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(H1) the function � (v) = �0, which is a positive constant;
(H2) the function � (w) = �0

w for all w > 0, where �0 is a positive constant.
Here �0 is the strength of the attraction, and �0 is the strength of the repulsion, u(x, t),
v(x, t), and w(x, t) denote the cell density, the concentration of the chemoattractant, and
the concentration of the chemorepellent. We assume that

D(u), S(u), F(u) ∈ C2([0,∞)
)

(1.2)

and there exist constants CD > 0 and m ≥ 1 such that

D(u) ≥ CD(u + 1)m–1. (1.3)

The function f : [0,∞) → R is smooth and satisfies f (0) ≥ 0 and

f (u) ≤ a – bu� (1.4)

with a ≥ 0, b > 0, and � > 1. The initial data comply with

⎧
⎨

⎩

u0 ∈ W 1,∞(�) with u0 ≥ 0 in � and u0 	≡ 0,

v0 ∈ W 1,∞(�) with v0 ≥ 0 in � .
(1.5)

Chemotaxis describes the oriented movement of cells along the concentration gradient
of a chemical signal produced by cells. The prototype of the chemotaxis model, known as
the Keller–Segel model, was first proposed by Keller and Segel [3] in 1970:

⎧
⎨

⎩

ut = �u – ∇ · (u� (v)∇v), x ∈ � , t > 0,

vt = �v + u – v, x ∈ � , t > 0.
(1.6)

When � (v) is a positive constant, a global solution is studied by Osaki and Yagi [8] for
n = 1; a global solution is investigated by Nagai et al. [7, 16] for n ≥ 2; the blowup solutions
are proved by Herrero ea al. [2, 12]. For the case where � (v) ≤ �0

(1+�v)k , � > 0, and k > 1, the
global classical solution is asserted by Winkler [17]. For the case � (v) = �

v with a positive

constant � <
√

2
n , a global classical solution is explored by Winkler [18].

Moreover, when D(u) = 1 and f (u) = 0, Tao and Wang [11] studied the following chemo-
taxis model:

⎧
⎪⎪⎨

⎪⎪⎩

ut = ∇ · (D(u)∇u) – ∇ · (u� (v)∇v) + ∇ · (u� (w)∇w) + f (u), x ∈ � , t > 0,

0 = �v + u – v, x ∈ � , t > 0,

0 = �w + u – w, x ∈ � , t > 0.

(1.7)

The global boundedness of the solutions was obtained in high dimensions, and blowup
solutions were identified in R2.

In the case where � (v) and � (w) are positive parameters in (1.7), D(u) satisfies (1.3),
and f (u) satisfies (1.4), a unique global bounded classical solution was deduced by Wang
[15]. When f (u) = 0 in (1.7), � (v) and � (w) are positive functions, D(u) satisfies (1.3), and
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f (u) satisfies (1.4), the global classical solutions are asserted by Wu and Wu [19], who
obtained an important estimate of

∫

� |∇v|2 dx. Note that this method is not applicable
for the general f (u) in our paper. For more details about chemotaxis system, we refer the
interested readers to [1, 5, 6, 9, 13, 14].

Motivated by [11, 15, 17–19], we consider a quasilinear attraction–repulsion chemotaxis
system with nonlinear sensitivity and logistic source. Our main results are given as follows.

Theorem 1.1 Assume that (1.2)–(1.5), (H1), and (H2) are valid. Moreover, suppose that

0 ≤ S(u) ≤ CS(u + 1)s, 0 ≤ F(u) = CF (u + 1)
 , (1.8)

and

0 ≤ s <

⎧
⎪⎪⎨

⎪⎪⎩

m+�
2 – n–1

n , � ∈ (1, n+2
n ],

m
2 + �(n+4)

2(n+2) – 1, � ∈ ( n+2
n , n + 2),

m+�
2 , � ∈ [n + 2,∞).

(i) If 
 ∈ (1,�), then (1.1) admits a bounded global classical solution.
(ii) If 
 ∈ (�, m), then (1.1) admits a bounded classical solution.

(iii) If m > max{1, n
+2–2

n+2 , n
–2

n }, then (1.1) admits a bounded global classical solution.

The local existence and uniqueness of system (1.1) can be derived from Lemma 2.1 in
[4], and hence we only state the result and omit its proof.

