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Abstract
In this paper, the nonlinear wave equation with singular Legendre potential

utt – uxx + VL(x)u +mu + perturbation = 0

subject to certain boundary conditions is considered, wherem is a positive real
number and VL(x) = –1

2 –
1
4 tan

2 x, x ∈ (–π
2 ,

π
2 ). By means of the partial Birkhoff normal

form technique and infinite-dimensional Kolmogorov–Arnold–Moser theory, it is
proved that, for everym ∈R+ \ { 14 }, the above equation admits plenty of
quasi-periodic solutions with three frequencies.
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1 Introduction and main results
Among various techniques for finding the quasi-periodic solutions for partial differen-
tial equations (PDEs), Kolmogorov–Arnold–Moser (KAM) theory has been proven to
be one of the most powerful approaches. This KAM theory provides us not only with
the required quasi-periodic solutions for PDEs but also the linear stability of the pre-
served invariant tori. Let us briefly recall the existing literature along this line. Kuksin
[12–14] and Wayne [24] were the first ones to extend the finite-dimensional KAM theory
to the infinite-dimensional case and construct the corresponding quasi-periodic solutions
for some Hamiltonian PDEs. Among those PDEs, the nonlinear Schrödinger equations
(iut – uxx + Vu + f (|u|2)u = 0) and the nonlinear wave equations (utt – uxx + Vu + f (u) = 0)
in various situations have been investigated by many authors; see [4–6, 8, 9, 17, 23, 25,
26] for references. For those kind of PDEs with nonlinearity containing spatial deriva-
tive, like the KdV equations, Benjamin–Ono equations, derivative nonlinear Schrödinger
equations and derivative nonlinear wave equations, the corresponding unbounded KAM
theorems were developed to establish the existence of quasi-periodic solutions for these
PDEs; see, for instance, [1, 2, 11, 15, 16, 18–21, 27] for references.

It is well known that the potentials V play a key role in constructing quasi-periodic solu-
tions for PDEs via KAM theory, the reason lies in the fact that these potentials could help
us to solve the small divisor problem occurring in each KAM iteration step. Actually, the
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KAM-machinery is to reformulate the PDE into a non-degenerate and partially integrable
system plus a small perturbation, where parameters need to be introduced so as to adjust
frequencies to overcome the small divisor problem, and fortunately one could extract pa-
rameters from these potentials V . However, in the aforementioned papers, the potentials
V are always regular. A natural question is, what happens when the potentials possess a
singularity? To the best of our knowledge, the only existing result in this direction is [7].
In [7], Cao and Yuan proved that the nonlinear wave equation with Legendre potentials
admits plenty of quasi-periodic solutions of two frequencies. Precisely, the authors in [7]
studied the following Legendre potential:

VL(x) = –
1
2

–
1
4

tan2 x, x ∈
(

–
π

2
,
π

2

)
. (1)

Obviously, this potential function admits a singularity at the endpoints x = ±π
2 .

Enlightened by [7], in the present note, we consider a nonlinear wave equation in the
following form:

utt – uxx + VL(x)u + mu + sec x · u3 = 0, (2)

subject to the boundary conditions

u · √sec x is bounded on
(

–
π

2
,
π

2

)
. (3)

We introduce the change of variables

⎧⎨
⎩

y = sin x,

z = u√
cos x .

Equation (2) with its boundary conditions (3) can be rewritten as

⎧⎨
⎩

ztt – ((1 – y2)zy)y + mz + z3 = 0,

z(y) is bounded on (–1, 1).
(4)

Conventionally, we still write z(y) = u(x), y = x. Set A = – d
dx (1–x2) d

dx +m and let λ2
j (λj > 0),

φj (j = 1, 2, . . .) be the eigenvalues and eigenfunctions of A, respectively. From [7], we know
that

λ2
j = j(j – 1) + m, φj =

√
j –

1
2

Pj–1(x), j = 1, 2, . . . , (5)

where Pj(x) represents the jth Legendre polynomial. It is well known that the sequence
{φj}j≥1 form a complete orthogonal basis in L2. Hence one can expand u in terms of φj,
that is, u =

∑
j≥1

qj(t)√
λj

φj(x), then Eq. (4) turns into infinitely many ODEs, namely,

q̈j + λ2
j qj +

√
λj
〈
u3,φj

〉
= 0 (6)

where q ∈ �2
s (the precise definition of �2

s will be given in (8)).
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Since the quasi-periodic solutions to be constructed are of small amplitude, (4) may
be considered as the linear equation utt – ((1 – x2)ux)x + mu = 0 plus a small nonlinear
perturbation u3. It is clear that every solution of the linear system is the superposition of
the eigenfunctions φj and is of the form

u =
∑
j≥1

qj(t)√
λj

φj(x), qj(t) = Ij cos
(
λjt + ϕ0

j
)
,

with amplitude Ij ≥ 0 and initial phase ϕ0
j . The solution u(t, x) is periodic, quasi-periodic

or almost periodic, respectively, depending on whether one, finitely many, or infinitely
many modes are excited. In this paper, for simplicity, we choose the three modes φ1, φ2,
φ3 to be excited. Let E be an invariant linear space of complex 2 × 3 dimension which is
completely foliated into rotational tori. That is,

E =
{

(u, v) =
(

q1√
λ1

φ1 +
q2√
λ2

φ2 +
q3√
λ3

φ3,
√

λ1p1φ1 +
√

λ2p2φ2 +
√

λ3p3φ3

)}

=
⋃
I∈P3

T (I),

where P
3 = {I ∈R

3 : Ij > 0 for j = 1, 2, 3} is the positive quadrant in R
3 and

T (I) =
{

(u, v) : q2
j + p2

j = Ij for j = 1, 2, 3
}

.

