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Abstract

In this paper, we consider a new fractional differential system on an unbounded
domain

D*u(t) + @(t,v(t), D' v(t) =0, tel0,+00),a € (23],
DPV(t) + ¥ (t,u(®), D ut) =0, tel0,+00),B € (23],

subject to the conditions
h
Pu(®)| = =0, D*2u(t)] =0 = f g1(s)u(s) ds, D¥ 'u(+00) = Mu(&) + g,
0
h
PBv(®)|re0 =0, DP2y(t)) g = / G>(S)V(s) ds, DP(+00) = Nv(n) + b.
0

The nonlinear terms ¢ and Y are dependent on the fractional derivative of lower
order y; € (0, 1), i=1,2, which creates additional complexity to verify the existence of
solutions. Moreover, a proper choice of Banach space allows the solutions to be
defined on the half-line. From some standard fixed point theorems, sufficient
conditions for the existence and uniqueness of solutions to boundary value problems
are developed. Finally, the main result is applied to an illustrative example.

MSC: 34A08; 34B15; 34B40

Keywords: Fractional differential equations; Existence and uniqueness; Unbounded
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1 Introduction
Fractional calculus has recently evolved as an excellent tool for mathematical modeling
owing to its widespread applications in the fields of engineering, physics, electrodynam-
ics of complex medium, photoelasticity, etc; one can see [1-12] and the references cited
therein. Meanwhile, relevant theory of fractional differential and integral equations has
been established, and the research on fractional differential equations for boundary value
problems is in a stage of rapid development.

Based on some kinds of analytical techniques, boundary value problems involving frac-
tional differential equations attracted a considerable attention; see [13—33] and the ref-
erences therein. It not only has promotional value and practical significance in medical
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image processing, seismic analysis, and large-scale climate research, but also has impor-
tant research potential on numerical analysis.

Recently, the study of coupled systems involving fractional differential equations ap-
peared in the literature [4, 9, 10, 17, 18, 32, 33]. Much of the work has been considered
on finite intervals; however, a study of boundary value problems on unbounded domain
is well under way. Wang, Ahmad, and Zhang [34] studied a coupled system of fractional
differential equations with m-point fractional boundary conditions

DPu(t) +f(6, V() =0, pe(2,3),

DIv(e) + gt u(t) =0, qe(2,3),
w(0)=u'(0)=0,  DPlu(+o0) = Y12 Bu(&),
w0)=V(0)=0, DT w(+o0) = Y yv(E),

where £t € ] = [0,+00), f,g € CJ x R,R), 0 <& <& <+ < &yp <400, B, ¥ > 0 such
that 0 < Y7 Biu(&) < I'(p) and 0 < Y77% yv(&) < I'(q). D?, D7 denote the standard
Riemann-Liouville fractional derivatives. By virtue of standard fixed point theorems, the
authors discussed the existence and uniqueness of solutions.

In [35], the authors investigated a class of fractional differential equations on an infinite

interval
D§, u(t) +f(t, u(t),D%‘Ilu(t)) =0, te(0,+00),
with integral boundary conditions

u(0) =0,
D% u(o0) = ) gi(s)u(s)ds +a,
D2u(0) = [ g2 (s)uls)ds + b,

where2 <a <3,f:R* x (R*)?2 — R*, f(t,u,v) # 0, and f satisfies L' -Carathéodory condi-
tions. Existence results for positive solutions to the boundary value problem were obtained
in three cases by using Krasnoselskii’s fixed point theorem.

To our knowledge, some remarkable results on the existence and multiplicity of solu-
tions for fractional differential equations have been discussed widely on finite intervals
[14-33]. Instead, it is relatively rare for work to be done related to existence results on
infinite intervals [34—47].

In [31], the authors discussed the existence and uniqueness of positive solutions for the
fractional differential equation

D*u(t) = f (¢, u(t), D’ u(t)),
Pu(0) = D*21(0) = u(1) = 0,

where 0 < p<1,2<a <3, te(0,1), DY is the standard Riemann-Liouville fractional
derivative of order «. By applying a nonlinear alternative of Leray—Schauder type and the
Banach contraction theorem, the existence and uniqueness of solutions were obtained.
Motivated by the above papers, we are devoted to establishing some results on the ex-
istence and uniqueness of solutions for a new coupled system of nonlinear fractional dif-
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ferential equations

D*u(t) = —(t,v(t), D" v(¢)), 1 €(0,1),

DP(t) = =y (t, u(t), D" u(t), y»€(0,1),

Peu(0)=0,  D*u(0)= [ g(uls)ds,  D*'u(+00) = Mu(€) +a,
I*~Py(0) = 0, DP-2y(0) = foh S(s)v(s)ds, DF1y(+00) = Nv(n) + b,

(1.1)

where 2 < o,8 <3,0<y;,<1,i=12,t €] =[0,+00), M, N are real numbers with
0<Mg* 1 < I'(er), 0 < NP1 < I'(B), £,m, i > 0, parameters a,b € R*, g1, € L'[0, h] are
nonnegative functions, ¢, € C(J x R x R,R) and D%, D? denote the fractional deriva-
tives of Riemann—Liouville type of order « and . Our conclusion is a natural expansion
of the previous results in [31].

In this paper, the aim is to deal with the new coupled system of fractional differential
equations on infinite intervals. Sufficient conditions for the existence and uniqueness of
unbounded solutions for system (1.1) are obtained base upon Schauder’s fixed point the-
orem and the Banach contraction theorem. Unlike previous works, the main difficulty of
this paper is that we have to construct an appropriate Banach space, because the functions
@, ¥ contain the fractional derivatives.