Lemma 1.1 ([4]) Suppose that (1.2)–(1.5) are valid. Then there exist a maximal existence
time Tmax ∈ (0, +∞) and a unique triplet (u,v,w) of functions that satisfy

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ C0(� × [0, Tmax)) ∩ C2,1(� × [0, Tmax)),

v ∈ C0(� × [0, Tmax)) ∩ C2,1(� × [0, Tmax)) ∩ L∞((0, Tmax); W 1,l(�)),

w ∈ C0(� × [0, Tmax)) ∩ C2,1(� × [0, Tmax)) ∩ L∞((0, Tmax); W 1,l(�))

(1.9)

with l > n and

u ≥ 0, v ≥ 0, w ≥ 0 in � × (0, Tmax).

In addition, if Tmax < +∞, then

lim
t→Tmax

sup
(∥
∥u(·, t)∥∥)

L∞ (�) +
∥
∥v(·, t)∥∥w1,∞(�) +

∥
∥w(·, t)∥∥w1,∞(�) = ∞. (1.10)

Lemma 1.2 Let (u, v, w) be the solution of system (1.1). Then there exist a constant m∗ such
that

∫

�
u(x, t) dx ≤ m∗ := max

{∫

�
u0,

a + b
b

|�|
}

, t ∈ (0, Tmax). (1.11)
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Proof Integrating the first equation of system (1.1) over � , we have

d
dt

∫

�
udx = a|�| – b

∫

�
u� dx. (1.12)

Due to � > 1 and Young’s inequality, we derive

u ≤ u� + 1. (1.13)

Combining with (1.12), we have

d
dt

∫

�
udx ≤ –b

∫

�
udx + (a + b)|�|, (1.14)

which yields (1.11). �

Lemma 1.3 (Gagliardo–Nirenberg inequality) Let r ∈ (0,�) and � ∈ W 1,2(�) ∩ Lr(�).
Then there exists a constant CGN > 0 such that

‖�‖L� (�) ≤ CGN
(‖∇�‖�∗

L2(�)‖�‖1–�∗
Lr (�) + ‖�‖Lr (�)

)
(1.15)

with

�∗ =
n
r – n

�

1 – n
2 + n

r
∈ (0, 1).

Lemma 1.4 Let � be a bounded domain in Rn with smooth boundary, and let v0 ∈
W 1,∞(�). Suppose that there exists a constant C1 such that

‖u‖Lk (�) ≤ C1, t ∈ (0, T).

For the problem
⎧
⎨

⎩

vt = �v + �u – �v, x ∈ � , t > 0,

v(x,t)


� = 0, x ∈ 
� , t > 0,

(i) if 1 ≤ k < n, then

∥
∥v(t)

∥
∥

W1,j(�) ≤ C for all j ∈
(

0,
nk

n – k

)

; (1.16)

(ii) if k = n, then (1.16) holds for all j ∈ (0,∞);
(iii) if k > n, then (1.16) holds for j = ∞.

Lemma 1.5 ([20]) For any h ∈ [1, n
n–1 ), there exists a constant C2 > 0 such that

∥
∥∇v(·, t)∥∥Lh ≤ C2, t ∈ (0, Tmax). (1.17)

Lemma 1.6 ([21]) For any h ∈ [1, n�
(n+2–�)+ ), there exists a constant C3 > 0 such that

∥
∥∇v(·, t)∥∥Lh ≤ C3, t ∈ (0, Tmax). (1.18)
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2 A priori estimates
Lemma 2.1 Suppose

d
dt

∫

�
(u + 1)k dx +

d
dt

∫

�
|∇v|2� dx + D1

∫

�

∣
∣∇(u + 1)

k+m–1
2

∣
∣2 dx

+
bk

2�+1

∫

�
(u + 1)k+�–1 dx +

∫

�
|∇v|2� dx

≤ D2

∫

�
(u + 1)k+
–1 dx + D3, (2.1)

where

D1 =
2CDk(k – 1)
(k + m – 1)2 , D2 =

CF�0k(k – 1)
k + 
 – 1

, D3 is a constant.

If 
 ∈ (1,�), then there exist constants E1 > 0 and E2 > 0 such that

d
dt

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

+ E1

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

≤ E2 (2.2)

for sufficiently large k.

