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Abstract
In this paper, we first obtain the existence of solutions for a class of elliptic equations
involving critical variable exponents and nonlinear boundary values by the mountain
pass theorem and concentration compactness principle. Then, under suitable
assumptions, we obtain a sequence of solutions with positive energies going towards
infinity by Fountain Theorem.

Keywords: Variable exponent Sobolev space; Weak solution; Mountain pass
theorem; Fountain Theorem; Variational method

1 Introduction
In the studies of electrorheological fluids, nonlinear elasticity, and image restoration in
practical applications, the classical Lebesgue and Sobolev spaces are inapplicable; see [1–
3]. Such problems are inhomogeneous and nonlinear with variable exponential growth
conditions. So we need to study the problems based on the theory of variable exponent
Lebesgue and Sobolev spaces.

Since Kováčik and Rákosník first studied the Lp(x) spaces and W k,p(x) spaces in [4], a lot of
research has been done concerning these kinds of variable exponent spaces. The existence
of solutions for p(x)-Laplacian Dirichlet problems on bounded domains has been widely
discussed. For example, in [5] and [6], some results as regards the existence of solutions
under some conditions are obtained.

The nonlinear elliptic boundary value problems appear when we study the conformal
deformations on Riemannian manifolds with boundary. The study of nonlinear elliptic
boundary value problems with p-Laplacian has become an interesting topic in recent
years. Many results have been obtained on this kind of problems; see [7–9]. In the frac-
tional Laplacian setting, the existence of solutions for the problem has been obtained; see
[10–14].

But at present there are few papers on the study of nonlinear elliptic boundary value
problems with p(x)-Laplacian. So this topic is worth further discussing.

In this paper, we consider the problem
⎧
⎨

⎩

div(a(x),∇u) + |u|p(x)–2u = f (x, u) + h(x)|u|p∗(x)–2u, x ∈ Ω ,

a(x,∇u) · v(x) = b(x, u), x ∈ ∂Ω ,
(1.1)

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-019-1231-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-019-1231-z&domain=pdf
mailto:shanyingying@hlju.edu.cn


Shan and Fu Boundary Value Problems        (2019) 2019:122 Page 2 of 21

where Ω ⊂R
N is a bounded domain with smooth boundary, p(x) is Lipschitz continuous

and satisfies 1 < p1 ≤ p(x) ≤ p2 < N , p∗(x) = Np(x)
N–p(x) . We assume that a : Ω × R

N → R is
a Carathéodory function and we have the continuous derivative with respect to η of a
function A : Ω ×R

N → R. Suppose that a and A satisfy the following hypotheses:
(A1) For ∀x ∈ Ω , the equality A(x, 0) = 0 holds.
(A2) There exists a positive constant c0 such that

∣
∣a(x,η)
∣
∣≤ c0
(
1 + |η|p(x)–1)

for all x ∈ Ω and η ∈R
N .

(A3) For all x ∈ Ω and η1,η2 ∈R
N , the following inequality holds:

0 ≤ [a(x,η1) – a(x,η2)
] · (η1 – η2),

where equality holds if and only if η1 = η2.
(A4) For all x ∈ Ω and η ∈R

N , the inequalities

|η|p(x) ≤ a(x,η) · η ≤ p(x)A(x,η)

hold true.
(A5) For all x ∈ Ω and η ∈R

N , the equality A(x, –η) = A(x,η) holds true.
The above type of assumptions can be found in other papers too; for example, see [15,

16]. But in [16], the authors establish the existence of a solution for an elliptic problem
with Dirichlet boundary conditions, and in [15], the authors consider the subcritical case.
In the present paper, the problem involves not only the critical Sobolev exponents, but also
the nonlinear boundary conditions. Because of the critical exponents, the compactness of
the embedding fails, so to recover the loss of the compactness, we use the concentration
compactness principle in [17].

Throughout this paper, we assume that the following conditions hold:
(F1) f ∈ C(Ω × R), f (x, 0) ≡ 0 and |f (x, t)| ≤ C1(1 + |t|α1(x)–1), α1 ∈ C(Ω) with p(x) 


α1(x) 
 p∗(x), and F(x, t) > 0 in Ω0 ×R for some nonempty open set Ω0 ⊂ Ω , where
C1 is a positive constant.

(̃F1) f ∈ C(Ω × R), |f (x, t)| ≤ C1(1 + |t|α1(x)–1), α1 ∈ C(Ω) with 1 ≤ α1(x) 
 p(x) and
F(x, t) > 0 in Ω0 ×R for some nonempty open set Ω0 ⊂ Ω .

(F2) f (x, t) = –f (x, –t) for any (x, t) ∈ Ω ×R.
(F3) For any (x, t) ∈ Ω ×R, there exists a function μ1(x) ∈ C1(x) such that μ1(x) � p(x)

and 0 ≤ μ1(x)F(x, t) ≤ f (x, t)t, where F(x, t) =
∫ t

0 f (x, s) ds.
(F4) f (x, t) = o(|t|p(x)–1) hold uniformly for any x ∈ Ω , as t → 0.
(B1) b ∈ C(Ω ×R), b(x, 0) ≡ 0 and |b(x, t)| ≤ C2|t|α2(x)–1, α2 ∈ C(Ω) with p(x) 
 α2(x) 


p∗(x), and B(x, t) > 0 in ∂Ω ×R, where C2 is a positive constant and p∗(x) = (N–1)p(x)
N–p(x) .

(̃B1) b ∈ C(Ω × R), |b(x, t)| ≤ C2(1 + |t|α2(x)–1), α2 ∈ C(Ω) with p(x) 
 α2(x) 
 p∗(x)
and B(x, t) > 0 in ∂Ω ×R.

(B2) b(x, t) = –b(x, –t) for any (x, t) ∈ Ω ×R.
(B3) For any (x, t) ∈ ∂Ω ×R, there exists a function μ2(x) ∈ C1(x) such that μ2(x) � p(x)

and 0 ≤ μ2(x)B(x, t) ≤ b(x, t)t, where B(x, t) =
∫ t

0 b(x, s) ds.
(H1) For any x ∈ Ω , there exists h1 > 0 such that h(x) ≥ h1 and h(x) ∈ L∞(Ω).
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2 Preliminaries
We first recall some facts on spaces Lp(x) and W k,p(x). For details see [4, 18, 19].

Let P(Ω) be the set of all Lebesgue measurable functions p : Ω → [1,∞], we denote

ρp(x)(u) =
∫

Ω\Ω∞
|u|p(x) dx + sup

x∈Ω∞

∣
∣u(x)
∣
∣,

where Ω∞ = {x ∈ Ω : p(x) = ∞}.
The variable exponent Lebesgue space Lp(x)(Ω) is the class of all functions u such that

ρp(x)(tu) < ∞, for some t > 0. Lp(x)(Ω) is a Banach space equipped with the norm

‖u‖Lp(x) = inf

{

λ > 0 : ρp(x)

(
u
λ

)

≤ 1
}

.

For any p ∈ P(Ω), we define the conjugate function p′(x) as

p′(x) =

⎧
⎪⎪⎨

⎪⎪⎩

∞, x ∈ Ω1 = {x ∈ Ω : p(x) = 1},
1, x ∈ Ω∞,

p(x)
p(x)–1 , x ∈ Ω \ (Ω1 ∪ Ω∞).

Theorem 2.1 Let p ∈ P(Ω). For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω),

∫

Ω

|uv|dx ≤ 2‖u‖Lp(x)‖v‖Lp′(x) .