This is the linear situation. Upon restoration of the nonlinearity u3, the invariant manifold
E will not persist in their entirety due to the resonances. However, we shall show that a
large Cantor subfamily of rotational 3-tori persists in a sufficiently small neighborhood of
the origin.

Theorem 1.1 (Main theorem) For every m ∈ (0, 1
4 )∪ ( 1

4 , +∞), there exist a set C in P
3 with

positive Lebesgue measure, a family of 3-tori

T [C ] =
⋃
I∈C

T (I) ⊂ E

over C , and a Lipschitz continuous embedding into phase space P ,

Φ : T [C ] ↪→ P ,

which is a higher order perturbation of the inclusion map Φ0 : E ↪→ P restricted to T [C ],
such that the restriction of Φ to each T (I) in the family is an embedding of a rotational
invariant 3-torus for the nonlinear Hamiltonian differential equation (4).

In our paper, we have generalized the results in [7] in the following aspects. First, when
checking the Lemma 4.2 in [7] and the non-degeneracy condition, one has used a neces-
sary condition, i.e., m < 41

4 . However, we remove this restriction in this paper. Let us briefly
explain our strategy. On the one hand, we choose z1, z2, z3 as tangential variables and just
remove the fourth order terms with at most two normal variables instead of three ones in
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[7] to get the partial Birkhoff normal form. On the other hand, we will adopt a different
method to verify the non-degeneracy condition without that restriction on m. Second, as
we know, for the case V (x) ≡ m, the perturbed vector field Gq belongs to A(�2

s ,�2
s+1), which

is the collection of all the real analytic maps from some neighborhood of the origin in �2
s

into �2
s+1. As to the Legendre potential, Cao and Yuan [7] just proved that it holds true

for s = 7
2 by making use of several complicated inequalities often used in the analysis of

PDEs. Meanwhile, we claim that, for any s > 1, Gq belongs to A(�2
s ,�2

s+ 1
2

), which is enough
to check the KAM theorem. Finally, note that we obtain many quasi-periodic solutions for
(4) with three frequencies instead of two in [7].

Remark 1.2 Note that our results hold true for m ∈ R+ \ { 1
4 }, when m = 1

4 , it is clear that
λj = j + 1

2 , this is a completely resonant case for Eq. (2), and we cannot deal with this case.
However, we point out a potential strategy, by making full use of a Lyapunov–Schmidt de-
composition, variational methods and Nash–Moser implicit function theory, so one may
expect to be able to handle this case. Actually, Berti and Procesi [3], Gentile, Mastropietro
and Procesi [10] used this strategy and managed to obtain small amplitude periodic solu-
tions for the completely resonant wave equation utt – uxx + u3 = 0, while Yuan [25] derived
quasi-periodic solutions for a completely resonant wave equation.

2 The Hamiltonian
The Hamiltonian of the nonlinear wave, Eq. (4), is

H =
1
2
〈v, v〉 +

1
2
〈Au, u〉 +

1
4

∫ 1

–1
u4 dx,

where A = – d
dx (1–x2) d

dx +m. We rewrite H as a Hamiltonian in infinitely many coordinates
by making the ansatz

u =
∑
j≥1

qj√
λj

φj(x), v =
∑
j≥1

√
λjpjφj(x). (7)

The coordinates are taken from the Hilbert space �2
s of all real valued sequences w =

(w1, w2, . . .) with finite norm,

‖w‖2
s =
∑
j≥1

j2s|wj|2 < ∞. (8)

One then gets the Hamiltonian

H = Λ + G =
1
2
∑
j≥1

λj
(
p2

j + q2
j
)

+
1
4
∑
i,j,k,l

Gijklqiqjqkql, (9)

where

Gijkl =
1√

λiλjλkλl

∫ 1

–1
φiφjφkφl dx (10)
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on the phase space with the symplectic structure in the form of
∑

j≥1 dqj ∧ dpj. Then its
equations of motion are

q̇j =
∂H
∂pj

= λjpj, ṗj =
∂H
∂qj

= –λjqj –
∂G
∂qj

, j ≥ 1. (11)

Next, we shall establish the regularity of the vector field Gq := (Gqj )j≥1. To this end, we
need some properties of the coefficients Gijkl .

Lemma 2.1 Assume 0 < i ≤ j ≤ k ≤ l, then Gijkl = 0 unless l ≤ i+ j+k –2 or i± j±k± l ∈ 2Z.
Moreover, there exists a constant C > 0 such that 0 ≤ Gijkl ≤ C√

λiλjλkλl
.