2 Preliminaries and auxiliary results

For the convenience of the readers, we recall some useful definitions and lemmas.

Definition 2.1 ([1]) The fractional integral of Riemann—Liouville type of order & > 0 of a
function f is defined as

1

o _ ‘ _ el
(If)(t)_F(a)/(;(t ) f(s)ds, a>0,

provided the integral exists.

Definition 2.2 ([1]) The fractional derivative of Riemann-Liouville type of order « > 0 of
a function f is given by

o — (pleljlal-« _; i)n ti
(D*f)(t) = (D™'1 f)(t)_F(n—a)<dt fo(t_s)a_mlds'

where [o] is the smallest integer greater than or equal to «, provided that the right-hand
side is pointwise defined on (0, +00).

For further analysis, let

1 1
T T@-Me T T(B) - Ny

h h
w1 = / a1t Wy = / L)t dt,
0 0

h h
8 = / (1+ e Mg (t)de, 8y :/ (1+ g0 dt,
0 0
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o MEX2 L 4 2 oy NnP=2¢P~1 4 P2
Tyt)= = . D)= ,
(@-1) rp-1
1+ o0 MEY? 1+ 0aNph-2

1= 2=

(1-pu)l(@-1) (1-p)l(B-1)

In this paper, we always assume that g; : [0,+00) — [0, +00) are continuous, and j; =
fohgi(t)Ti(t) dt<1,i=1,2.

Lemma 2.1 Assume that f € L'(J) with 0 < ME*™! < I'(a), o € (2,3]. Then the fractional

differential equation
Du(t) +f(¢) =0, te[0,+00),
with

JHM(O) =0,
D*2u(0) = [ g1 (s)uls) ds,
D"“lu(+oo) = Mu(é) +a,

has the solution

Ti(t
u(t) = aoy ' + a0 1() f H(t,s)f (s)ds,
11—

where

Hit,s) = Hy(t,s) + Tl(t) / Hi(x,9)ai(c)d, 2.1)
— K
Hl(t,S) = UlMta_lGl (cé;',S) + Gl(t,S), (22)
and
1 ol (t—s)*, 0<s<t<+00,
Gi(t,s) = (2.3)

I'() [y 0<t<s<+00.
Proof First, we can reduce the above problem to an equivalent integral equation
u(t) = 1% + ot 4 c3t* 2 — I (1) (2.4)
for some ¢; € R, i = 1,2, 3. By the condition I>~*u(£)|s-o = 0, we have

Pu(t) = )Pt 4+ 0P 4 e3Pt - P (2)

I'a) , I'a-1) I'oe-2)

_ 3
_Clp(g)t +0y ) t+c3 0 f(e),

Page 4 of 22
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since I3f(t) — 0 as t — 0, we must set c3 = 0. On application of D*24(0) = foh g1(s)u(s)ds
and D% 'u(+00) = Mu(£) + a, we have

D*72u(t) = c; D* 2% 4 ¢,D* %72 — D* A7 (t)

=al(@)t+clMNa-1)- /t(t—s)f(s)ds,
0

Da—lu(t) =q Do{—l a-1 e Do(—l -2 _Da—llaf(t)

=cal(a /fs)ds

that is,

1 +00 Mg:a—Z h
W([ SO g o ), s

Cy = mfo g1(s)u(s)ds.

This implies

u(t) = o1t~ 1<a+/ f(s)ds + (ga 21)/ 1(s)u(s) ds

o _ a-1
- /0 € - f(s)ds>

a-2 h t
+ ﬁ‘/ gl(s)u(s)ds—L/O (t—5)*"f(s)ds
~ a1, o MEX2e1 4 a2 oMt (% a-1
= aoit P / &(s)uls)ds - ) fo (& -9 f(s)ds
t(x—l UlMEa_lta_l +00 1 t vl
+<F(a) + @) ) \ f(s)afs—TO[)/0 (t—9)""f(s)ds
B w1, UIM%-a 101 O,IMtafl & w1
_ ot S / F0ds- 2 [F -9 irods

-1 h
a-1
’ F(Ol)./o J&)ds - F(tx)/o (t=s)" fls)ds + T1(t)/0 gi(s)uls) ds

+00

= ao %' + oy Mt /+OO G1(§,5)f(s)ds + / G1(t,5)f(s)ds
0 0

h
+ Tl(t)/ g1(s)u(s) ds.
0

Multiplying both sides of the above equality by g; (¢) and integrating from 0 to /, then

+00

h h h
/ a(O)ult)dt = ao, / a1 dt + Moy / a1 dt / G1(&,5)f(s) ds
0 0 0 0

h +00 h h
+/(; gl(t)/o Gl(t,s)f(s)dsdt+/0 gl(t)Tl(t)dt/O g1(s)u(s) ds.
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Next we have

h  aoy h o Moy (" . +00
| aouea - [Caortans 2 Caoeta [ G ds

M1

h +00
+ - Jo gl(t)/o G (t,5)f (s) dsdt.

Finally, we can obtain
u(t) = aot* ™t + alMt"H/ G1(§,5)f(s)ds +/ G1(t,5)f(s)ds
0 0

anTi® (" ey, DO [
+ - /Ogl(T)T d‘L’+1 Ml/(; gl(t)/o Gi(1,8)f (s) dsdt

M01T1
1-m

ao1T1(2)
1—p1 Jo

t)/ (2)e* ldr/+ G (&, 9)f (s) ds

=ac i+

gl(t)r“_ldr + /+OOH1(t,s)f(s) ds
0

T,(t)
+
11—

h +00
g1(T)/ Hi(t,s)f(s)dsdt
0 0

aow1 T1(t)
1-m

=aot* !+

+00
+ / H(t,s)f (s)ds.