For any p ∈ P(Ω), we denote

p1 = inf
x∈Ω

p(x), p2 = sup
x∈Ω

p(x),

and we denote by p(x) 
 q(x) the fact that infx∈Ω (q(x) – p(x)) > 0.

Theorem 2.2 Let p ∈ P(Ω) with p2 < ∞. For any u ∈ Lp(x)(Ω), we have
(1) if ‖u‖Lp(x) ≥ 1, then ‖u‖p1

Lp(x) ≤ ∫
Ω

|u|p(x) dx ≤ ‖u‖p2
Lp(x) ;

(2) if ‖u‖Lp(x) < 1, then ‖u‖p2
Lp(x) ≤ ∫

Ω
|u|p(x) dx ≤ ‖u‖p1

Lp(x) .

The variable exponent Sobolev space W 1,p(x)(Ω) is the class of all functions u ∈ Lp(x)(Ω)
such that |∇u| ∈ Lp(x)(Ω). W 1,p(x)(Ω) is a Banach space equipped with the norm

‖u‖W 1,p(x) = ‖u‖Lp(x) + ‖∇u‖Lp(x) .

For u ∈ W 1,p(x)(Ω), if we define

‖|u‖| = inf

{

t > 0 :
∫

Ω

|u|p(x) + |∇u|p(x)

tp(x) dx ≤ 1
}

,

then ‖| · ‖| and ‖ · ‖W 1,p(x) are equivalent norms on W 1,p(x)(Ω). In fact, we have

1
2
‖u‖W 1,p(x) ≤ ‖|u‖| ≤ 2‖u‖W 1,p(x) .
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Theorem 2.3 For any u ∈ W 1,p(x)(Ω), we have
(1) if ‖|u‖| ≥ 1, then ‖|u‖|p1 ≤ ∫

Ω
(|∇u|p(x) + |u|p(x)) dx ≤ ‖|u‖|p2 ;

(2) if ‖|u‖| < 1, then ‖|u‖|p2 ≤ ∫
Ω

(|∇u|p(x) + |u|p(x)) dx ≤ ‖|u‖|p1 .

Theorem 2.4 Let Ω be a bounded domain with the cone property. If p ∈ C(Ω̄) satisfying
1 < p1 ≤ p(x) ≤ p2 < N and q is a measurable function defined on Ω with

p(x) ≤ q(x) 
 p∗(x), a.e. x ∈ Ω ,

then the embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is compact.

Theorem 2.5 Let Ω be a domain with the cone property. If p is Lipschitz continuous and
satisfies 1 < p1 ≤ p(x) ≤ p2 < N , q is a measurable function defined on Ω with

p(x) ≤ q(x) ≤ p∗(x), a.e. x ∈ Ω ,

then the embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω) is continuous.

Theorem 2.6 Let Ω ⊂R
N be an open bounded domain with Lipschitz boundary. Suppose

that p ∈ C(Ω̄) and 1 < p1 ≤ p(x) ≤ p2 < N . If q ∈ C(∂Ω) satisfies the condition

1 ≤ q(x) < p∗(x), ∀x ∈ ∂Ω ,

then the boundary trace embedding W 1,p(x)(Ω) → Lq(x)(∂Ω) is compact.

In the proof of the main results, we will use the following principle of concentration
compactness in W 1,p(x)(Ω), established in [17].

Theorem 2.7 Assume that p is Lipschitz continuous on Ω̄ and satisfies 1 < p1 ≤ p(x) ≤
p2 < N , and Ω is a bounded domain in R

N . Let {un} ⊂ W 1,p(x)(Ω) with ‖∇un‖Lp(x) ≤ 1 such
that

un → u weakly in W 1,p(x)(Ω),

|∇un|p(x) → μ weak- ∗ in M(Ω̄),

|un|p∗(x) → ν weak- ∗ in M(Ω̄),

as n → ∞. Denote

C∗ = sup

{∫

Ω

|u|p∗(x) dx : ‖∇un‖Lp(x) ≤ 1, u ∈ W 1,p(x)(Ω)
}

.

Then the limit measures are of the form

μ = |∇u|p(x) +
∑

j∈J

μjδxj + μ̃, μ(Ω̄) ≤ 1,

ν = |u|p∗(x) +
∑

j∈J

νjδxj , ν(Ω̄) ≤ C∗,
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where J is a countable set, {μj}, {νj} ⊂ [0,∞), {xj} ⊂ Ω̄ , μ̃ ∈ M(Ω) is a non-atomic nonneg-
ative measure. The atoms and the regular part satisfy the generalized Sobolev inequality

ν(Ω̄) ≤ C∗ max
{
μ(Ω̄)p∗

2/p1 ,μ(Ω̄)p∗
1/p2
}

,

νj ≤ C∗ max
{
μ

p∗
2/p1

j ,μp∗
1/p2

j
}

, ∀j ∈ J ,
(2.1)

where p∗
1 = infx∈Ω p∗(x), p∗

2 = supx∈Ω p∗(x).

3 Existence of solutions for the problems
Set

Λ(u) =
∫

Ω

A(x,∇u) dx,

K(u) =
∫

Ω

F(x, u) dx,

L(u) =
∫

∂Ω

B(x, u) dx,

I(u) = Λ(u) +
∫

Ω

1
p(x)

|u|p(x) dx –
∫

Ω

h(x)
p∗(x)

|u|p∗(x) dx – K(u) – L(u).

We say that u ∈ W 1,p(x)(Ω) is a weak solution of p(x)-Laplacian problem (1.1), if, for any
v ∈ W 1,p(x)(Ω),

〈
I ′(u), v
〉

=
∫

Ω

a(x,∇u)∇v dx +
∫

Ω

|u|p(x)–2uv dx –
∫

Ω

h(x)|u|p∗(x)–2uv dx

–
∫

Ω

f (x, u)v dx –
∫

∂Ω

b(x, u)v dS = 0.

So next we need only to consider the existence of nontrivial critical points of I(u).

Lemma 3.1 ([16], Lemma 1) The functional Λ is well-defined on W 1,p(x)(Ω), and for all
u, v ∈ W 1,p(x),

〈
Λ′(u), v

〉
=
∫

Ω

a(x,∇u)∇v dx.

Lemma 3.2 ([5], Lemma 2.9) Suppose that f satisfies (F1) or (̃F1). Then K(u) is weakly
continuous.

Lemma 3.3 ([5], Theorem 2.10) Suppose that f satisfies (F1) or (̃F1). Then K(u) is differ-
entiable on W 1,p(x), and, for all u, v ∈ W 1,p(x),

〈
K ′(u), v

〉
=
∫

Ω

f (x, u)v dx.

In the same way, the function L leads to a conclusion similar to Lemma 3.2 and
Lemma 3.3.
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Lemma 3.4 ([20], Theorem 4.1) The mapping a is an operator of type S+, that is, if un → u
weakly in W 1,p(x)(Ω) and

lim
n→∞ sup

∫

Ω

a(x,∇u) · (∇un – ∇u) dx ≤ 0, (3.1)

then un → u strongly in W 1,p(x)(Ω).

Theorem 3.1 Assume hypotheses (F1), (F3), (F4), (B1), (B3) and (H1) are fulfilled. Then
there exists M > 0 such that, whenever h(x) ≤ M, the problem has a nontrivial solution.