For details, we refer to (3.13) and Lemma 3.3 in [7]. Note that the indices i, j, k, l in [7]
are replaced by i – 1, j – 1, k – 1, l – 1, respectively.

Lemma 2.2 For s > 1, the vector field Gq is real analytic as a map from some neighborhood
of the origin in �2

s into �2
s+ 1

2
, with

‖Gq‖s+ 1
2

= O
(‖q‖3

s
)
. (12)

Proof From (9), we obtain Gqj =
∑

i,k,l Gijklqiqkql . In view of Lemma 2.1 and the facts λj ∼ j,
it is clear that

|Gqj | ≤ Cj– 1
2
∑
i,k,l

|qi|√
i
|qk|√

k
|ql|√

l
.

Thus, it follows that

‖Gq‖2
s+ 1

2
=
∑
j≥1

j2s+1|Gqj |2

≤ C
∑
j≥1

j2s
(∑

i,k,l

|qi|√
i
|qk|√

k
|ql|√

l

)2

≤ C
∑
j≥1

j2s
(

6
∑

i≤k≤l

|qi|√
i
|qk|√

k
|ql|√

l

)2

≤ C
∑
j≥1

j2s
[( ∑

j≤i≤k≤l≤j+i+k–2

+
∑

i≤j≤k≤l≤i+j+k–2

+
∑

i≤k≤j≤l≤i+k+j–2

+
∑

i≤k≤l≤j≤i+k+l–2

)

· |qi|√
i
|qk|√

k
|ql|√

l

]2

≤ C
∑
j≥1

j2s
( ∑

j≤i≤k≤l≤j+i+k–2

|qi|√
i
|qk|√

k
|ql|√

l

)2

+ C
∑
j≥1

j2s
( ∑

i≤j≤k≤l≤i+j+k–2

|qi|√
i
|qk|√

k
|ql|√

l

)2

+ C
∑
j≥1

j2s
( ∑

i≤k≤j≤l≤i+k+j–2

|qi|√
i
|qk|√

k
|ql|√

l

)2
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+ C
∑
j≥1

j2s
( ∑

i≤k≤l≤j≤i+k+l–2

|qi|√
i
|qk|√

k
|ql|√

l

)2

:= I + II + III + IV .

For I , by the Cauchy inequality, one simply has

I ≤ C
∑
j≥1

j2s
( ∑

j≤i≤k≤l≤j+i+k–2

i2s–1|qi|2k2s–1|qk|2l2s–1|ql|2
)

·
( ∑

j≤i≤k≤l≤j+i+k–2

1
i2sk2sl2s

)

≤ C
∑
j≥1

( ∑
j≤i≤k≤l≤j+i+k–2

i2s–1|qi|2k2s–1|qk|2l2s–1|ql|2
)

·
( ∑

j≤i≤k≤l≤j+i+k–2

1
i2sk2s

)
(using j ≤ l)

≤ C
∑
j≥1

( ∑
j≤i≤k≤l≤j+i+k–2

i2s–1|qi|2k2s–1|qk|2l2s–1|ql|2
)(∑

i≤k

i + j
i2sk2s

)

≤ C
∑
j≥1

∑
j≤i≤k≤l≤j+i+k–2

i2s–1|qi|2k2s–1|qk|2l2s–1|ql|2

≤ C
∑
l≥1

l2s–1|ql|2
l∑

k=1

k2s–1|qk|2
k∑

i=1

i2s–1|qi|2
i∑

j=1

1

≤ C
∑
l≥1

l2s–1|ql|2
l∑

k=1

k2s–1|qk|2
k∑

i=1

i2s|qi|2 = O
(‖q‖6

s
)
.

By the same argument as that of estimating I , one gets II, III = O(‖q‖6
s ).

As to IV , due to the fact that j ≤ i + k + l ≤ 3l, it is clear that

IV ≤ C
∑
j≥1

( ∑
i≤k≤l≤j≤i+k+l–2

i2s–1|qi|2k2s–1|qk|2l2s–1|ql|2
)

·
( ∑

i≤k≤l≤j≤i+k+l

j2s

i2sk2sl2s

)

≤ C
∑
j≥1

( ∑
i≤k≤l≤j≤i+k+l–2

i2s–1|qi|2k2s–1|qk|2l2s–1|ql|2
)

·
( ∑

i≤k≤l≤j≤i+k+l–2

(3l)2s

i2sk2sl2s

)

≤ C
∑
j≥1

( ∑
i≤k≤l≤j≤i+k+l–2

i2s–1|qi|2k2s–1|qk|2l2s–1|ql|2
)

·
( ∑

i≤k≤l≤j≤i+k+l–2

1
i2sk2s

)
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≤ C
∑
j≥1

( ∑
i≤k≤l≤j≤i+k+l–2

i2s–1|qi|2k2s–1|qk|2l2s–1|ql|2
)(∑

i≤k

j – k
i2sk2s

)

≤ C
∑
j≥1

∑
i≤k≤l≤j≤i+k+l–2

i2s–1|qi|2k2s–1|qk|2l2s|ql|2

≤ C
∑
l≥1

l2s|ql|2
l∑

k=1

k2s–1|qk|2
k∑

i=1

i2s–1|qi|2
i+k+l∑

j=l

1

≤ C
∑
l≥1

l2s|ql|2
l∑

k=1

k2s|qk|2
k∑

i=1

i2s|qi|2 = O
(‖q‖6

s
)
.