Proof Since 
 ∈ (1,�), by Young’s inequality we have

∫

�
(u + 1)k+
–1 dx ≤ C4

∫

�
(u + 1)k+�–1 dx + C5 (2.3)

and
∫

�
(u + 1)k dx ≤ C6

∫

�
(u + 1)k+�–1 dx + C7. (2.4)

Combining (2.1), (2.3), and (2.4), we get that there are positive constants E1 and E2 such
that

d
dt

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

+ E1

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

≤ E2. �

Lemma 2.2 Suppose

d
dt

∫

�
(u + 1)k dx +

d
dt

∫

�
|∇v|2� dx + D1

∫

�

∣
∣∇(u + 1)

k+m–1
2

∣
∣2 dx

+
bk

2�+1

∫

�
(u + 1)k+�–1 dx +

∫

�
|∇v|2� dx

≤ D2

∫

�
(u + 1)k+
–1 dx + D3, (2.5)

where

D1 =
2CDk(k – 1)
(k + m – 1)2 , D2 =

CF�0k(k – 1)
k + 
 – 1

, D3 is a constant.
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If 
 ∈ (�, m), then there exist constants E3 > 0 and E4 > 0 such that

d
dt

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

+ E3

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

≤ E4. (2.6)

Proof By Lemma 1.2 and the Gagliardo–Nirenberg inequality there exists a constant C8 >
0 such that

∫

�
(u + 1)k+m–1 dx

=
∥
∥(u + 1)

k+m–1
2

∥
∥2

L2

≤ CGN
(∥
∥∇(u + 1)

k+m–1
2

∥
∥2�∗

L2

∥
∥(u + 1)

k+m–1
2

∥
∥2(1–�∗)

L
2

k+m–1
+

∥
∥(u + 1)

k+m–1
2

∥
∥2

L
2

k+m–1

)

≤ C8
(∥
∥∇(u + 1)

k+m–1
2

∥
∥2�∗

L2 + 1
)
, (2.7)

where

�∗ =
k+m–1

2 – 1
2

k+m–1
2 + 1

n – 1
2

∈ (0, 1).

By Young’s inequality we obtain

∫

�
(u + 1)k+m–1 dx ≤ C9

∫

�

∣
∣∇(u + 1)

k+m–1
2

∣
∣2 dx + C10. (2.8)

Since 
 ∈ (�, m), by Young’s inequality there exist C11 > 0 and C12 > 0 such that

∫

�
(u + 1)k+
–1 dx ≤ C11

∫

�
(u + 1)k+m–1 dx + C12. (2.9)

Hence, combining (2.5), (2.8), and (2.9), we obtain (2.6). �

Lemma 2.3 Suppose

d
dt

∫

�
(u + 1)k dx +

d
dt

∫

�
|∇v|2� dx + D1

∫

�

∣
∣∇(u + 1)

k+m–1
2

∣
∣2 dx

+
bk

2�+1

∫

�
(u + 1)k+�–1 dx +

∫

�
|∇v|2� dx

≤ D2

∫

�
(u + 1)k+
–1 dx + D3, (2.10)

where

D1 =
2CDk(k – 1)
(k + m – 1)2 , D2 =

CF�0k(k – 1)
k + 
 – 1

, D3 is a constant.

If m > max{1, n
+2–2

n+2 , n
–2

n }, then there exist constants E5 > 0 and E6 > 0 such that

d
dt

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

+ E5

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

≤ E6. (2.11)
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Proof By the Gagliardo–Nirenberg inequality there exists C13 > 0 such that

∫

(u + 1)k+
–1 dx =
∥
∥(u + 1)

k+m–1
2

∥
∥

2(k+
–1)
k+m–1

L
2(k+
–1)
k+m–1

≤ CGN
(∥
∥∇(u + 1)

k+m–1
2

∥
∥�1

L2

∥
∥(u + 1)

k+m–1
2

∥
∥(1–�1)

L
2

k+m–1

+
∥
∥(u + 1)

k+m–1
2

∥
∥2

L
2

k+m–1

) 2(k+
–1)
k+m–1

≤ C13
(∥
∥∇(u + 1)

k+m–1
2

∥
∥�1· 2(k+
–1)

k+m–1
L2 + 1

)
, (2.12)

where

�1 =
n(k+m–1)

2 – n(k+m–1)
2(k+
–1)

1 – n
2 + n(k+m–1)

2

=
n(k + m – 1)(k + 
 – 1) – n(k + m – 1)

(k + 
 – 1)[2 – n + n(k + m – 1)]
.