Proof (1) There exists r > 0 such that inf{I(u) : ‖|u‖| = r, u ∈ W 1,p(x)(Ω)} > c.
From (F1), (F4) and (B1) we have

∣
∣F(x, u)
∣
∣≤ ε|u|p(x) + C(ε)|u|p∗(x),

∣
∣B(x, u)
∣
∣≤ C2

1
α2(x)

|u|α2(x).

Next, from (A4),

I(u) =
∫

Ω

A(x,∇u) dx +
∫

Ω

1
p(x)

|u|p(x) dx +
∫

Ω

h(x)
p∗(x)

|u|p∗(x) dx

–
∫

Ω

F(x, u) dx –
∫

∂Ω

B(x, u) dx

≥
∫

Ω

1
p(x)

|∇u|p(x) +
1

p(x)
|u|p(x) –

h(x)
p∗(x)

|u|p∗(x) dx

–
∫

Ω

(
ε|u|p(x) + C(ε)|u|p∗(x))dx –

∫

∂Ω

C2

α2(x)
|u|α2(x) dS

≥ 1
p2

∫

Ω

|∇u|p(x) dx +
1
p2

∫

Ω

|u|p(x) dx –
h1

p∗
1

∫

Ω

|u|p∗(x) dx

–
∫

Ω

ε|u|p(x) + C(ε)|u|p∗(x) dx –
∫

∂Ω

C2

α2(x)
|u|α2(x) dS.

Let ε < 1
2p2

, we get

I(u) ≥
∫

Ω

(
|∇u|p(x) + |u|p(x)

2p2
– C|u|p∗(x) dx –

∫

∂Ω

C2

α2(x)
|u|α2(x) dS. (3.2)

As α2(x), p(x) are continuous on Ω , there exists δ1 > 0 such that |α2(x) – α2(y)| < ε and
|p(x) – p(y)| < ε for any ε ∈ (0, 1) whenever |x – y| < δ1. Take x ∈ Ω , for any y ∈ Bδ1(x)(x)∩Ω ,
we have

p(y) < p(x) + ε

and

α2(y) > α2(x) – ε.
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As p(x) 
 α2(x), take ε = 1
4 infx∈Ω (α2(x) – p(x)), we have

α2(x) – ε –
(
p(x) + ε

)≥ 1
2

inf
x∈Ω

(
α2(x) – p(x)

)
> 0,

then

p(y) < p(x) + ε < α2(x) – ε < α2(y),

and further

p–
x = sup

y∈Bδ1 (x)
p(y) < α–

2x = inf
y∈Bδ1 (x)

(
α2(x)
)
.

In the same manner, we get

α+
2x = sup

y∈Bδ1 (x)
α2(x) < p∗–

x = inf
y∈Bδ1 (x)

p∗(x).

{Bδx (x), x ∈ Ω} is an open covering of Ω . Since Ω is compact, we can pick a finite sub-
covering {Bδi (xi)}k

i=1 for Ω from the covering {Bδx (x), x ∈ Ω} such that
⋃k

i=1 Bδi (xi) ⊃ Ω .
Denote δl = min{δi, i = 1, 2, . . . , k}, we can use all the hypercubes whose length of the side
is δl

2 to divide the entire space R
N , then

⋃k
i=1 Bδi (xi) ∩ Ω is divided by finite open regions

{Ωi}m
i=1 which mutually have no common points, and Ω =

⋃m
i=1 Ωi. Then

p–
i = inf

x∈Ωi
< p+

i = sup
x∈Ωi

p(x) < α–
2i = inf

x∈Ωi
α2(x) < p∗–

i = inf
x∈Ωi

p∗(x). (3.3)

By Theorems 2.5 and 2.6, we know that there exist c4, c5 > 1 such that

‖u‖Lp∗ (Ωi) ≤ c4‖|u‖|Ωi , ‖u‖Lα2 (∂Ωi) ≤ c5‖|u‖|Ωi ,

where i = 1, 2, . . . , m.
Take ‖|u‖| ≤ [max(c4, c5)]–1, then ‖|u‖|Ωi < [max(c4, c5)]–1 and

‖u‖Lp∗ (Ωi) < 1, ‖u‖Lα2 (∂Ωi) < 1,

then we have
∫

Ω

( |∇u|p(x) + |u|p(x)

2p2
– C|u|p∗(x)

)

dx –
∫

∂Ω

C2

α2(x)
|u|α2(x) dS

=
m∑

i=1

∫

Ωi

(
|∇u|p(x) + |u|p(x)

2p2
– C|u|p∗(x) dx –

m∑

i=1

∫

∂Ωi

C2

α2(x)
|u|α2(x) dS

≥
m∑

i=1

(
1

2p2
‖|u‖|p+

i
Ωi

– C‖|u‖|p∗–
i

Ωi
– C‖|u‖|α–

2i
Ωi

)

.

Let

g(t) =
1

2p2
tp+

i – Ctp∗–
i – Ctα–

2i . (3.4)

By (3.3), there exists 0 < ti < 1 such that g(t) is positive and increasing for any t ∈ (0, ti].
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Take tk = min{ti, i = 1, 2, . . . , m}. Since ‖|u‖| ≤∑m
i=1 ‖|u‖|Ωi , when ‖|u‖| = r < tk , there ex-

ists j such that r
m ≤ ‖|u‖|Ωj ≤ r < tj, then

I(u) ≥
∫

Ω

( |∇u|p(x) + |u|p(x)

2p2
– C|u|p∗(x)

)

dx –
∫

∂Ω

C2

α2(x)
|u|α2(x) dS

≥ 1
2p2

‖|u‖|p
+
j

Ωj
– C‖|u‖|p

∗–
j

Ωj
– C‖|u‖|α

–
2j

Ωj

≥
(

r
m

)p+
j
[

1
2p2

– C
(

r
m

)p∗–
j –p+

j
– C
(

r
m

)α–
2j–p+

j
]

≥
(

r
m

)p+
j
[

1
2p2

– C
(

r
m

)α–
2j–p+

j
– C
(

r
m

)α–
2j–p+

j
]

.

Take

r = min

{

m
(

1
4Cp2

) 1
α–

2j–p+
j , tk

}

,

we have I(u) ≥ c, where c = 1
4p2

( r
m )p+

j .
(2) There exists e ∈ W 1,p(x)(Ω) such that ‖|e‖| > r, then we have I(e) < 0.
From (F1) and (F3), we have

F(x, u) ≥ C|u|μ1(x),

for any (x, t) ∈ Ω0 ×R.
Next from (A1) and (A2), for any x ∈ Ω ,

A(x,∇u) =
∫ 1

0
a(x, t∇u) dt ≤ c0

(

|∇u| +
1

p(x)
|∇u|p(x)

)

and

I(u) ≤
∫

Ω

c0|∇u|dx +
∫

Ω

c0

p(x)
|∇u|p(x) +

1
p(x)

|u|p(x) dx –
∫

Ω

h(x)
p∗(x)

|u|p∗(x)

–
∫

Ω

C|u|μ1(x) dx –
∫

∂Ω

B(x, u) dx.