Now we finish the proof.
To check the KAM theory in the last section, we need to address the coefficients Giijj. As

we know, if φj is the trigonometric function
√

2
π

sin x, it is easy to calculate Giijj. However,

in this paper, φj is a Legendre polynomial and the calculation of the integral
∫ 1

–1 φiφjφiφj dx
is very complicated. Through direct calculus, one can derive the following useful facts:

G11jj =
1

2λ1λj
, j ≥ 1; (13)

G22jj =
3(2j2 – 2j – 1)

2λ2λj(2j – 3)(2j + 1)
, j ≥ 2; (14)

G33jj =
5(11j4 – 22j3 – 31j2 + 42j + 18)

4λ3λj(2j – 5)(2j – 3)(2j + 1)(2j + 3)
, j ≥ 3. (15)�

3 Partial Birkhoff normal form
In this section, we shall derive the partial Birkhoff normal form for the Hamiltonian (9).
To this end, we introduce the following complex coordinates:

zj =
1√
2

(qj +
√

–1pj), z̄j =
1√
2

(qj –
√

–1pj).

Inserting them into (9), one gets the real analytic Hamiltonian

H = Λ + G

=
∑

j

λj|zj|2 +
1

16
∑
i,j,k,l

Gijkl(zi + z̄i)(zj + z̄j)(zk + z̄k)(zl + z̄l) (16)

on the complex Hilbert �2
s with symplectic structure

√
–1
∑

j≥1 dzj ∧ dz̄j. Real analytic
means that H is a function of z and z̄, real analytic in the real and imaginary part of z.
Conveniently, introducing z–j = z̄j for j ≥ 1, then H in (16) is written as

H =
∑
j≥1

λjzjz–j +
1

16
∑

i,j,k,l∈Z∗
Gijklzizjzkzl, (17)

where Gijkl := G|i||j||k||l| for i, j, k, l ∈ Z∗ := Z \ {0}.
Since the quadratic part of the Hamiltonian does not provide any “twist” required by

KAM theory, we shall use the normal form technique to get the “twisted” integrable terms
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from the fourth order terms. To get a three-dimensional KAM torus, for simplicity, we
choose (z1, z2, z3) as tangential variables. All the other variables are called normal ones. In
this part, the fourth order terms with at most two normal variables will be cancelled, while
the other fourth order terms are left since they have no effect on the tori. Then we define
the index sets �∗, ∗ = 0, 1, 2 and �3 in the following way: �∗ is the set of index (i, j, k, l)
such that there exist right ∗ components not in {±1,±2,±3}. �3 is the set of index (i, j, k, l)
such that there exist at least three components not in {±1,±2,±3}.

Define the normal form set

N =
{

(i, j, k, l) ∈ Z
4
∗ : (i, j, k, l) is of the form (p, –p, q, –q) or its permutations

}
.

For our convenience, rewrite G = Ḡ + G̃ + Ĝ, where

Ḡ =
1

16
∑

(i,j,k,l)∈(�0∪�1∪�2)
⋂

N
Gijklzizjzkzl,

G̃ =
1

16
∑

(i,j,k,l)∈(�0∪�1∪�2)\N
Gijklzizjzkzl,

and

Ĝ =
1

16
∑

(i,j,k,l)∈�3

Gijklzizjzkzl.

We will eliminate G̃ by a symplectic coordinate transformation X1
F , which is the time-1-

map of the flow of a Hamiltonian vector XF given by a Hamiltonian

F =
∑

i,j,k,l∈Z∗
Fijklzizjzkzl (18)

with coefficients

√
–1Fijkl =

⎧⎨
⎩

1
16

Gijkl
λ′

i+λ′
j+λ′

k +λ′
l

for (i, j, k, l) ∈ (�0 ∪ �1 ∪ �2) \N ,

0 otherwise.
(19)

Here λ′
j := sgn j · λ|j| for j ∈ Z∗. Then formally we have

{Λ, F} + G̃ = 0

where {·, ·} is the Poisson bracket with respect to the symplectic structure

√
–1
∑
j≥1

dzj ∧ dz–j.
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Expanding at t = 0 and using Taylor’s formula we formally obtain

H ◦ Γ = H ◦ Xt
F |t=1

= H + {H , F} +
∫ 1

0
(1 – t)

{{H , F}, F
} ◦ Xt

F dt

= Λ + Ḡ + Ĝ + {G, F} +
∫ 1

0
(1 – t)

{{H , F}, F
} ◦ Xt

F dt. (20)

Now we need to show the correctness of the definition (19) and establish the regularity of
the vector field XF . To this end, we check that the divisors λ′

i + λ′
j + λ′

k + λ′
l �= 0.