0
This completes the proof of the lemma. d

We can easily get the following result.

Lemma 2.2 The function Gi(t,s) defined by (2.3) satisfies:
(i) Gy is continuous and G1(t,s) > 0,0 < t,s < +00;
(i) Gi(t,s) isincreasingint,0 <t,s < +00.

Remark 2.1 For 0 < t,s < +00, we can easily obtain

Gi(t, 1 Gi(&, syt gt

1 S)S , 1(6,5) SS . E>0.
1+t 7~ IMNa) 1+t I'(a)

Lemma 2.3 The function H(t,s) satisfies the following inequality:

H(t,S) <o+ 1(0’1 +O’1M€a 2)
1+t = A—p)le—-1)

o1(1 +8141), Vt,s€[0,+00).

Proof From Remark 2.1, we have

Hi(t,s) oiMt*'Gi(§,8)  Gilt,s)  1+oyME*!

= < =
1+t Tveet 1l @ v
thus, from (2.1), we get
H(t, H;(t, T: (¢t
(t,s) _ 1(£,5) . 1(t / Hi(r, )1 (r) dr
1+l 14+l (1= /Ll)(1+t°‘ 1)
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<o+ (1+01ME“ oy [

- A -p)l(a-1) Jo

s 81(o1 + oZME2)
1-p)l (a-1)

(1 + t"_l)gl(r)dr

= 0'1(1 + 8111).

The proof is completed. O

The general solution of

DPv(t) +g(t) =0, B €(2,3),t €0, +00),
PPv®lio=0,  DF2u(t)i0 = fi @2(s)V(s)ds,  DP'w(+00) = Nv(y) + b

can be written by

bOz(,()z T2 (t

w(t) = boytP 1 + ) +/ K(¢,5)g(s) ds,
1- s 0

where

o) ("
1-#2/0 Ki(z,8)gx(7)dr,

K(t,s) = Ki(t,s) +

Ki(t,s) = 0o,NtP LG, (€, 8) + Galt, s),

and G, (¢, s) can be obtained from Gj (¢, s) by replacing o with S.

Hence, system (1.1) is equivalent to the following integral system:

u(t) = ao t* ' + %f;(t) + 0+°O H{(t,s)p(s, v(s), D" v(s)) ds,

v(t) = boytP1 + lmf"%}fjw + Jo K (69)Y (s, u(s), D" u(s)) ds.

Define two spaces

u(t D"u(t
X=3ueC(),D""ueC(J)|sup ()l < +00, Su & +00 ¢,
tE] 1 + ta71 tE] 1 + tDt*l*)/l
[v(2)] [D72v(t)]|
Y=3veC(),D?veC su < 400, SUp———— < +00 ¢,
{ (]) (]) [E})l + tﬂ_l tE? 1+ tﬁ—l—)/2
equipped with the norms
el = sup u(t)] u [D" u(t)| IWlly = sup [v(t)] “ [D72v(t)|
X te] 1+ta_l te] 1+ta_1_y1, Y te] 1+tﬁ_1 te] 1+tﬁ—1—]/2’

where 0 < y; <1, i = 1,2. C(J) denotes the space of all continuous functions defined on
[0, +00).

Lemma 2.4 (X, || - ||x) is a Banach space.
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Proof Let {u,}52; be a Cauchy sequence in the space (X, || - ||x); then Ve > 0, AN (¢) > 0 such
that

u,(t) _ Uy (£)
1+l 140t

’

D"y, (t) D" u,,(t)
1+ n 14pIn

for any ¢ € J and n,m > N(g). We have lim,_, ;o lj‘;y)l = 1““ 1, u(t) € C(J). Then, for

% = Stlelpl t(f : > 0, there exists N > 0 such that |1+t°‘ T - 1+za—1| < %, n > N. Further,
set A; = sup® i = 1,2,..,N, and A = max{4;i = 0,1,2,...,N}. Then 10} < 4,

Clearly, { ””(t 1100, and { D ti“f(f,l }o°, are Cauchy sequences in the space C(J). Therefore,

{ 3 J;f‘f_(f,)l o0, converges umformly to some v € C(J) and sup|v(£)| < +00. We need to prove
te]

DY1u(t
1+8271- Vl

t
_ -l o—1 M”(S)
‘/0 (t—s) (1 + 8 )1+s°‘—1 ds

t
< A/ (t—s)’“’l(l +s°"1) ds
0

that v =

.Forany t € J, we have

1 1
=A™ / (1-1)" Yt + AN / M1 -o) " dr
0 0

= At'B(1,-1) + AL B(a, ~y1)

Fn) a1 T Er)

= At N .
rl-y) T(a—y1)

Furthermore, by Lebesgue’s dominated convergence theorem, and considering the uni-

form convergence of { 1D l;”{“(?l °,,one has
pn
v(t) = lim A
n—+o00 1 + t¢-1-n1
1 d [*
= 1 C— t—s)™" d
it (L4 2 (1= yy)  dt /0 (£ =) " un(s)ds
1 t
= f E-s)" 1+ u(s) ds
(1+t-1=-m)C(1-9y1) Jo 1+l
_ D"u(r)
T lageion
Thus
o up(t)  DMuy(2) u(?) D" u(t)
lim = .
n—too 1 + ¢4~ 14 ge-ln 14l 14 pe-ln
Therefore, we conclude that (X, || - ||x) is a Banach space. d

To prove the existence-uniqueness of solutions for system (1.1), we state the following

compactness criterion.