Pick x0 ∈ Ω0. As μ1, p is continuous on Ω , there exists 0 < 2R < 1 such that

p2x0 = sup
x∈B2R(x0)

p(x) < μ–
1x0 = inf

x∈B2R(x0)
μ1(x) ≤ μ+

1x0 = sup
x∈B2R(x0)

(3.5)

for B2R(x0) ⊂ Ω0. Let φ ∈ C∞
0 (B2R(x0)) such that φ ≡ 1 for any x ∈ B2R(x0), 0 ≤ φ ≤ 1 and

|∇φ| ≤ 1
R . Then, for s > 1,

I(sφ) ≤
∫

Ω

c0s|∇φ|dx +
∫

Ω

c0

p(x)
|∇sφ|p(x) +

1
p(x)

|sφ|p(x) dx –
∫

Ω

C|sφ|μ1(x) dx

≤ c0

R

∫

B2R(x0)
s dx +
∫

B2R(x0)

c0

p1Rp2x0
sp(x) +

1
p1

sp(x) dx



Shan and Fu Boundary Value Problems        (2019) 2019:122 Page 9 of 21

–
∫

B2R(x0)
Csμ1x0 (x)|φ|μ1(x) dx

≤ c0

R

∫

B2R(x0)
s dx +
∫

B2R(x0)

(
c0

p1Rp2x0
+

1
p1

)

sp(x) dx

–
∫

B2R(x0)
Csμ–

1x0 |φ|μ1(x) dx

≤
∫

B2R(x0)
sp(x)(

c0

R
s1–p(x) +

c0

p1Rp2x0
+

1
p1

– Csμ–
1x0

–p(x) dx,

where C =
C
∫

B2R(x0) |φ|μ1(x) dx
|B2R(x0)| .

As φ ≡ 1 for any x ∈ B2R(x0),
∫

B2R(x0) |φ|μ1(x) dx > 0, thus C > 0.
As p(x) > 1, if s is sufficiently large, then s1–p(x) < 1. Thus

I(sφ) ≤
∫

B2R(x0)
sp(x)(

c0

R
+

c0

p1Rp1
+

1
p1

– Csμ–
1 –p(x) dx

=
∫

B2R(x0)
sp(x)(C – sμ–

1x0
–p(x))dx.

Because μ–
1x0 – p2x0 > 0, when s is sufficiently large, we have ‖|sφ‖| > r and I(sφ) < 0.

(3) The functional I satisfies the (PS) condition (i.e. any sequence {un} ⊂ W 1,p(x)(Ω) with
I(un) ≤ c and I ′(un) → 0 as i → ∞ in W –1,p′(x) possesses a convergent subsequence).

(i) First, we show that the (PS) sequence {un} ⊂ W 1,p(x) is bounded.
Note that p(x) is Lipschitz continuous, then there exists a Lipschitz continuous function

v(x) such that p(x) 
 v(x) ≤ p∗(x) and

v1 = inf
x∈Ω

v(x) ≤ sup
x∈Ω

v(x) = v2. (3.6)

Take

v(x) = p(x) + min
{

inf
x∈Ω

(
μ1(x) – p(x)

)
, inf

x∈Ω

(
μ2(x) – p(x)

)
, inf

x∈Ω

(
p∗(x) – p(x)

)}
,

we obtain

I(un) –
〈

I ′(un),
un

v(x)

〉

≥
∫

Ω

(
1

p(x)
a(x,∇un)∇un –

1
v(x)

a(x,∇un)∇un + a(x,∇un)
un

v(x)2 ∇v(x)

+
∫

Ω

(
1

p(x)
–

1
v(x)

)

|un|p(x) dx –
∫

Ω

(
1

p∗(x)
–

1
v(x)

)

h(x)|un|p∗(x) dx

–
∫

Ω

(

F(x, un) –
1

v(x)
f (x, un)un

)

dx –
∫

∂Ω

(

B(x, un) –
1

v(x)
b(x, un)un

)

dS

≥
∫

Ω

(
1

p(x)
–

1
v(x)

)
(|∇un|p(x) + |un|p(x))dx +

∫

Ω

a(x,∇un)
un

v(x)2 ∇v(x) dx

+
∫

Ω

(
1

v(x)
–

1
p∗(x)

)

h(x)|un|p∗(x) dx
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≥ l1

v2p2

∫

Ω

(|∇un|p(x) + |un|p(x))dx +
l2h1

v2p∗
2

∫

Ω

|un|p∗(x) dx

–
c0M
v2

1

∫

Ω

|un|
(
1 + |∇un|p(x)–1)dx,

where l1 = infx∈Ω{v(x) – p(x)}, l2 = infx∈Ω p∗(x) – v(x)|, M = supx∈Ω |∇v(x)|.
By the Young inequality, we have

∫

Ω

|un|dx ≤
∫

Ω

ε1
1

p(x)
|un|p(x) +

p(x) – 1
p(x)

ε
1

1–p(x)
1 dx

≤ ε1

p1

∫

Ω

|un|p(x) + C(ε1). (3.7)

Take ε1 = min{1, v2
1p1l1

2c0Mv2p2
} such that c0Mε1

v2
1p1

≤ l1
2v2p2

.
By the Young inequality, we have

∫

Ω

|∇un|p(x)–1|un|dx ≤ ε2

∫

Ω

|∇un|p(x) dx +
ε

1–p2
2
p1

∫

Ω

|un|p(x) dx.

Take ε2 = min{1, v2
1l1

2c0Mv2p2
} such that c0Mε2

v2
1

≤ l1
2v2p2

.
By the Young inequality again, we have

∫

Ω

|un|p(x) dx ≤ ε3
p(x)
p∗(x)

|un|p∗(x) +
p∗(x) – p(x)

p∗(x)
ε

p(x)
p(x)–p∗(x)
3 dx

≤ p2ε3

p∗
1

∫

Ω

|un|p∗(x) dx + C(ε3).

Take ε3 = min{1, h1l2v2
1p1p∗

1
2c0Mv2p∗

2p2ε
1–p2
2

} such that c0Mp2ε
1–p2
2

v2
1p1p∗

1
≤ l1

2v2p2
. Then

I(un) –
〈

I ′(un),
un

v(x)

〉

≥ l1

2v2p2

∫

Ω

(|∇un|p(x) + |un|p(x))dx +
l2h1

2v2p∗
2

∫

Ω

|un|p∗(x) dx – C

≥ l1

2v2p2

∫

Ω

(|∇un|p(x) + |un|p(x))dx – C.

As

∫

Ω

∣
∣
∣
∣

unv1

v(x)‖un‖Lp(x)

∣
∣
∣
∣

p(x)

dx ≤
∫

Ω

∣
∣
∣
∣

un

‖un‖Lp(x)

∣
∣
∣
∣

p(x)

dx ≤ 1,

we have ‖ un
v ‖Lp(x) ≤ ‖un‖Lp(x)

v1
. Since

∥
∥
∥
∥un∇ 1

v(x)

∥
∥
∥
∥

Lp(x)
=
∥
∥
∥
∥

un∇v(x)
v2(x)

∥
∥
∥
∥

Lp(x)
≤ M

v2
1
‖un‖Lp(x) ,
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we have
∥
∥
∥
∥∇

un

v(x)

∥
∥
∥
∥

Lp(x)
=
∥
∥
∥
∥un∇ 1

v(x)
+

∇un

v(x)

∥
∥
∥
∥

Lp(x)

≤ M
v2

1
‖un‖Lp(x) +

M + v1

v2
1

‖un‖W 1,p(x) ,

so
∥
∥
∥
∥

un

v(x)

∥
∥
∥
∥

W 1,p(x)
≤
∥
∥
∥
∥

un

v

∥
∥
∥
∥

Lp(x)
+
∥
∥
∥
∥∇

un

v(x)

∥
∥
∥
∥

Lp(x)

≤ ‖un‖Lp(x)

v1
+

M + v1

v2
1

‖un‖W 1,p(x) ≤ C‖un‖W 1,p(x) ,

where C is constant. Moreover,
‖un‖W 1,p(x)

2 ≤ ‖|u‖| ≤ 2‖un‖W 1,p(x) , we have

∥
∥
∥
∥

∣
∣
∣
∣

un

v(x)

∥
∥
∥
∥

∣
∣
∣
∣≤ 2
∥
∥
∥
∥

un

v

∥
∥
∥
∥

W 1,p(x)
≤ 4C

‖|u‖| ,

when n is sufficiently large, we obtain

C + C‖|un‖| ≥ l1

2v2p2

∫

Ω

(|∇un|p(x) + |un|p(x))dx ≥ l1

2v2p2
‖|un‖|p1 .