Lemma 3.1 If m ∈ (0, 1
4 ) ∪ ( 1

4 , +∞), there exists a positive number σ depending on m such
that

∣∣λ′
i + λ′

j + λ′
k + λ′

l
∣∣ > σ (m), ∀(i, j, k, l) ∈ (�0 ∪ �1 ∪ �2) \N .

Proof If 0 < m < 1
4 , the conclusion holds true, refer to [7]. In the following, we assume

that m > 1
4 . Since λ′

i + λ′
j + λ′

k + λ′
l = ±λ|i| ± λ|j| ± λ|k| ± λ|l|, it is equivalent to studying

divisors of the form δ := ±λi ± λj ± λk ± λl where the indices i, j, k, l are positive integers.
Without loss of generality, we assume that i ≤ j ≤ k ≤ l. Recalling Lemma 2.1, we know
that l ≤ i + j + k – 2 and i ± j ± k ± l ∈ 2Z. To show that δ does not vanish, we distinguish
them according to their number of minus signs. To shorten notation we let for example
δ++–+ = λi + λj – λk + λl . Then we split this problem into several cases.

Case 0: No minus sign appears, this is trivial.
Case 1: One minus sign appears. Since i ≤ j ≤ k ≤ l, it is sufficient to study

δ = δ+++– =
√

i(i – 1) + m +
√

j(j – 1) + m +
√

k(k – 1) + m –
√

l(l – 1) + m.

We regard δ as a function of m and claim that δ(0) > 0. In fact, if j ≥ 2, we have

δ(0) =
√

i(i – 1) +
√

j(j – 1) +
√

k(k – 1) –
√

l(l – 1)

= i + j + k – l –
i√

i(i – 1) + i
–

j√
j(j – 1) + j

–
k√

k(k – 1) + k

+
l√

l(l – 1) + l

≥ 2 – 1 – 2 × 2
2 +

√
2

+
1
2

> 0, (21)

where the third line we have used the fact that the function s√
s(s–1)+s is monotone decreas-

ing on [1, +∞) and approaches 1
2 when s → +∞. Since

δ′(m) =
1

2
√

i(i – 1) + m
+

1
2
√

j(j – 1) + m
+

1
2
√

k(k – 1) + m
–

1
2
√

l(l – 1) + m

≥ 1
2
√

i(i – 1) + m
,
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it is easy to see that

δ(m) ≥
∫ m

0

1
2
√

i(i – 1) + s
ds ≥ m

2
√

i(i – 1) + m
≥ m

2
√

6 + m
, ∀m > 0.

Otherwise j = 1, then k = l due to the fact l ≤ i + j + k – 2. Thus, δ(m) = 2
√

m.
Case 2: Two minus signs appear. It suffices to consider the case δ(m) = δ+––+, namely,

δ(m) =
√

i(i – 1) + m –
√

j(j – 1) + m –
√

k(k – 1) + m +
√

l(l – 1) + m.

Denote S = {1, 2, 3}. We discuss this problem dividing it into several subcases.
(a) i, j, k, l ∈S,

(a1) When all of the four elements overlap, that is, i = j = k = l, it follows that the
corresponding terms are resonant ones.

(a2) When i = j = k < l or i < j = k = l, one obtains

|δ| > min{√m + 2 –
√

m,
√

m + 6 –
√

m + 2} > 0.

(a3) When i = j < k < l or i < j = k < l or i < j < k = l, it is easy to check |δ| > 0 for
m �= 1

4 , respectively.
(b) Three elements of i, j, k, l lie in S, while the other one l lies outside of S, l ≥ 4.

(b1) When i = j = k, say i = j = k = 3, one has

δ =
√

l(l – 1) + m –
√

m + 6 ≥ √
m + 12 –

√
m + 6 > 0.

(b2) When i = j < k, l ≥ 4, one obtains

δ ≥ √
12 + m –

√
6 + m > 0.

As to the case i < j = k, without loss of generality, we assume that i = 1,
j = k = 3. In view of the fact that h(t) =

√
t(t – 1) + m is monotone increasing

and convex when m > 1
4 , one has

δ =
√

m – 2
√

6 + m +
√

l(l + 1) + m

>
√

m – 2
√

6 + m +
√

20 + m > h′′(5) > 0.

We remark that the case i = 1, j = k = 3, k = 4 does not appear because of the
condition i ± j ± k ± l ∈ 2Z.

(b3) When i = 1, j = 2, k = 3, l ≥ 4, one gets

δ =
√

m –
√

2 + m –
√

6 + m +
√

l(l + 1) + m

≥ √
m –

√
2 + m –

√
6 + m +

√
12 + m

≥ √
6 + m – 2

√
2 + m +

√
m

≥ h′′(3) > 0,

by using the convexity of h(t) when m > 1
4 .



Shi and Yan Boundary Value Problems        (2019) 2019:108 Page 11 of 18

(c) There exist two elements that lie in S, while k, l /∈S.
(c1) In the case i = j = 1, or 2, or 3, one obtains

δ =
√

l(l – 1) + m –
√

k(k – 1) + m

≥ √
6 + m –

√
m > 0.