Lemma 2.5 ([33]) Let U C Y be a bounded set; then U is relatively compact in Y if:
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(i) foranyue U, lft((f)_l and D*'u(t) are equicontinuous on any compact interval of J;

(ii) forany e >0, there exists a constant T = T () > 0 such that

M(tl) M(Ifz) -1 -1
- <&, D*u(t)) - D ulty)| < &,
L+eet 148t | @) (©)]

forany ti,t, > T andu e U.

Remark 2.2 According to Lemmas 2.4 and 2.5, it is clear that Z is relatively compact in X
if the following conditions hold:
. 18
(i) foranyveZ, 1:t(£)—1 and lftal_ﬁ(f)n

(ii) for any e >0, there exists a constant L = L(g) > 0 such that

are equicontinuous on any compact interval of J;

v(t1) v(ta)

L+ 1+457t

- -
1+ 1+t "

‘ D"y(ty) D"y(ty)

forany t1,tp > Landve Z.

Lemma 2.6 (Schauder’s fixed point theorem) Let C be a nonempty, closed, bounded, and
convex subset of a Banach space X. Suppose that T : C — C is a continuous and compact
mapping. Then T has at least one fixed point in C.

3 Main results
In our considerations, we work in the space Q = {(u,v) | u € X,v € Y} endowed with the
norm

||(u,v)||Q:max{||u||x, ”V”Y}r (M’V)EQ'
By Lemma 2.4, Q is a Banach space. Let T': Q — Q be the operator defined as

T(u,v)(8) = (Tov(t), Tou(?)),

where
T t +00
Tiv(t) = ao1t* L + anan T (6) + / H(t,s)¢(s,v(s), D" v(s)) ds,
11— 0
b T(t oo
Tou(t) = boyt? ! + ?Lz() + / I((t,S)I/f(S,M(S),Dyzu(S)) ds.
— K2 0

Notice that system (1.1) has a solution if and only if the operator T has a fixed point. For
the forthcoming analysis, denote

Ly =01(1+61h), Ly = 05(1 + 820n),
_ 1+ 011“(01) + 20,8, + O'lM-‘;:a_l(l + 2&)111)

1

Ia=71) ’
_ 1+ 021“(,3) + 20565 + O’2N17ﬁ71(1 + 2(,()2[2)
’ r(B-y.) ’

0(s) = max{l I S B L CO (IR o I e }, s € [0, +00).

Page 9 of 22
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We need the following assumptions:
(H;) There exist nonnegative functions c¢;(¢), d;(t) € L1(J) N C(J), i = 1,2, 3, such that

lo(t,u,v)| < c1(£) + c2(8) ul + c3(E) V], ¢ €[0,+00),

1

/0+00 c1(t) dt < +00, /0+00 (c2(t) + c3(2))0 (1) dt < max{ ZLLl T }

and
¥ (8,1, v)| < di(0) + da(0)|u| + d3(D)Iv], ¢ € [0,+00),

/(; dy(t)dt < +oo, ./0 (do(2) +d3(0))60 () dt < max{ 2]142 222 }

(H,) For any u,v,x,y € R, there exist A,(t) € L1(J) N C(J) with A;(£) >0, i = 1,2, such that

|(p(t» M,V) - W(t:x’y)| S }Ll(t)(|u _xl + |V—)’|)» te [0» +OO)1

|Vt u,v) = ¥ (t,x,)| < ra(@)(lu—xl+|v-yl), te[0,+00).

This section is devoted to some existence and uniqueness results of system (1.1). In order
to do this, define

Br={wv) Q| [@v],=R},
where

F(Ot 71)
3-L 0+°°(Cz(S) +e3()0()ds’ ¢ [ (cals) + 63(5))9(5) ds

b02(1 + wzlz) +Ls f, © di(s)ds %(1 +wily) + &y fo di(s) dS}
3= Lo fy " (da(s) + ds(S))Q(S) s’ i-¢ o " (das) + ds(s))0(s) ds

{ ao1(1+wihh) + Ly f0+°° ci(s)ds 2er—al(l +oh)+ 4 fo s)ds

We observe that By is a bounded closed ball in the Banach space Q.
Lemma 3.1 If (H,) is satisfied, then T : Bx — Bg.
Proof First, for any (u,v) € Bg, we know that

|Tyv (t)l |D" Tyv(2)
ITyvllx = sup 22
tG] 1 tE] 1 + tO[— e

and from condition (), we have

| T1v(0)]

_ (lO'll’afl T:(t) . aoiw; oo H(If,S)
L+l

+ +
Teeel Toget 1oy Jy Tee?

(s, v(s), D" V(s)) ds

aoiw1(1 + oy MEY2)

St T T @ -1

+/ (1+8111)’g0(s, ), D"t u( )’ds
0

<ao(1+wlh)+1L; / (c1(5) + ca(s) [V(s)] + c3(5) [ D" v(s)|) dis
0
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<aoi(1+wil)+1L /+0<> c1(s)ds+ Ly /+Oo(cz(s) + C3(s))9(s) ds|
0 0

ol

(10'1(1 +C()1[1)+L1 f0+0061(8)d5 R

1-2Ly [y ™ (cals) + c3(5))0(s) ds DX

In view of Lemma 2.1, one has

a-2 h

D"u(t) =D" (olt""l (a + /+Oof(s) ds + Mg
0

m ; g1(s)u(s)ds — MI"‘f(S))

a-2 h
1"——1)/ gl(s)u(s)ds—l"‘f(t))