By the Young inequality, we have

‖|un‖| ≤ ε

p1
‖|un‖|p1 + C(ε).

Take ε = l1p1
4v2p2C such that

C +
l1

4v2p2
‖|un‖|p1 ≥ l1

2v2p2
‖|un‖|p1 ,

then {un} ⊂ W 1,p(x)(Ω) is bounded.
(ii) Next, we show that the (PS) sequence {un} ⊂ W 1,p(x)(Ω) possesses a convergent sub-

sequence.
We know that {un} is bounded. As W 1,p(x)(Ω) is reflexive, passing to a subsequence (still

denoted by {un}), we may assume that there exists u ∈ W 1,p(x)(Ω) such that un → u weakly
in W 1,p(x) and un → u a.e. on Ω .

From the definition of (PS) sequence, we obtain limn→∞〈I ′(un), un – u〉 = 0, i.e.

lim
n→∞

[∫

Ω

a(x,∇un)(∇un – ∇u) dx +
∫

Ω

|un|p(x)–2un(un – u) dx

–
∫

Ω

f (x, un)(un – u) dx –
∫

Ω

h(x)|un|p∗(x)–2(un – u) dx

–
∫

∂Ω

b(x, un)(un – u) dx
]

= 0.
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As p(x) < p∗(x), the embedding W 1,p(x) → Lp(x)(Ω) is compact, so un → u strongly in
Lp(x)(Ω). Hence when n → ∞,

∣
∣
∣
∣

∫

Ω

|un|p(x)–2un(un – u) dx
∣
∣
∣
∣≤
∥
∥|un|p(x)–1∥∥

L
p(x)

p(x)–1 (Ω)
‖un – u‖Lp(x) → 0.

From Theorems 2.1 and 2.4,

∣
∣
∣
∣

∫

Ω

f (x, un)(un – u) dx
∣
∣
∣
∣≤
∥
∥f (x, un)

∥
∥

L
α1(x)

α1(x)–1 (Ω)
‖un – u‖Lα1(x) → 0.

From Theorems 2.1 and 2.6,

∣
∣
∣
∣

∫

Ω

b(x, un)(un – u) dx
∣
∣
∣
∣≤ 2
∥
∥b(x, un)

∥
∥

L
α2(x)

α2(x)–1 (Ω)
‖un – u‖Lα2(x) → 0.

If we could verify that un → u strongly in Lp∗(x)(Ω), we can obtain

∫

Ω

h(x)|un|p∗(x)–2(un – u) dx| ≤ 2
∥
∥h(x)
∥
∥

L∞(Ω)

∥
∥|un|p∗(x)–1∥∥

L
p∗(x)

p∗(x)–1 (Ω)
‖un – u‖Lp∗(x) → 0.

Therefore, limn→∞
∫

Ω
a(x,∇un) dx = 0, by Lemma 3.4, a is a S+ type operator, then un → u

strongly in Lp∗(x)(Ω). �

Next, in order to complete Theorem 3.1, we prove the following lemma.

Lemma 3.5 Let the assumptions of Theorem 3.1 be satisfied. If the (PS) sequence {un} ⊂
W 1,p(x)(Ω) is bounded, then there exists M > 0 such that whenever h(x) ≤ M, un → u
strongly in Lp∗(x)(Ω).

Proof As un → u strongly in Lp(x)(Ω), there exists subsequence (still denoted by {un}),
un → u a.e. on Ω . Note that {un} ⊂ W 1,p(x)(Ω) is bounded, by Borel measure theory, we
may assume that

|∇un|p(x) → μ weak-∗ in M(Ω̄),

|un|p∗(x) → ν weak-∗ in M(Ω̄).

M(Ω) is the space of finite nonnegative Borel measures on Ω .
From the principle of concentration compactness,

μ = |∇u|p(x) +
∑

j∈J

μjδxj + μ̃,

ν = |u|p∗(x) +
∑

j∈J

νjδxj ,

where J is a countable set, {xj, j ∈ J} ⊂ Ω , {νj} ⊂ [0, +∞), δxj is a measure concentrating
upon xj, μ̃ is a nonnegative non-atomic measure.
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a. First, we show that μ({xj}) = ν({xj}) = 0 for any j ∈ J .
As Ω is compact, so we only need to verify, for any x ∈ Ω , there exists r0 > 0 such that

μ({xj}) = ν({xj}) = 0 for xj ∈ Ω ∩ Br0 (x).
Note that p(x) is Lipschitz continuous and p(x) 
 p∗(x), there exists r0 > 0 such that

p+
x = sup

y∈Ω∩Br0 (x)
p(y) < p∗–

x = inf
y∈Ω∩Br0 (x)

p∗(y).

For any ε > 0, let φε ∈ C∞
0 (B2ε(xj)) such that φ ≡ 1 for any x ∈ B2ε(xj), 0 ≤ φε ≤ 1 and

|∇φε| ≤ 2
ε

. Note that

∫

Ω

|unφε|p(x) dx ≤
∫

Ω

|un|p(x) dx,
∫

Ω

∣
∣∇(unφε)

∣
∣p(x) dx =

∫

Ω

|∇un · φε + ∇φε · un|p(x) dx

≤
∫

Ω

2p2 (|∇un|p(x) + |∇φε|p(x)|un|p(x) dx.

Since un ∈ W 1,p(x)(Ω), {unφε} is bounded on W 1,p(x)(Ω), we have 〈I ′(un), unφε〉 → 0 as n →
∞. Note that

〈
I ′(un), unφε

〉
=
∫

Ω

a(x,∇un)∇(unφε) dx +
∫

Ω

|un|p(x)φε dx –
∫

Ω

h(x)|un|p∗(x)φε dx

–
∫

Ω

f (x, un)unφε dx –
∫

∂Ω

b(x, un)unφε dx

≥
∫

Ω

a(x,∇un)∇φε · un dx +
∫

Ω

|∇un|p(x)φε dx +
∫

Ω

|un|p(x)φε dx

–
∫

Ω

h(x)|un|p∗(x)φε dx –
∫

Ω

f (x, un)unφε dx –
∫

∂Ω

b(x, un)unφε dx.

Since |f (x, un)| ≤ C1(1 + |un|α1(x)–1), |f (x, un)un| ≤ C1(1 + |un|α1(x)). So there exists δ > 0
such that, for mE < δ,

∫

E
f (x, un)unφε dx ≤ C

∥
∥1 + |un|α1(x)∥∥

L
p∗(x)
α1(x) (E)

‖φε‖
L

( p∗(x)
α1(x) )′

(E)
→ 0.