(c2) In the case i < j. When i = 1, j = 2, one gets

δ =
√

l(l – 1) + m –
√

k(k – 1) + m –
√

2 + m +
√

m

≥ √
6 + m – 2

√
2 + m +

√
m

≥ h′′(3) > 0.

When i = 1, j = 3, it is clear that k ≤ l ≤ k + i + j – 2 ≤ k + 2. Since
i ± j ± k ± l ∈ 2Z, it follows that k = l or l = k + 2. When k = l,
δ =

√
6 + m –

√
m > 0. When l = k + 2, one has

δ =
√

(k + 1)(k + 2) + m –
√

k(k – 1) + m –
√

6 + m +
√

m

≥ h(5) – 2h(3) + h(1)

≥ h′′(5) > 0.

When i = 2, j = 3, in view of i ± j ± k ± l ∈ 2Z, we know that k �= l, that is,
l ≥ k + 1. Hence, it follows that

δ =
√

l(l – 1) + m –
√

k(k – 1) + m –
√

6 + m +
√

2 + m

≥ h(k + 1) – h(k) – h(3) + h(2)

≥ h(4) – 2h(3) + h(2)

≥ h′′(4) > 0. �

In view of (10) and the above lemma, in the same way as [7], the regularity of the vector
field XF could easily be established, that is,

XF ∈ A
(
�2

s,b,�2
s+ 1

2 ,b

)
, (22)

where XF ∈ A(�2
s,b,�2

s+ 1
2 ,b

) denotes the class of all real analytic maps from some neighbor-
hood of the origin in �2

s,b into �2
s+ 1

2 ,b
, and �2

s,b denotes the Hilbert space of all bi-infinite
sequences with finite norm ‖q‖2

s,b = |q0|2 +
∑

j |qj|2j2s.
Next, due to (20), we transform the Hamiltonian into the partial Birkhoff form of order

four so that the KAM theorem can be applied.

Proposition 3.2 Assume m ∈ (0, 1
4 ) ∪ ( 1

4 , +∞), for the Hamiltonian H = Λ + G in (9), there
exists a real analytic, symplectic change of coordinates Γ in some neighborhood of the origin
in �2

s,b that takes it into

H ◦ Γ = Λ + Ḡ + Ĝ + K ,
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where

K = {G, F} +
∫ 1

0
(1 – t)

{{H , F}, F
} ◦ Xt

F dt = O
(‖z‖6

4
)
,

Ḡ =
1
2
∑

min(i,j)≤3

Ḡij|zi|2|zj|2,

with uniquely determined coefficients Ḡii = 12
16 Giiii and Ḡij = 24

16 Giijj for i �= j and min(i, j) ≤ 3.
Moreover, XḠ, XĜ, XK ∈ A(�2

s,b,�2
s+ 1

2 ,b
).

The proof is similar to that of Proposition 4.1 in [7], we omit the details.

4 The proof of main theorem
In this section, with the aid of the KAM theorem for infinite-dimensional Hamiltonian
systems [22], we shall establish the existence of quasi-periodic solutions for Eq. (4).

First, we introduce symplectic polar and real coordinates by setting

zj =

⎧⎨
⎩
√

ξj + yje–
√

–1xj , j = 1, 2, 3,
1√
2 (uj +

√
–1vj), j ≥ 4,

(23)

depending on the parameters ξ = (ξ1, ξ2, ξ3) ∈ Π = [0, 1]3. The precise domain will be spec-
ified later when it matters. Then one has

√
–1
∑
j≥1

dqj ∧ dq̄j =
∑

1≤j≤3

dxj ∧ dyj +
∑
j≥4

duj ∧ dvj,

and

⎧⎨
⎩

Ij = ξj + yj, j = 1, 2, 3,

Ik = 1
2 (u2

k + v2
k), k �= 1, 2, 3.

Hence, up to a constant depending only on ξ , the Hamiltonian (still denoted by H) reads

H = Λ + Ḡ + Ĝ + K =
〈
ω(ξ ), y

〉
+

1
2
〈
Ω(ξ ), u2 + v2〉 + Ǧ + Ĝ + K ,

where

Λ =
3∑

j=1

λjyj +
1
2
∑
j≥4

λj
(
u2

j + v2
j
)
, (24)
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Ḡ =
1
2

∑
max{i,j}≤3

Ḡij|zi|2|zj|2 +
1
2
∑

1≤i≤3<j

Ḡij|zi|2|zj|2 +
1
2
∑

1≤j≤3<i

Ḡij|zi|2|zj|2

=
1
2

∑
max{i,j}≤3

Ḡij(ξi + yi)(ξj + yj) +
1
4
∑

1≤i≤3<j

Ḡij(ξi + yi)
(
u2

j + v2
j
)

+
1
4
∑

1≤j≤3<i

Ḡij
(
u2

i + v2
i
)
(ξj + yj)

=
1
2
∑

1≤i<j≤3

Ḡij(ξiξj + ξjyi + ξiyj + yiyj) +
1
4
∑

1≤i≤3<j

Ḡijξi
(
u2

j + v2
j
)

