj(x)|2∗
μ |vj(y)|2∗

μ

|x – y|μ dx dy = c + o(1) (2.9)

and

‖vj‖2
H1(RN ) –

∫
RN

∫
RN

|vj(x)|2∗
μ |vj(y)|2∗

μ

|x – y|μ dx dy = o(1). (2.10)

Without loss of generality, we may assume that

lim
j→∞‖vj‖2

H1(RN ) = k.

Then by (2.10) we get

lim
j→∞

∫
RN

∫
RN

|vj(x)|2∗
μ |vj(y)|2∗

μ

|x – y|μ dx dy = k.



Huang et al. Boundary Value Problems        (2019) 2019:110 Page 8 of 16

By (1.5),

∫
RN

|∇vj|2 dx ≥ SH,L

(∫
RN

∫
RN

|vj(x)|2∗
μ |vj(y)|2∗

μ

|x – y|μ dx dy
) 1

2∗
μ ,

for all j. So we have

‖vj‖2
H1(RN ) ≥ SH,L

(∫
RN

∫
RN

|vj(x)|2∗
μ |vj(y)|2∗

μ

|x – y|μ dx dy
) 1

2∗
μ ,

for all j. Then, by taking j → ∞, we get

k ≥ SH,Lk
1

2∗
μ . (2.11)

If k > 0, it follows from (2.11) that k ≥ S
2N–μ

N–μ+2
H,L . By (2.9) we get

Φ(u) = c –
N + 2 – μ

4N – 2μ
S

2N–μ
N–μ+2
H,L < 0,

this contradicts (2.8). Thus k = 0. By definition of vj, we conclude that Φ(u) satisfies the
(PS)c condition. This completes the proof. �

By Lemma 2.5 and the mountain pass theorem, one can easily verify the following
lemma.

Lemma 2.6 Let (f1)–(f2) hold. Suppose that there exists u0 ∈ H1
r (RN ), u0 �= 0 such that

sup
t≥0

Φ(tu0) <
N + 2 – μ

4N – 2μ
S

2N–μ
N–μ+2
H,L , (2.12)

then problem (2.1) possesses at least one nontrivial weak solution.

In the following discussion we will prove that (2.12) naturally holds for N ≥ 4.

Lemma 2.7 Let (f1)–(f2) hold. Then there exists u0 ∈ H1
r (RN ) \ {0}, such that (2.12) holds

for N ≥ 4.

Proof Recall function U given in (1.4) which is minimizer for SH,L. Let ϕ ∈ C∞
0 (RN ) ∩

H1
r (RN ) be a cut-off function such that

ϕ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1 for |x| ≤ ρ,

0 ≤ ϕ(x) ≤ 1 for ρ < |x| < 2ρ,

0 for |x| ≥ 2ρ.

We define, for ε > 0,

Uε(x) := ε
2–N

2 U
(

x
ε

)
,

uε(x) := ϕ(x)Uε(x).
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We prove this lemma by several steps. Firstly, by a similar argument to Lemma 3.5 in
[9], for ε small enough, there exists a constant tε > 0 such that

Φ(tεuε) = sup
t≥0

Φ(tuε)

and

0 < C1 < tε < C2 < ∞, (2.13)

where C1, C2 are positive constants independent of ε.
On the other hand, from [11], we know that

∫
RN

|∇uε|2 dx = C(N ,μ)
N–2

2N–μ
· N

2 S
N
2

H,L + O
(
εN–2),

∫
RN

|uε|2 dx =

⎧⎨
⎩dε2| log ε| + O(ε2) if N = 4,

dε2 + O(εN–2) if N ≥ 5,
∫
RN

∫
RN

|uε(x)|2∗
μ |uε(y)|2∗

μ

|x – y|μ dx dy ≤ C(N ,μ)
N
2 S

2N–μ
2

H,L + O
(
εN– μ

2
)
,

and

∫
RN

∫
RN

|uε(x)|2∗
μ |uε(y)|2∗

μ

|x – y|μ dx dy ≥ C(N ,μ)
N
2 S

2N–μ
2

H,L – O
(
εN– μ

2
)
,

where C(N ,μ), d are positive constants. Therefore,

Φ(tεuε) ≤ max
t≥0

{
t2

2

∫
RN

|∇uε|2 dx –
t2·2∗

μ

2 · 2∗
μ

∫
RN

∫
RN

|uε(x)|2∗
μ |uε(y)|2∗

μ

|x – y|μ dx dy
}

+
t2
ε

2

∫
RN

|uε|2 dx –
∫
RN

F(tεuε) dx

≤ N + 2 – μ

4N – 2μ
S

2N–μ
N–μ+2
H,L +

1
2

dε2 + O
(
εN–2) –

∫
B2ρ

F(tεuε) dx

as N ≥ 5. This implies that

Φ(tεuε) ≤ N + 2 – μ

4N – 2μ
S

2N–μ
N–μ+2
H,L +

1
2

dε2 + O
(
εN–2) –

∫
B2ρ

F(tεuε) dx (2.14)