M%-oz -2 h .,
(ﬂ+/ Sf(s)ds + Tas )/ a1(8)u(s)ds — le(g)) T

tO( 2)/1

h
- _jen
+ F(a—l—yl)/o g1(S)u(s)ds — 17" f(¢),

and thus, we can easily show that

h ao] k 1
’/ gl(t)TIV(t)dt‘ =’ / a@®tdt
0 1-pu1 Jo

MO’I h al +00 3
+ - /0 gl(t)t dl’/(; Gl(é,s)(p(s, v(s),D V(S)) ds

h +00
14!
+ 1—,u1/o gl(t)/(; G1(t,8)¢(s, v(s),D v(s))dsdt)

< ao1w1 UlwlMEOFI +oo

T1l-wm Q-p)l(@) Jo

¢ (5, (), D" ¥(s)) | ds

(1 m)F(a)/

MEY— 1+8 +00
< aowi + o1 ME 1/ Cl(s)ds
1-w A-p)l (@) Jo

ola)lMé“‘l + 81

- )T @ /O+OO(C2(S) +e3(5))0(s) ds]| (v, )| -
Further,
DO 2D [ om0 v) s
F(ja 21)/ &) Tiv(s)ds
- % OE (& -9 " o(s, v(s), D" v(s)) ds)

1 Lt—s) I
- Fa-y) Jo 1+t

@(s,v(s), D" v(s)) ds

o1t I (@)

1 ! @S, VS), 14%] S
a(e)(1+2 )dt/ o (s,v(s), D" v(s)) | d

Page 11 of 22
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ao1 I (a) o1 (a) +oo
+
Fla-yn) I'le-n)Jo
O'lMEa 1
+ —_—
F C( )/1
o ME“ 2o -1 +a—-1-p
(o —y1)

1 t s\¢ I
' F(Ty)f (1 ) z) (s v(s), D" v(s)) | s

1+ o0 (a) + 2081 + ot MEX Y (1 + 2010y) [+
I'(a-y1) /
1+ouxay+yﬁ1+mﬁﬁa1u+2wﬂg
I'(a~-y1)

X /0 (cz(s) + C3(s))9(s) ds||(v, V) ||Q

I'(a) 20104 T -1)
+“m(rm—m)+ [(a - ) )

%(1+wlll +0 [ alks)ds R

12201 [7%(ca(s) + c3())0(s)ds 2

IA

|¢(s, v(s), D' v(s)) | ds

/ ‘(p s, v(s), D" v( )‘ds

/ g1(s)T1v(s) ds

IA

ci(s)ds

’

which implies that

T1v||x =su + su <
ITavil = sup ey # S0P e

+

O] 1D Tivto) g =z (3.2)

R
2

Similarly, we can obtain

| Toully = | Tou(t)] |D”2 Thu(t)|
2 Y te] 1+ tﬁ_l te] 1+ tﬂ_l_w
b02(1 roul) + Ly o i) ds 2RLCD (1 + wnhy) + ¢ [y da(s)ds
T3 ) (da(s) + d3(5))0 (s) ds 3~ o (das) + ds(s))0(s) ds
R R
<—+==R (33)
2 2

It shows that || T(4,v)||o < R, and T, T, are continuous on J. Thus T : By — By is well
defined. O

Theorem 3.1 If (H;) holds, then system (1.1) has at least one solution.

Proof First, the operator T : Br — By is continuous owing to the continuity of ¢ and .
We are going to show that 7 is a completely continuous operator. By Lemma 3.1, T is
bounded. We need to show that T is relatively compact by means of Remark 2.2. This part
consists of two steps as follows.

Step 1 We show that T is equicontinuous on any compact interval of J.
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Let w be a bounded subset of Bg, J; € [0, +00) be a compact interval. Then, for any
ti,bh e with t1 <y, V€ w, We have

Tw(t) Tiv(t)

L+ 1+4470

toz—l tot—l +00 /L (¢ , Hi(t ,
_|ao i _ ao i / ( (t 2 _H@ S)1><p(s,v(s),DV1v(s)) s
1+1t5 1+t 0 1+1t5 1+t
.\ ( T1(t2) Th(t1) ) Joro
- - ao1w)
Q-p)@+7)  QA-p)A+47

|t57t — 2 aoy
TA+gHa+eh

O'lMtg_l O’IMt(lx_l
I

T1(t) Ti(t)

* ‘ I-p)@+8  Q-p)@+e1

‘/0 Gy (E,s)|<p(s, v(s), D" v(s)) | ds

+00 ph
X ,/0 /0 Hl(r,s)gl(r)|(p(s,v(s),DVlv(s))|dt ds

. /‘m Gi(t2,8) — Gi(t1,9)
0 1+ tgFl

+/+w’G1(t1,S) Gl(tl:s)
0

|9 (s, v(s), D' v(s)) | ds

L+eg™t 144870

lo(s,v(s), D" v(s)) | ds

ol MET2EG T — 7+ 87— 72 + (k) 2t - o
QT+e5 A+ A - )M (@-1)

X (aalcm + 0181f ‘(p(s, v(s), D"* v(s))‘ds)
0

|t5~! — £y aoy N |t57! — ey o MEST [T
A+ A+ A+t HA+ 8 )0 (@) Jo

/tl R R Gt A C et
+
0

Te)(1+257")
/tz 5 -6 - (-9
+
" Ie)(1+8571)
+00 tg—l _ t¢11—1
+ —
/tz ‘F(a)(l +157h)
+00 t(f—l _ tg—l
+ e
/0 ‘ Fe)(1+857h)

Then we have |1T+%,§t31) - %ﬁtjﬂ — 0 as t; — t. Further, we know that
2 1

IA

|0 (s, v(s), D' v(s)) | ds

¢ (5, v(s), D" () | ds

¢ (5,v(s), D" ¥(s)) | ds

(5, v(s), D1 v(s)) | ds

|0 (s, v(s), D" v(s)) | .