From the Vitali theorem,
∫

Ω
f (x, un)unφε dx → ∫

Ω
f (x, u)uφε dx. In the same way,

∫

∂Ω
b(x,

un)unφε dx → ∫
∂Ω

b(x, u)uφε dx. Then

lim
n→∞

∫

Ω

a(x,∇un) · un · ∇φε dx

≤ –
∫

Ω

φε dμ –
∫

Ω

|u|p(x)φε dμ +
∫

Ω

h(x)φε dν

–
∫

Ω

f (x, u)uφε dx –
∫

∂Ω

b(x, u)uφε dx,
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lim
n→∞

∣
∣
∣
∣

∫

Ω

a(x,∇un) · un · ∇φε dx
∣
∣
∣
∣

≤ lim
n→∞

∣
∣
∣
∣

∫

Ω

c0
(
1 + |∇un|p(x)–1) · un · ∇φε dx

∣
∣
∣
∣

≤ lim
n→∞ c0

∫

Ω

un∇φε dx + lim
n→∞ c0

∫

Ω

|∇un|p(x)–1|un∇φε|dx.

Note that un → u strongly in Lp(x)(B2ε(xj)), thus, as n → ∞, ‖∇φε ·un‖Lp(x) → ‖∇φε ·u‖Lp(x) .
Then

lim
n→∞

∫

Ω

|∇un|p(x)–1|un∇φε|dx ≤ lim
n→∞ sup

∫

Ω

|∇un|p(x)–1|un∇φε|dx

≤ 2 lim
n→∞ sup

∥
∥|∇un|p(x)–1∥∥

Lp′(x)‖|un∇φε‖|Lp(x)

≤ C‖|u∇φε‖|Lp(x) .

Note that
∫

Ω

|∇φεu|p(x) dx ≤ 2
∥
∥|∇φε|p(x)∥∥

( p∗(x)
p(x) )′ ,Ω∩B2ε (xj)

∥
∥|u|p(x)∥∥ p∗(x)

p(x) ,Ω∩B2ε(xj)

and
∫

B2ε (xj)

(|∇φε|p(x))(
p∗(x)
p(x) )′ dx =

∫

B2ε (xj)
|∇φε|N dx ≤ 22NωN .

From absolute continuity of the integral, we have
∫

B2ε (xj)∩Ω
(|u|p(x))

p∗(x)
p(x) dx → 0, then ‖|u ·

∇φε‖|Lp(x) → 0 as ε → 0. Therefore

∣
∣
∣
∣

∫

B2ε (xj)∩Ω

∇φε · un

∣
∣
∣
∣dx → 0.

Similarly, we can also obtain

∣
∣
∣
∣

∫

Ω

f (x, u)uφε dx
∣
∣
∣
∣≤
∫

B2ε (xj)∩Ω

∣
∣f (x, u)u

∣
∣dx → 0,

∣
∣
∣
∣

∫

∂Ω

b(x, u)uφε dx
∣
∣
∣
∣≤
∫

B2ε (xj)∩Ω

∣
∣b(x, u)u

∣
∣dx → 0,

∣
∣
∣
∣

∫

Ω

|u|p(x)φε dx
∣
∣
∣
∣≤
∫

B2ε (xj)∩Ω

∣
∣|u|p(x)∣∣dx → 0.

Thus

0 ≤ –μ
({xj}
)

+ h(xj)ν(xj).

Similarly, by the principle of concentration compactness

νj ≤ C∗ max
{
μ

p∗+x
p–x

j ,μ
p∗–x
p+x

j
}

.
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Denote h2 = supx∈Ω h(x). For any j ∈ J , we have μj ≤ h2νj. Suppose there exists j0 ∈ J such

that μj0 = μxj0
> 0. If μj0 ≥ 1, then νj0 ≤ C∗(h2νj)

p∗+x
p–x , and further

νj0 ≥ [C–1
∗ h

– p∗+x
p–x

2
] p–x

p∗+x –p–x .

If μj0 < 1, then

νj0 ≥ [C–1
∗ h

p∗–x
p+x

2
] p+x

p∗x –p+x .

Note that
∫

Ω
|un|p∗(x) dx is bounded and

∫

Ω
|un|p∗(x) dx → ∫

Ω
1 dν = ν(Ω) as n → ∞, so

νj0 = ν({xj0}) ≤ ν(Ω) < ∞. Since p–
x ≤ p+

x < p∗–
x ≤ p∗+

x , there exists M > 0 such that, for
h2 ≤ M,

ν(Ω) <
[
C–1

∗ h
– p∗–x

p+x
2
] p+x

p∗+x –p–x ,

ν(Ω) <
[
C–1

∗ h
– p∗+x

p–x
2
] p–x

p∗+x –p–x ,

which is a contradiction. So there exists M > 0 such that, for h(x) ≤ M, νj = 0, μj = 0, where
any j ∈ J .

b. Next, we show that un → u strongly in Lp∗(x) (Ω) as n → ∞. From the discussion above,
we know if h(x) ≤ M, then ν = |u|p∗(x). Thus

∫

Ω

|un|p∗(x) dx →
∫

Ω

1 dν =
∫

Ω

|u|p∗(x) dx.

As |un – u|p∗(x) ≤ 2p∗
2 (|un|p(x) + |u|p∗(x) ), by the Fatou lemma, we have

∫

Ω

2p∗
2+1|u|p∗(x) dx =

∫

Ω

lim
n→∞ inf

(
2p∗

2 |un|p∗(x) + 2p∗
2 |un|p∗(x) – |un – u|p∗(x))

dx

≤ lim
n→∞ inf

∫

Ω

(
2p∗

2 |un|p∗(x) + 2p∗
2 |un|p∗(x) – |un – u|p∗(x))

≤ 2p∗
2+1
∫

Ω

|u|p∗(x) dx – lim
n→∞ sup

∫

Ω

|un – u|p∗(x) dx,

then limn→∞ sup
∫

Ω
|un – u|p∗(x) dx = 0, and further

∫

Ω
|un – u|p∗(x) dx → 0. So un → u

strongly in Lp∗(x)(Ω) as n → ∞. �

4 Multiple solutions for the problems
First, let us introduce some notation. Let O(N) be the group of orthogonal linear trans-
formations in R

N , and G be a subgroup of O(N). For x �= 0, we denote the cardinality
of Gx = {gx : g ∈ G} by |Gx| and set |G| = infx∈ ¯Ω ,x �=0 |Gx|. An open subset Ω of RN is G-
invariant if gΩ = Ω for any g ∈ G.

Definition 4.1 Let Ω be a G-invariant open subset of RN . The action of G on W 1,p(x)(Ω)
is defined gu(x) = u(g–1x) for any u ∈ W 1,p(x)(Ω). The subspace of invariant functions is
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defined by

W 1,p(x)
G (Ω) =

{
u ∈ W 1,p(x)(Ω) : gu = u, for any g ∈ G

}
.

A functional ϕ : W 1,p(x)(Ω) → R is G-invariant if ϕ ◦ g = ϕ for any g ∈ G.

If the space X is a separable and reflexive Banach space, there exist {en}∞n=1 ⊂ X and
{f ∞

n=1} ⊂ X∗ such that

fn(em) = δn,m =

⎧
⎨

⎩

1 if n = m,

0 if n �= m,

and

X = span{en : n = 1, 2, . . .}, X∗ = span{fn : n = 1, 2, . . .}.