as N ≥ 5. Similarly, we obtain

Φ(tεuε) ≤ N + 2 – μ

4N – 2μ
S

2N–μ
N–μ+2
H,L +

1
2

dε2| log ε| + O
(
ε2) –

∫
B2ρ

F(tεuε) dx (2.15)

as N = 4.
By using (f1)–(f3) and a similar proof to Lemma 3.5 in [9], we can get

lim
ε→0+

ε–2| log ε|–1
∫

B2ρ

F(tεuεε) dx = +∞.
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Thus, we have

sup
t≥0

Φ(tu0) = Φ(tεuε) <
N + 2 – μ

4N – 2μ
S

2N–μ
N–μ+2
H,L .

This completes the proof. �

Proof of Theorem 2.2 From Lemmas 2.6 and 2.7 we can easily get the proof of Theo-
rem 2.2. �

3 Proof of main results
This section is devoted to proving our main results.

Proof of Theorem 1.1 Suppose that {un} is a (PS)c sequence for J , that is,

J(un) → c and J ′(un) → 0 as n → ∞.

Let ã(x) = a(x) – 1 and q̃(x) = q(x) – 1, then

J(un) =
1
2
‖un‖2

H1(RN ) +
1
2

∫
RN

ã(x)|un|2 dx

–
1

2 · 2∗
μ

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|2∗

μ

|x – y|μ dx dy

–
1

p + 1
‖un‖p+1

Lp+1(RN ) –
1

p + 1

∫
RN

q̃(x)|un|p+1 dx

= c + o(1)

and

〈
J ′(un), un

〉
= ‖un‖2

H1(RN ) +
∫
RN

ã(x)|un|2 dx

–
∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|2∗

μ

|x – y|μ dx dy

– ‖un‖p+1
Lp+1(RN ) –

∫
RN

q̃(x)|un|p+1 dx

= εn‖un‖H1(RN ),

where εn → 0 as n → ∞. Observe that

‖un‖H1(RN ),
∫
RN

ã(x)|un|2 dx,

∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|2∗

μ

|x – y|μ dx dy, ‖un‖p+1
Lp+1(RN )

are bounded, and thus we may assume

un ⇀ u0 weakly in H1(
R

N)
,
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un → u0 a.e. RN .

So u0 solves (1.1).
Define v1

n(x) = un(x) – u0(x), we have

v1
n ⇀ 0 weakly in H1(

R
N)

,∥∥v1
n
∥∥2

H1(RN ) = ‖un‖2
H1(RN ) –

∥∥u0∥∥2
H1(RN ) + o(1),∥∥v1

n
∥∥p+1

Lp+1(RN ) = ‖un‖p+1
Lp+1(RN ) –

∥∥u0∥∥p+1
Lp+1(RN ) + o(1),

∫
RN

∫
RN

|v1
n(x)|2∗

μ |v1
n(y)|2∗

μ

|x – y|μ dx dy

=
∫
RN

∫
RN

|un(x)|2∗
μ |un(y)|2∗

μ

|x – y|μ dx dy –
∫
RN

∫
RN

|u0(x)|2∗
μ |u0(y)|2∗

μ

|x – y|μ dx dy + o(1).

Moreover, by (A2), we get

∫
RN

ã±(x)
∣∣v1

n
∣∣2 dx → 0,

∫
RN

q̃±(x)
∣∣v1

n
∣∣2 dx → 0.

It implies that

J∞
(
v1

n
)

= J
(
v1

n
)

+ o(1) = J(un) – J
(
u0) + o(1)

and

J ′
∞

(
v1

n
)

= J ′(v1
n
)

+ o(1) = J ′(un) – J ′(u0) + o(1).