Dn T1 V(tz) Dn Tl V(tl)

- -
T+ty " 1+

£ gy aon @) ol [
’ la_l_yl 2 o — (F 3 T @ (s, v(s), D" v(s)) ds
1+4 YA +12, ) (@-n) (@-y1)Jo

_ﬂ 5 _ a-1 1
Fasyn |, €9 ol 0v) as
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o ME* (e~ 1) [
_ (s)T1v(s)ds
I'(a—y1) 0 grerh
a-1-y; a-1-y; h
iy 5 T1v(s)
——d
+<1+t“ o 1+t‘f‘1‘”)/o gl(s)F(a—l—m) ’
1 bt —s)* I

+ s, ¥(s), D" v(s)) ds
Cla-y)Jo 1+ ol )

t _e-1-n
: Vl)/ © S)* - ' @(s,v(s), D" v(s)) ds

NCE 1+
1

ta7 -” _ taflﬂ/l r r -
I3 o (Ml @ | ol |o(s,(s), D" v(s)) | ds

T A+ETTMA T\ (@ -n) ' I'(a—y1)

a-1 a2
;"'l(z/lsy )/ lo(s,v(s), D" v(s)) | ds + F(1M$ 3 gl(s)Tlv(s)ds)
|t0‘ I-n ttlx—lfyll h
Ty v(s) d.
R EE ”)(1+t§””)1“(a-1_y1)/0 s Tivls)ds

t a—1-y1 a—1-y1

Ut =9 (a—s)" 77
11— - 1=

L+t " 1+t 7
a 1-yn1

[
F(Ol Y1) 1+t°‘1y1

¢ (5,v(s), D" v(s)) | ds

|o(s,v(s), D" v(s)) | dis,

D1 Tyv(tp) _ D1 Tiv(t1)
14ty gy 4 I

S0 | | = Oast; — . Moreover, notice that ¢ (¢, v(¢), D" v(¢)) is bounded

T1v(t) and DY1Tyv(t)
14121 1+¢9-1-11

tinuous. Similarly, we know that T is also equicontinuous. Thus T is equicontinuous on

Ji.
Step 2 We show that T is equiconvergent at co.

A-1
Slnce hm,_,+O<> lfm 1 =1, for any ¢ > 0, there exists a constant ;41 > 0, for each ¢ > p;, one

has |-

on /;. For any v € o, are equicontinuous on Ji, that is, 7 is equicon-

" t)‘ r — 1| < 5. Thus, for each #;, ¢, > 111, we have

A-1 A-1
t. t
2 1 <

! ~ gt ~
1+ 1+t

1+ 1+47

A—1
Further, there exists ¢ > s such that lim;_, , % = 1. Then, for any ¢ > 0, there exists

2 > ¢ > 0 such that, for each #1, £, > 1, we have

t-9"" (-5

PRV} PRSIVt
(t2-¢) _1‘+(1 s) _1‘

1+870  1+67] 1+ 1+t
e ¢
< —+-=e
2 2

Therefore, for any € > 0, choose ¢ > max{u1, u2}; then, for each t;, ¢, > (4, one has

Tw(tp)  Tiv(t)
| Y
tg—l ttlw—l

- ‘1+t§‘1 B 1+

o-1 a—-1
ts £

O,IM%-a—Z
o (F(a—l)(l—m)

1+25h 14407
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1
F(O‘ DA - p1) )

X (aalwl +/ / Hl(r,s)gl(r)|(p(s,V(s),D”lv(s))|dtds)
o Jo

5! et
I S

r%)/”(

x |5 ¥(s), D" (s)) | ds

tot -2 ttlx_z

1+ta1 1+t‘1>‘—1

GlMEa_l +00 y]
ra ), oD

tgFl tiFI (t - s)a_l (£ — S)oc—l

L+t 1+t57!

)

L+eg ! 1+

LY I S n
* m fH ‘ 1+ tg_l h 1+ ttl)t—l |(ﬂ($, V(S))D V(S))|ds
1 M a-2 00
= gaot % (“Ulwl + 0161 /0 |90(s, V(S),Dylv(s))| ds)
' % /om""(s’ v(), D" v(s)) | ds + FZ(Z) /Otl (s v(s), D" w(s)) | ds
Ffa) . | (s, v(s), D" v(s)) | ds

<eaoi(1+wih)+ e(Ll + F? )) / (cl(s) + cz(s)\v(s)] + CB(S)’Dylv(s)‘) ds

In addition, we can obtain

D T1V(tz) D Tyv(ty)
1+ tg_l_”l 1+

o-1-y1 a-1-y
' L t

ao1 I () o1 (@) 400 1
<F(“—7/1) ’ F(a—yl)/o | (s, v(s), D' v(s))| ds

a—1 1
F(O{ ™ / (& -5) |§0(S, v(s), D" V(S))|ds

oOME 2 -1 +a—-1-yp
' I —1) /O &($)T1v(s) ds)

1 /n (t _S)a—l—Vl (t _S)a_l_yl
+ —
I'(a—y1)

1+ 14270
[5) (tZ _ S)Ol—l—yl

/ a1y |(P(S, v(s), D! V(S)) | ds
F(O‘ ") 1+2

I'(x) 2010 T (- 1) e l(a) [*° .
Smol(]“(a—yl) + a7 >+ F(Oé—yl)/o |<p(s,v(s),DV v(s))|ds

80’1Méja /

S, V(S) D" v(s))|ds
"T@-n) ) o )|
2811(0’10)1]\/150‘ 1+ 1

(e —-n)

/ (5, v(s), D" () | ds

1+ t2 -l 1+t°‘—1—)/1

|§0(S' ), DV1v( )| ds

v /0 h | (s, v(s), D" v(s)) | ds

F(Of 1)

=YY Y1
' r(a_yl) /t [ (5, v(s), D" v(s)) | ds
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2eao1 I (o — 1)
I'(a-y)

1 +00
+ (8{1 + m) /0‘ (cl(s) +cz(s)|v(s)| + Cg(S)’Dy V(s)‘)ds

(1+wih)

Thus we have

Tv(t)  Tiv(h)
L+es™t 1+47!