For k = 1, 2, . . . we denote

Xk = span{ek}, Yk =
k⊕

j=1

Xj, Zk =
∞⊕

j=1

Xj.

In order to obtain the multiple solutions for the equation, we need the following hy-
potheses.

Let Ω be a G-invariant subset of RN , p(x) is Lipschitz continuous and G-invariant, and
it satisfies 1 < p1 ≤ p(x) ≤ p2 < N . We have:

(F5) f (gx, t) = f (x, t) for any g ∈ G, x ∈ Ω , t ∈R.
(B5) b(gx, t) = b(x, t) for any g ∈ G, x ∈ Ω , t ∈R.
(A6) A(x,∇gu) = A(x,∇u) for any g ∈ G, x ∈ Ω .
In the following, denote G = O(N). It is immediate that I(u) ∈ C1(X,R) is G-invariant.

Then, by the principle of symmetric criticality, we know that u is a critical point of I if
and only if u is a critical point of I|W 1,p(x)

G
. Therefore, it suffices to prove the existence of a

sequence of critical points for I on W 1,p(x)
G .

In the following, we prove the existence of a sequence of critical points for I by the
fountain theorem, and we take X = W 1,p(x)

G (Ω).

Lemma 4.1 ([21], Lemma 3.3) For any x ∈ Ω̄ , denote ψk = supu∈Zk ,‖|u‖|=1
∫

Ω
|u|p∗(x) dx, then

limk→∞ ψk = 0.

Lemma 4.2 If α(x) ∈ C(Ω̄), α(x) > 1 and α(x) 
 p∗(x) for any x ∈ Ω̄ , denote γk =
supu∈Zk ,‖|u‖|=1

∫

∂Ω
|u|α(x) dx, then limk→∞ γk = 0.

Proof Because 0 < γk+1 ≤ γk , γk → γ ≥ 0, there exists uk ∈ Zk such that ‖|uk‖| = 1 and

0 ≤ γk –
∫

Ω

|uk|p∗(x) dx <
1
k

.

As W 1,p(x)
G (Ω) is reflexive, passing to a subsequence (still denoted by {uk}), we may assume

that there exists u ∈ W 1,p(x)
G (Ω) such that uk → u weakly in W 1,p(x)

G (Ω). For any fm ∈ {fn, n =
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1, 2, . . .}, we have fm(uk) = 0 when m < k, then limk→∞ fm(uk) = fm(u) = 0. So for any m ∈ N ,
fm(u) = 0, which implies that u = 0, and further uk → 0 weakly in W 1,p(x)

G (Ω). According to
Theorem 2.6, the embedding W 1,p(x)(Ω) → Lα(x)(∂Ω) is compact, so uk → 0 strongly in
Lα(x)(∂Ω), that is, ‖uk‖Lα(x)(∂Ω) → 0. Thus γk → 0 as k → ∞. �

Theorem 4.1 Assume hypotheses (F1), (F2), (F3) and (F5) or (̃F1), (F2), (F5), (̃B1), (B2),
(B3), (B5) and (H1) are fulfilled, p(x) is a Lipschitz continuous function on Ω̄ and G-
invariant. Then there exists M > 0 such that, whenever h(x) ≤ M, the problem has a se-
quence of weak solutions {un} such that I(un) → ∞, as n → ∞.

The theorem will be verified by the fountain theorem in three steps.

Proof (1) For every k ∈ N , there exists γk > 0, such that infu∈Zk ,‖|u‖|=γk I(u) → ∞ as k → ∞.
From (̃F1) and (̃B1)

∣
∣F(x, u)
∣
∣≤ C1

(

|u| +
1

α1(x)
|u|α1(x)
)

,

∣
∣B(x, u)
∣
∣≤ C2

(

|u| +
1

α2(x)
|u|α2(x)
)

,
(4.1)

then

I(u) ≥ 1
p2

∫

Ω

|∇u|p(x) + |u|p(x) dx –
∫

Ω

C1

(

|u| +
1

α1(x)
|u|α1(x)
)

dx

–
∫

∂Ω

C2

(

|u| +
1

α2(x)
|u|α2(x)
)

dx –
∫

Ω

h(x)
p∗(x)

|u|p∗(x) dx.

By the Young inequalities

∫

Ω

|u|dx ≤
∫

Ω

1
p∗(x)

|u|p∗(x) +
p∗(x) – 1

p∗(x)
dx ≤
∫

Ω

1
p∗(x)

|u|p∗(x) dx + C,

∫

Ω

|u|α1(x) dx ≤
∫

Ω

α1(x)
p∗(x)

|u|p∗(x) +
p∗(x) – α1(x)

p∗(x)
dx ≤
∫

Ω

α1(x)
p∗(x)

|u|p∗(x) dx + C,

∫

∂Ω

|u|dx ≤
∫

∂Ω

1
α2(x)

|u|α2(x) +
α2(x) – 1

α2(x)
dx ≤
∫

∂Ω

1
α2(x)

|u|α2(x) dx + C,

then

I(u) ≥ 1
p2

∫

Ω

|∇u|p(x) + |u|p(x) dx – C
∫

Ω

|u|p∗(x) dx – C
∫

∂Ω

|u|α2(x) dx – C.

Denote

βk = sup
u∈Zk ,‖|u‖|=1

∫

Ω

|u|p∗(x) dx, ωk = sup
u∈Zk ,‖|u‖|=1

∫

∂Ω

|u|α2(x) dx.

As α2(x) 
 p∗(x), so by Lemma 4.2 and Lemma 4.1, we obtain ωk → 0 and βk → 0 as
k → ∞. Take

α+
2 = sup

x∈Ω

α2(x), p∗
2 = sup

x∈Ω

p∗(x).
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Then, for ‖|u‖| > 1, we have

I(u) ≥ 1
p2

‖|u‖|p1 – C‖|u‖|p∗
2βk – C‖|u‖|α+

2 ωk – C.

From the Young inequality

‖|u‖|α+
2 ≤ α+

2
p∗

2
‖|u‖|p∗

2 + C,

then

I(u) ≥ 1
p2

‖|u‖|p1 – C(βk + ωk)‖|u‖|p∗
2 – C.

Next, we consider the following equation:

1
2p2

tp1 – C(βk + ωk)tp∗
2 = 0. (4.2)

Let tk be the solution of (4.2),

tk =
[

1
2p2C(βk + ωk)

] 1
p∗

2–p1 ,

tk → ∞ as k → ∞. We choose γk = tk , thus, for ‖|u‖| = γk , k → ∞, we have

I(u) ≥ 1
2p2

γ
p1
k – C → ∞.

(2) For all k ∈ N , there exists ρk > γk such that maxu∈Yk ,‖|u‖|=ρk I(u) ≤ 0 as k → ∞, where
γk is given by (1).

From (4.1), we have

I(u) ≤
∫

Ω

c0|∇u|dx +
∫

Ω

c0

p(x)
|∇u|p(x) +

1
p(x)

|u|p(x) dx –
∫

Ω

h(x)
p∗(x)

|u|p∗(x) dx

–
∫

Ω

F(x, u) dx –
∫

∂Ω

B(x, u) dS

≤
∫

Ω

c0|∇u|dx +
∫

Ω

c0

p1
|∇u|p(x) +

1
p1

|u|p(x) dx –
∫

Ω

h1

p∗
2
|u|p∗(x) dx

+
∫

Ω

C1

(

|u| +
1

α1(x)
|u|α1(x)
)

dx.