Suppose v1
n �→ 0 n H1(RN ), otherwise we are done. We claim that there is a sequence

{y1
n} ⊂R

N such that v1
n(x + y1

n) ⇀ u1 �= 0 weakly in H1(RN ).
First, we note that J∞(v1

n) ≥ α > 0. In fact, otherwise we would have

J∞
(
v1

n
)

=
1
2
∥∥v1

n
∥∥2

H1(RN ) –
1

2 · 2∗
μ

∫
RN

∫
RN

|v1
n(x)|2∗

μ |v1
n(y)|2∗

μ

|x – y|μ dx dy

–
1

p + 1
∥∥v1

n
∥∥p+1

Lp+1(RN )

→ 0

and

〈
J ′
∞

(
v1

n
)
, v1

n
〉

=
∥∥v1

n
∥∥2

H1(RN ) –
∫
RN

∫
RN

|v1
n(x)|2∗

μ |v1
n(y)|2∗

μ

|x – y|μ dx dy

–
∥∥v1

n
∥∥p+1

Lp+1(RN )

= εn‖un‖H1(RN ).
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These yield

(
1
2

–
1

p + 1

)∥∥v1
n
∥∥2

H1(RN )

+
(

1
p + 1

–
1

2 · 2∗
μ

)∫
RN

∫
RN

|v1
n(x)|2∗

μ |v1
n(y)|2∗

μ

|x – y|μ dx dy

→ 0,

that is, v1
n → 0 n H1(RN ), a contradiction.

Set

dn =
∥∥v1

n
∥∥p+1

Lp+1(RN ) +
∫
RN

∫
RN

|v1
n(x)|2∗

μ |v1
n(y)|2∗

μ

|x – y|μ dx dy.

We claim that there is a β > 0 independent of n such that

dn ≥ β > 0.

Indeed, otherwise since J ′∞(v1
n) → 0, we have

J∞
(
v1

n
)

=
(

1
2

–
1

2 · 2∗
μ

)∫
RN

∫
RN

|v1
n(x)|2∗

μ |v1
n(y)|2∗

μ

|x – y|μ dx dy

+
(

1
2

–
1

p + 1

)∥∥v1
n
∥∥p+1

Lp+1(RN ) + o(1)

→ 0,

this contradicts the fact J∞(v1
n) ≥ α > 0.

Now we decompose R
N into N-dimensional unit hypercubes Ql with vertices having

integer coordinates. We distinguish two cases:
(i) d1

n = maxQl

∫
Ql

|v1
n|p+1 dx ≥ β > 0;

(ii) limn→∞ maxQl

∫
Ql

|v1
n|p+1 dx = 0, while

d2
n =

∫
RN

∫
RN

|v1
n(x)|2∗

μ |v1
n(y)|2∗

μ

|x – y|μ dx dy ≥ β > 0.

In case (i), we denote by y1
n the center of a cube in which d1

n = maxQl

∫
Ql

|v1
n|p+1 dx. We

can prove that {y1
n} is unbounded. Indeed, suppose by contradiction that {y1

n} is bounded,
by passing to a subsequence, we find that y1

n would be in that same Ql , and so they should
coincide. In that Ql , for some n large, we have

∥∥v1
n
∥∥

H1(Ql)
≥ C

∥∥v1
n
∥∥

Lp+1(Ql)
≥ β > 0

and

J∞|H1(Ql)
(
ṽ1

n
) ≥

(
1
2

–
1

p + 1

)∥∥v1
n
∥∥p+1

Lp+1(Ql)
≥ C > 0,
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J ′
∞|H1(Ql)

(
ṽ1

n
) → 0 as n → ∞,

where

ṽ1
n(x) =

⎧⎨
⎩v1

n(x) for x ∈ Ql,

0 for x ∈ Qc
l .

Hence, v1
n should converge strongly in Lp+1(Ql) to a nonzero function. This contradicts

v1
n ⇀ 0 weakly in H1(RN ). So |y1

n| → +∞.
Let us recall v1

n(x + y1
n) ⇀ u1 �= 0 weakly in H1(RN ). Arguing as before in the unit hyper-

cube Q center at the origin, we may conclude that u1 �= 0. Moreover, u1 solves (1.9). In the
same way, let v2

n = v1
n(x + y1

n) – u1, and we may assume v2
n ⇀ u2 weakly in H1(RN ), u2 solves

(1.9). Moreover,

∥∥v2
n
∥∥2

H1(RN ) =
∥∥v1

n
∥∥2

H1(RN ) –
∥∥u1∥∥2

H1(RN ) + o(1)

= ‖un‖2
H1(RN ) –

∥∥u0∥∥2
H1(RN ) –

∥∥u1∥∥2
H1(RN ) + o(1),

J∞
(
v2

n
)

= J∞
(
v1

n
)

– J∞
(
u1) + o(1)

= J∞(un) – J∞
(
u0) – J∞

(
u1) + o(1).