+
1
4
∑

1≤i≤3<j

Ḡij
(
u2

j + v2
j
)
yi +

1
4
∑

1≤j≤3<i

Ḡijξj
(
u2

i + v2
i
)

+
1
4
∑

1≤j≤3<i

Ḡijyj
(
u2

i + v2
i
)

=
1
2
∑

1≤i,j≤3

Ḡijξiξj +
3∑

j=1

( 3∑
i=1

Ḡijξi

)
yj +

1
2

∞∑
j≥4

∞∑
i=1

Ḡijξi
(
u2

j + v2
j
)

+ h.o.t. (25)

Hence the frequencies take the following form:

ω(ξ ) = α + Aξ ,Ω(ξ ) = β + Bξ (26)

where

α = (λ1,λ2,λ3), β = (λ4,λ5, . . .), (27)

A =

⎛
⎜⎝

Ḡ11 Ḡ12 Ḡ13

Ḡ21 Ḡ22 Ḡ23

Ḡ31 Ḡ32 Ḡ33

⎞
⎟⎠ =

1
16

⎛
⎜⎜⎝

6
λ2

1

12
λ1λ2

12
λ1λ3

12
λ1λ2

54
5λ2

2

132
7λ2λ3

12
λ1λ3

132
7λ2λ3

90
7λ2

3

⎞
⎟⎟⎠ , (28)

B =

⎛
⎜⎝

Ḡ40 Ḡ41 Ḡ42

Ḡ50 Ḡ51 Ḡ52

· · · · · · · · ·

⎞
⎟⎠ , (29)

and the remainder

Ǧ = O
(
y2 + |y|(u2 + v2)), Ĝ = O

(|ξ | 1
2
(
u2 + v2) 3

2
)
, K = O

(|ξ |3). (30)

From (26), we know that the frequencies are affine functions of the parameters ξ . To
prove our main theorem, by Theorem D in [22], we only check the assumptions for Theo-
rem A in [22]. These assumptions are, respectively, non-degeneracy, spectral asymptotics,
regularity and smallness of the perturbation. Due to (5) and Proposition 3.2, it is easy to
check the second and the third assumptions. To verify the non-degeneracy assumption, it
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is enough to prove that the following three conditions hold true:

(A1) det A �= 0,

(A2) 〈l,β〉 �= 0,

(A3)
〈
k,ω(ξ )

〉
+
〈
l,Ω(ξ )

〉 �≡ 0,

(31)

for all (k, l) ∈ Z
3 ×Z

∞ with 1 ≤ |l| ≤ 2.
For simplicity, set

A0 :=

⎛
⎜⎝

6 12 12
12 54

5
132

7
12 132

7
90
7

⎞
⎟⎠ , A1 :=

⎛
⎜⎝

1
λ1

0 0
0 1

λ2
0

0 0 1
λ3

⎞
⎟⎠ ,

then one gets

A =
1

16
A1A0A1. (32)

It is easy to obtain the inverse matrix of A0,

A–1
0 =

⎛
⎜⎝

– 1475
4926

245
2463

329
2463

245
2463 – 455

4926
35

821
329

2463
35

821 – 539
4926

⎞
⎟⎠ , (33)

which yields det A �= 0, since A1 is invertible. The condition (A2) is easy to check since λj

or λi ± λj (i �= j) are not equal to zero.
Secondly, we shall check the non-degeneracy condition (A3). It is equivalent to showing

that either 〈α, k〉 + 〈β , l〉 �= 0 or Ak + BT l �= 0 for all (k, l) with 1 ≤ |l| ≤ 2. Suppose that
Ak + BT l = 0, that is, k = –A–1BT l. We shall discuss it dividing it into two cases.

Case I. |l| = 1. Without loss of generality, we assume that

l =
(
0, . . . , –1

↑
(j–3)th

, 0, . . .
)

with j ≥ 4, one has

k =

⎛
⎜⎝

k1

k2

k3

⎞
⎟⎠ = A–1(Ḡj1, Ḡj2, Ḡj3)T = 16A–1

1 A–1
0 A–1

1 (Ḡj1, Ḡj2, Ḡj3)T , (34)

where

Ḡj1 =
24 · 1

2 (j + 1
2 )P(0, j)

16λ1λj
=

12
16λ1λj

,

Ḡj2 =
24 · 1

2 (j + 1
2 )P(1, j)

16λ2λj
=

36(2j2 + 2j – 1)
16λ2λj(2j – 1)(2j + 3)

,

Ḡj3 =
24 · (2 + 1

2 )(j + 1
2 )P(2, j)

16λ3λj
=

30(11j4 + 22j3 – 31j2 – 42j + 18)
16λ3λj(2j – 3)(2j – 1)(2j + 3)(2j + 5)

.