- -
L+t ™ 1+t

‘ Dn T]V(tz) D" Tll/(tl)

1 2¢e +00 1
Ta—y) Ta)> /0 (c1(s) + c2(8)|[V(s)] + c3(s)| D" v(s)|) dis

2F(a—1)>
Ia-n))

< (8(L1 +1)+
+eaor(1 + wlll)(l +

Then, for all ¢ > 0, there exists u > 0 such that, for ¢1, ¢ > u, T1 : @ — o is equiconvergent
at infinity. Using the same argument, 75 : w — w is also equiconvergent at infinity. Thus
T : w — w is equiconvergent at infinity. By means of Remark 2.2, we know T : Bx — By is

completely continuous.
According to Schauder’s fixed point theorem, we conclude that T has at least one fixed

point, that is, system (1.1) has at least one solution in Bg. O

Corollary 3.1 Assume that
(H3) there exist nonnegative functions a(t), b(t),a;(t) € L*(J) N C(J), i = 1,2, such that

|‘/)(t; M1V)| S ﬂ(t) +a1(t)(|u|pl + |V|p2)’ 0 <pi< lﬁl = 1,2,t G],

+00 +00 1 1
/0 a(t) dt < +o0, /0 a,(£)0(t) dt < max{ i, i }

and
|¢(t, u, v)| <b(t)+ ag(t)(lu|q1 + |v|q2), 0<q;i<l,i=1,2,t€],

/0 b(t) dt < +o0, /0 a»(1)0(t)dt < max{ 412 422 }

Here, a;, b;,i = 1,2, are nonnegative constants, then system (1.1) has at least one so-

lution.

Proof In this case, let px = max{p;, p»}, g% = max{q1, g2}, we take

{(aol(l +o )+ Ly 0+°° a(s) ds)l/I’* (%(1 +wrh)+ fo d5>1/P*
3= 2L 0+oo a1 (s)0(s)ds 3 =20 0 © a1(s)0(s) ds

(b62(1 +waly) + Ly [ b(s) ds) Ve
— 2Ly [ ay(s)8(s) ds ’

(%(l+wzb +o i S)dS)l/q*}
—28 [, ax(s)0(s)ds

The rest of the proof is similar to Theorem 3.1, so we omit the details. O

Page 16 of 22
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Remark 3.1 For the sake of simplicity, if a(t) = b(¢) = 0 in condition (H3), that is,

’ga(t, u,v)| < al()f)(|u|’"1 + |V|P2), pi>1l,i=1,2te],

+00 1 1
/0 al(t)e(t)dt<max{4—]d,4—é_l};

and

|1//(t1u, V)i S (lz(t)(|u|q1 + |V|q2)’ qi > lyi: 1;2,t 6]1

+00 1 1
/0 az(t)e(t)dt<max{4—L2,4—§2}.

Due to the different values of R, the conclusion of Theorem 3.1 is also true for the nonstrict
inequalities p;,q; > 1. It should be replaced by a weak form which can be derived easily
from (3.2) and (3.3).

When % = 0, the boundary conditions of system (1.1) are changed to the form:

IB2y(0) = D*24(0) = 0, D*u(+00) = Mu(§) +a,
I3Py(0) = DF2y(0) = 0, DF1y(+00) = Nv(n) + b.

Similar to Theorem 3.1, we can obtain the following result.

Theorem 3.2 Assume that
(H}) there exist nonnegative functions c;(t),d;(t) € L*(J), i = 1,2,3, such that

|(p(t» u, V)| S Cl(t) + C2(t)|u| + CS(t)|V|: te [0’ +OO)1

+00 +00 1 1
t d ) 0 t d ~r/ a7 [
/0 c1(t) dt < +00 /0 (ca(t) + c3(2))0(2) t<max{2L,l 2{{}
where
, . 1+o1(1+Me%Y)
L=, S Al M
1= 1 I'(a—y1)
and

[ (t,u,v)| < di(0) + da(6)|ul + d3(®)|v], € [0,+00),

+00 +00 1 1
/0 d(t) dt < +o0, fo (dg(t)+d3(t))6(t)dt<max{2—%,2—é_é},

where

, 1+0y(1+Nnf)
Lo G=—FGT)

Then system (1.1) with boundary condition (3.4) has at least one solution.

Page 17 of 22
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Theorem 3.3 Assume that (H;), (H,) hold, then system (1.1) has a unique solution if
my+my <1, n+ny <1,
where
+00 +00
=i [ @00 =L [ e
0 0
+00 +00
mea [ @00 mec | a6e0ds
0 0

Proof Let u;(t),vi(t) € C*(J), i = 1,2; then we have

Tin()  Tinl(t)
1+l 1+t
o H(t,s)

- 0 1+ t* 1

10(5,12(5), D" v2(5)) = (s, v1 (), D" () | i
<L, / Ja(9)0() dsllva = vilx = mlva 1l
0

and
DN Tivy(t) D" Tivi(t)
L+ 14pin

oI () +oo

|<p (s, v (s), D" vy (s)) -@ (s, v1(s), D"'vy (s)) | ds

T Tla-mJo
a-1
' 1{4(215 ) Jo 061209, D44309) 0619, D701 9) | s
P(a " )/ (5, va(5), D" va(s)) = 0 (s5,v1(5), D" va(s)) | ds
a-2
+ 2(111-(21—?451)) A gl(s)(TlVg(S) - TIVI(S)) ds

+00
<5 f J($)8($) dslva vl = mallva — v lx.
0
We can see that
I Thve — Tivillx < (m1 + ma)|lva — vilx.