Iterating the above procedure, we obtain for a sequence of points {yj
n} and vj

n = vj–1
n (x +

yj–1
n ) – uj–1 that vj

n ⇀ uj weakly in H1(RN ), uj solves (1.9), and

∥∥vj
n
∥∥2

H1(RN ) =
∥∥vj–1

n
∥∥2

H1(RN ) –
∥∥uj–1∥∥2

H1(RN ) + o(1),

J∞
(
vj

n
)

= J∞
(
vj–1

n
)

– J∞
(
uj–1) + o(1).

In case (ii), by the vanishing lemma of Lions, we have

lim
n→∞

∥∥v1
n
∥∥p+1

H1(RN ) = lim
n→∞

∥∥v1
n
∥∥2

H1(RN ) = 0.

Denote

Qn(r) = sup
x∈RN

∫
Br(x)

∣∣∇v1
n
∣∣2 dx,

the concentration function of v1
n. Choose x1

n ∈R
N and scale

v1
n �→ ṽ1

n(x) = R
2–N

2
n v1

n
(
R–1

n + x1
n
)

such that

Q̃n(r) = sup
x,R–1

n +x1
n∈RN

∫
B1(x)

∣∣∇ ṽ1
n
∣∣2 dx =

∫
B1(0)

∣∣∇ ṽ1
n
∣∣2 dx =

1
2L

S
N
2

H,L

for some L > 1. Since p < 2∗ – 1, we get

lim
n→∞

∥∥ṽ1
n
∥∥p+1

H1(RN ) = lim
n→∞

∥∥ṽ1
n
∥∥2

H1(RN ) = 0.
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Suppose ṽ1
n ⇀ v0 weakly in H1(RN ), v0 is a solution of (1.6), then we can show as [6, 31]

that

v2
n = v1

n – R
N–2

2
n v0(Rn

(
x – x1

n
))

is a (PS) sequence of I∞, and we have

∥∥v2
n
∥∥2

H1(RN ) =
∥∥v1

n
∥∥2

H1(RN ) –
∥∥v0∥∥2

H1(RN ) + o(1)

= ‖un‖2
H1(RN ) –

∥∥u0∥∥2
H1(RN ) –

∥∥v0∥∥2
H1(RN ) + o(1),

J∞
(
v2

n
)

= J∞
(
v1

n
)

– I∞
(
v0) + o(1)

= J∞(un) – J∞
(
u0) – I∞

(
v0) + o(1).

Set vj
n = vj–1

n – v̄j–1, where v̄j–1(x) = (Rj
n) N–2

2 vj(Rn(x – xj
n)) for sequences of points xj

n and Rj
n,

Since J∞(uj) ≥ c∞ and I∞ ≥ N+2–μ

4N–2μ
S

2N–μ
N–μ+2
H,L , the iterations must stop after a finite number of

times. The results follow easily. �

Proof of Corollary 1.2 This is a direct consequence of Theorems 1.1 and 2.2, since the least

energy of (1.6) is N+2–μ

4N–2μ
S

2N–μ
N–μ+2
H,L . �

Proof of Corollary 1.3 It is standard to show that the energy J has the mountain pass struc-
ture. Define

c = inf
γ∈Γ

sup
t∈[0,1]

J
(
γ (t)

)
,

where

Γ =
{
γ ∈ C

(
[0, 1], H1(

R
N))

;γ (0) = 0, J
(
γ (1)

)
< 0

}
.

If we can prove J satisfies the (PS)c condition, then c is a nontrival critical value. To prove
the (PS)c condition, it is sufficient to prove that c < c∞.

We note that c∞ is attained. In fact, by a similar argument to [20] (see also [4, 32]) via
using the minimality property of the ground state to deduce some relationship between
the function and its polarization, we can prove that the ground state solution of (1.9) has
radial symmetry. Therefore, the Ekeland variational principle [10] and Lemma 2.5 imply
c∞ is attained.

Let w be the ground state solution of (1.9). Then J(tw) > 0 for t small and J(tw) → –∞
as t → ∞. So there exists t0 > 0 such that J(tw) attains its maximum at t0, then

c ≤ max
t>0

J(tw) = J(t0w) < J∞(t0w) ≤ max
t>0

J∞(tw) = c∞.

This completes the proof. �
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