(35)
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Let

f (t) =
2t2 + 2t – 1

(2t – 1)(2t + 3)
, g(t) =

11t4 + 22t3 – 31t2 – 42t + 18
(2t – 3)(2t – 1)(2t + 1)(2t + 3)(2t + 5)

,

one can show that the above two functions f (t), g(t) are monotone decreasing when t ≥ 3,
which yields

f (j) ∈
(

1
2

,
23
45

]
, g(j) ∈

(
11
16

,
122
165

]
, j ≥ 3. (36)

Clearly, we have

k1 =
λ1

λj

[
2940
2463

–
16380
4926

f (j) +
1050
821

g(j)
]

,

In view of (36), one can easily get k1 /∈ Z, which is a contradiction.
Case II. |l| = 2, in this case, it suffices to consider the following two subcases.
Subcase 1. Assume that l = (0, . . . , –1↑

(i–3)th

, 0, . . . , 0, –1↑
(j–3)th

, 0, . . .) with j > i ≥ 4. This time we

have

k = (k1, k2, k3)T = A–1(Ḡj1 + Ḡi1, Ḡj2 + Ḡi2, Ḡj3 + Ḡi3)T , (37)

specially one has

k2 =
λ2

λi

[(
2940
2463

–
16,380
4926

f (i) +
1050
821

g(i)
)(

1 +
λi

λj

)]
, (38)

Due to f (j) ∈ ( 1
2 , 23

45 ], g(j) ∈ ( 11
16 , 122

165 ], one can deduce that k2 /∈ Z, which cannot happen.
Subcase 2. Assume that l = (0, . . . , 1

↑
(i–3)th

, 0, . . . , 0, –1
↑

(j–3)th

, 0, . . .) with j > i ≥ 4. One has

k = A–1(Ḡj1 – Ḡi1, Ḡj2 – Ḡi2, Ḡj3 – Ḡi3)T (39)

and

k2 = λ2

[
2940
2463

(
1
λj

–
1
λi

)
–

5460
4926

(
f (j)
λj

–
f (i)
λi

)
+

1050
821

(
g(j)
λj

–
g(i)
λi

)]
, (40)

where

f (j)
λj

–
f (i)
λi

= f (j)
(

1
λj

–
1
λi

)
+

f (j) – f (i)
λi

,

g(j)
λj

–
g(i)
λi

= g(j)
(

1
λj

–
1
λi

)
+

g(j) – g(i)
λi

.

By simple computation, one gets

1
λj

–
1
λi

=
λ2

i – λ2
j

λiλj(λi + λj)
=

(i – j)(i + j + 1)
λiλj(λi + λj)

.
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Furthermore,
∣∣∣∣ i – j

λj

∣∣∣∣ < 1,
∣∣∣∣ i + j + 1

λi + λj

∣∣∣∣ <
8
7

.

Using (36), (40) and the above inequality, we have |k2| < 1, which indicates k2 = 0. Similar
arguments yield k3 = 0. As to k1, we have

k1 =
λ1

λi

[
–

17,700
4926

+
8820
2463

f (j) +
9870
2463

g(j)
][

λi

λj
– 1
]

+
λ1

λi

[
8820
2463

(
f (j) – f (i)

)
+

9870
2463

(
g(j) – g(i)

)]
, (41)

it follows that k1 ∈ (–1.6, 0), which indicates k1 = –1. This time, if

〈k,α〉 + 〈l,β〉 = 0,

then one gets –α1 + βi – βj = 0, which yields βi – βj = α1 > 0, this is in contradiction with
the fact that βj > βi.

Finally, it remains to check the small perturbation assumption. To make this more pre-
cise we introduce complex neighborhoods

D(s, r) : |Im x| < s, |y| < r2,‖u‖s + ‖v‖s < r

of T3 × {y = 0} × {u = 0} × {v = 0} and weighted norms

∣∣(x, y, u, v)
∣∣
r = |x| +

|y|
r2 +

‖u‖s

r
+

‖v‖s

r
,

where | · | is the max-norm for complex vectors. Then we assume that the Hamiltonian
vector field XG is real analytic on D(s, r) for some positive s, r uniformly in ξ with finite
norm |XG|r,D(s,r) = supD(s,r) |XG|r , and that the same holds for its Lipschitz semi-norm

|XG|Lr = sup
ξ �=ζ

|�ξζ XG|r,D(s,r)

|ξ – ζ | ,

where �ξζ XG = XG(·, ξ ) – XG(·, ζ ), and where the sup is taken over Π .
Set Π = {ξ ∈ [0, 1]2 : 0 < |ξ | ≤ r 4

3 }. From the perturbation term (30), we easily get

|X(Ǧ+Ĝ+K )|r,D(s,r) ≤ |XǦ|r,D(s,r) + |XĜ|r,D(s,r) + |XK |r,D(s,r)

= O
(
r2) + O

(
r

5
3
)

+ O
(
r2) = O

(
r

5
3
)
. (42)

Since X(Ǧ+Ĝ+K ) is analytic in ξ , one has

|X(Ǧ+Ĝ+K )|Lr = O
(
r

5
3 r– 4

3
)

= O
(
r

1
3
)
.

If r is small enough, the small perturbation assumption for KAM is satisfied. Now, the
proof of our main theorem is complete by applying the KAM theorem in [22].
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