By the Young inequality

∫

Ω

|u|dx ≤
∫

Ω

ε1

p∗(x)
|u|p∗(x) +

p∗(x) – 1
p∗(x)

ε
1

1–p∗(x)
1 dx ≤ε1

∫

Ω

|u|p∗(x) dx + C(ε1),

∫

Ω

|u|α1(x) dx ≤
∫

Ω

ε2
α1(x)
p∗(x)

|u|p∗(x) +
p∗(x) – α1(x)

p∗(x)
ε

1
α1(x)–p∗(x)
1 dx

≤ ε2

∫

Ω

|u|p∗(x) dx + C(ε2).
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We choose ε1 = min{1, h1
4C1p∗

2
}, ε2 = min{1, α–

1 h1
4C1p∗

2
}, then C1ε1 ≤ h1

4p∗
2

, C1ε2
α–

1
≤ h1

4p∗
2

. Thus

I(u) ≤
∫

Ω

c0|∇u|dx +
max{c0, 1}

p1

∫

Ω

|∇u|p(x)+|u|p(x) dx –
h1

2p∗
2

∫

Ω

|u|p∗(x) dx + C.

As p(x), p∗(x) are continuous on Ω̄ , and p(x) 
 p∗(x). Similarly to Theorem 3.1 we can
get hypercubes {Ωi}m

i=1 which mutually have no common points and Ω =
⋃m

i=1 Ωi. On Ωi,

p+
i = sup

x∈Ω̄i

p(x) < p∗–
i = inf

x∈Ω̄i
p∗(x), (4.3)

then

I(u) ≤
m∑

i=1

∫

Ωi

c0|∇u|dx +
max{c0, 1}

p1

m∑

i=1

∫

Ωi

|∇u|p(x)+|u|p(x) dx

–
h1

2p∗
2

m∑

i=1

∫

Ωi

|u|p∗(x) dx + C.

Since p(x) > 1, from the continuous embedding Lp(x)(Ω) → L1(Ω), there exists C > 0
such that

‖∇u‖L1(Ωi) ≤ C‖∇u‖Lp(x)(Ωi) ≤ 2C‖|u‖|Ωi .

Because Yk is a finite dimensional space, ‖|u‖| and ‖u‖Lp∗(x) are equivalent. Thus, for any
i ∈ {1, 2, . . . , m}, ‖|u‖|Ωi ≥ 1,

I(u) ≤
m∑

i=1

(

2c0C‖|u‖|Ωi +
max{c0, 1}

p1
‖|u‖|p+

i
Ωi

–
h1

2p∗
2
‖|u‖|p∗–

i
Ωi

)

+ C.

Let

gi(t) = 2c0Ct –
max{c0, 1}

p1
tp+

i –
h1

2p∗
2

tp∗–
i .

Due to (4.3), there exist Mi > 0, gi(t) negative and monotone decreasing for any t ∈
[Mi, +∞), and gi(t) → –∞ as t → ∞. Denote t0 = max{1, Mi, i = 1, 2, . . . , m}, when t > t0,
we have gj(t) ≤ 0 for j ∈ {i = 1, 2, . . . , m}.

For any i ∈ {1, 2, . . . , m}, ‖|u‖|Ωi ≥ t0 when ‖|u‖|Ωi sufficiently large. It is easy to check that
I(u) ≤ 0. So when ‖|u‖| is large enough, we can find that ‖|u‖|Ωi is sufficiently large for any
i ∈ {1, 2, . . . , m}. Thus I(u) ≤ 0 when ‖|u‖| = ρk > γk .

(3) The functional I satisfies the (PS) condition.
If the function f (x) satisfies (F1), (F2), (F3) and (F5), the proof is similar to (3) of Theo-

rem 3.1. We only need to change the space W 1,p(x) to W 1,p(x)
G .

If the function f (x) satisfies (̃F1), (F2) and (F5), we choose

v(x) = p(x) + min
{

inf
x∈Ω

(
μ2(x) – p(x)

)
, inf

x∈Ω

(
p∗(x) – p(x)

)}
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in the proof of (3) of Theorem 3.1. Then

I(un) –
〈

I ′(un),
un

v(x)

〉

≥
∫

Ω

(
1

p(x)
a(x,∇un)∇un –

1
v(x)

a(x,∇un)∇un + a(x,∇un)
un

v(x)2 ∇v(x)
)

dx

+
∫

Ω

(
1

p(x)
–

1
v(x)

)

|un|p(x) dx –
∫

Ω

(
1

p∗(x)
–

1
v(x)

)

h(x)|un|p∗(x) dx

–
∫

Ω

(

F(x, un) –
1

v(x)
f (x, un)un

)

dx

≥ l1

2v2p2

∫

Ω

|∇un|p(x) + |un|p(x) dx –
∫

Ω

(

F(x, un) –
1

v(x)
f (x, un)un

)

dx–C.

From (4.1) and (̃F1), we obtain

I(un) –
〈

I ′(un),
un

v(x)

〉

≥ l1

2v2p2

∫

Ω

|∇un|p(x) + |un|p(x) dx –
∫

Ω

C1

(

|un| +
1

α1(x)
|un|α1(x)

)

dx

–
∫

Ω

(
C1

v(x)
|un| +

1
v(x)

|un|α1(x)
)

dx – C

≥ l1

2v2p2

∫

Ω

|∇un|p(x) + |un|p(x) dx –
v1C1 + C1

v1

∫

Ω

|un|dx

–
α–

1 + v1

α–
1 v1

∫

Ω

|un|α1(x) dx – C,

where α+
1 = supx∈Ω α1(x), α–

1 = infx∈Ω α1(x).
Since α1(x) 
 p(x), by the Young inequality, we have

∫

Ω

|un|α1(x) dx ≤
∫

Ω

ε
α1(x)
p(x)

|un|p(x) +
p(x) – α1(x)

p(x)
ε

α1(x)
α1(x)–p(x) dx

≤ α+
1

p1
ε

∫

Ω

|un|p(x) dx + C(ε). (4.4)

In (3.7) and (4.4), we choose

ε1 = min

{

1
l1v1p1

4v2p2(v1C1 + C1)

}

, ε = min

{

1
l1p1v1α

–
1

4v2p2α
+
1 (α–

1 + v1)

}

.

Then

I(un) –
〈

I ′(un),
un

v(x)

〉

≥ l1

4v2p2

∫

Ω

|∇un|p(x) + |un|p(x) dx – C.

Similarly to (3) of Theorem 3.1, we find that {un} is bounded. By Lemma 3.5, we find that
the functional I satisfies the (PS) condition.

From the fountain theorem, the proof of Theorem 4.1 follows immediately from (1), (2)
and (3). �



Shan and Fu Boundary Value Problems        (2019) 2019:122 Page 21 of 21

Acknowledgements
The authors are very grateful to the referees for carefully reading of the paper and for their useful comments and
suggestions, which have improved the paper.

Funding
This work was supported by the National Natural Science Foundation of China (Grant No. 11771107 and No. 11801120),
and the Research Funding of Heilongjiang Province (Grant No. RCCX201716).

Availability of data and materials
Data sharing not applicable to this article as no data sets were generated or analyzed during the current study.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to this work. All authors read and approved the final manuscript.

Author details
1School of Mathematical Sciences, Heilongjiang University, Harbin, China. 2Department of Mathematics, Harbin Institute
of Technology, Harbin, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 11 March 2019 Accepted: 19 June 2019

References
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