Analogously, it can be proved that

Touy(t) Tzul(t)
1+tP-1 141

o5 (1 + 83s) / Ja($)6(5) dslttz — ur |y
0

= mluz —wmlly

and

D" Tous(t) D" Tou(t)

1+tp-12 14+¢P-1n
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< (GI(F((X) +M§a_1) +1 + (O'lwlMEa_l + 81) ) 2(1 +O’1M§a_2))
- I'a-n) (1 - p)I () I'a-n)

+00
X/o Aa(8)0(s) dslluy —ually
=mlug — u1ly.
Thus we know that
| Tous — Touslly < (m1 + nma)l|luz — uslly.
In conclusion, we have
| T (2, v2) = T (1, v1) ”Q < max{my + my, ny + my} | (uz, v2) - (141»"1)HQo

Obviously, T is a contraction. By means of the Banach contraction theorem, 7" has a unique

fixed point which is the unique solution of system (1.1). d

Corollary 3.2 Assume that (H,), (Hs) hold, then system (1.1) has a unique solution if m; +

my<1,m +ny<1.

Corollary 3.3 On the basis of Remark 3.1, if condition (H,) holds, then system (1.1) has a
unique solution if my + my < 1, ny + ny < 1. In short, if ¢, ¥ are bounded and continuous on
J X R x R, then there exists a solution for system (1.1).

Remark 3.2 If ¢, € C(J x Rt x R*,R*), (¢, u, v), ¥ (¢, u,v) # 0, under condition (H;) or
(Hs), then system (1.1) has at least one positive solution. Further, the positive solution is
unique if (H;), (H,) or (H3), (H3) are satisfied with m; + my < 1, ny + 1y < 1.

4 An example
Example 4.1 Consider the system

1
Diu(t) + Sint 4 YOIl _

t € [0, +00),
V2 722t(1+t%)

. 1
D3v(t) + (2 + cost)e™ + sinju@l - 1+D2u@) _
3 3

48e4(13¢7) 192evE(1+£2) (4.1)
13u(0) = 0, D3 u(0) = (% -3 01 s*u(s) ds, D3 u(+00) = u(1) + 2,
3

[v(0)=0,  Dv(0) = (22 - Z) [} 2u(s)ds,  D3v(+o0) = w(1)+2,

3
wherea=8=32,y1=y=3h=1L, MN.&n=1,a=b=2,4()= (% - Dt o) =

sint Juv]
V2+82 ' 72et(1 + t%),
sin |u| In(1 + |v|)
486t (1+13)  192evi(1+£3)

ot u,v) =

Y (t,u,v) = (2 + cos et +
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Choose
1 1
ci(t) = , c(t) = c3(t) = ———,
YT e ? T det(1 + £3)
1
di) =3¢,  dyt)= ———,  ds(t)= ————.
48¢t(1 +£2) 192evi(1 + £2)

Obviously, (¢, u,v)| < c1(t) + ca(®)|ul + c3@O|V], [¥ (& u,v)| < di(E) + da(t)|u| + d3(2)]v],
and by simple computations, we find that 0 < M&*, Npf~! < I'(3) ~ 1.329, 01 = 0 =

3 1 _
T 10 = To() = 55217 + =0, i = [f@OTa(@O)de = 5 + T30 < 1, pp =
3 3 3 3
fong(t)TZ(t)dt = % - g < 1) 81 = 9n21;(}2n’ 82 = % - %; w1 = 37[121_47[) wy = 7;_; - %;
_ 1008 _ 144 .
I = G/ a)(168+16 /7 31n) and [, = ENCETTCN Further, we can obtain
+00
/ a(t)dt = T < 400,
A 4
+00 1 1 1+t 1 +00
/ @mmwwmm=—/-—LTm+_/ et dt
0 72 0 et(l + tf) 72 1
1 1 4In2 11
<—|2+-- <maxy —,—¢.
72 e 3 2L1 241
Here,
Ly = o1(1+8,) 4 3024n 4617
=o1(1+ = + ~4.617,
PO T T g r — 4 35(3 /7 — 4)(168 + 164/7 — 217)
6/ 453672 — 10087
= + ~11.747,
3J7 -4 3537 — 4)(168 + 16/ — 217)

+00 3
/ dq(t) dt = \2/7? < +00,
0

1 1+t 1+t
do(t) + ds())0(¢) dt = dt
fo (4:(6) + da()60) fo (48et(1+t%)+192eﬁ(1+t%)>

+00 1 1
— dt
* /1 (48et ’ 192eﬁ)

5 5In2 1 1 1
<—- + — <max{ —,—¢,
96 144  32e 2L, 28

4 l4m
Ly = 05(1 + 85lp) = + ~ 4.879,
2= 021+ 5:) B/ —4 (37 —4)(24+ 27 - 37)
and
3
6 273 -7
o e Tt ~ 12.050.

T3/m -4 (3Jm—4)(24+27 —37)

Then the conditions of Theorem 3.1 are satisfied, so system (4.1) has at least one solution.
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