The condition m > max{1, n
+2–2

n+2 } and sufficiently large k guarantee that

(k + f – 1)
[
2 – n + n(k + m – 1)

]

= n(k + 
 – 1)(k + m – 1) + (k + 
 – 1)(2 – n)

= n(k + 
 – 1)(k + m – 1) + (k + m – 1 + 
 – m)(2 – n)

≥ n(k + 
 – 1)(k + m – 1) – n(k + m – 1) + (2 – n)(
 – m) + 2(2m – 1)

≥ n(k + 
 – 1)(k + m – 1) – n(k + m – 1).

Hence �1 ∈ (0, 1).
Since m > max{1, n
–2

n }, we obtain

k + 
 – 1
k + m – 1

· �1 ∈ (0, 1).

By Young’s inequality we derive

∫

�
(u + 1)k+m–1 dx ≤ C14

∫

�

∣
∣∇(u + 1)

k+m–1
2

∣
∣2 dx + C15. (2.13)

Therefore (2.10) and (2.13) yield (2.11). �

Lemma 2.4 Let n ≥ 2. Defining

�2 =
2(k + � – 1)
� + m – 2s

, �3 =
2(� – 1)(k + � – 1)

k + � – 3
, (2.14)

and

	i(k,� ; h) =
�
h – �

�i
1
n – 1

2 + �
h

, wi(k,� ; h) =
	i�i

�
=

�i
h – 1

1
n – 1

2 + �
h

, i = 2, 3, (2.15)

we have
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(a) if � ∈ (1, n+2
n ], s < m+�

2 – n–1
n , then for sufficiently large k, there exist � > 2 and

h ∈ [1, n
n–1 ) such that

	i(k,� ; h) ∈ (0, 1) and wi(k,� ; h) < 2, i = 2, 3. (2.16)

(b) if � ∈ ( n+2
n , n + 2), s < m

2 + �(n+4)
2(n+2) – 1, then for sufficiently large k, there exist � > 2 and

h ∈ ( n
n–1 , n�

n+2–� ) such that (2.16) holds.

Proof By computation we verify that (2.16) is equivalent to

�i > h, � >
�i

2
–

�i

n
, � >

�i

2
–

h
n

, i = 2, 3.

Thus it is sufficient to ensure that

�i > h, � >
�i

2
–

h
n

, i = 2, 3. (2.17)

(a) For h ∈ [1, n
n–1 ], by the continuity of h it suffices to prove the case h = n

n–1 . To prove
(2.17), we need to prove

k + � – 1
� + m – 2s

–
1

n – 1
< � <

k + � – 1
2

+
k + � – 3
2(n – 1)

, (2.18)

k >
n(m + n – 2s)

2(n – 1)
+ 1 – �, � >

n(k + � – 3)
2(n – 1)(k + � – 1)

+ 1. (2.19)

Since s < m+�
2 – n–1

n , there exists

k > max

{

1, m + 1 – 2s, 3 – �,
n(m + n – 2s)

2(n – 1)
+ 1 – �

}

such that

k + � – 1
� + m – 2s

–
1

n – 1
<

k + � – 1
2

+
k + � – 3
2(n – 1)

,

so (2.18) and (2.19) are satisfied. Hence (2.17) holds.
(b) We note that � ∈ ( n+2

n , n + 2) ensures the interval h ∈ ( n
n–1 , n�

n+2–� ). By the continuity
of h, let h = n�

n+2–� . To prove (2.17), we need to show that

k + � – 1
� + m – 2s

–
�

n + 2 – �
< � <

n + 2
2(n + 2 – �)

· k –
n + 2

2(n + 2 – �)
+

n�
2n + 2 – �

(2.20)

and

k >
n�(� + m – 2s)

2(n + 2 – �)
– � + 1, � >

�(n – 2) + 2(n + 2)
2(n + 2 – �)

. (2.21)

Since s < m
2 + �(n+4)

2(n+2) – 1, there exists

k > max

{

1, m + 1 – 2s, 3 – �,
n� + 2(n + 2)
2(n + 2 – �)

· (� + m – 2s) + 1 – �
}
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such that

k + � – 1
� + m – 2s

–
�

n + 2 – �
<

n + 2
2(n + 2 – �)

· k –
n + 2

2(n + 2 – �)
+

n�
2n + 2 – �

. (2.22)

Then (2.20) and (2.21) are satisfied, and hence (2.17) holds. �

Lemma 2.5 For the second equation in (1.1), E > 0, and � > 2 we have

d
dt

∫

�
|∇v|2� dx +

� – 1
�

∫

�

∣
∣∇|∇v|� ∣

∣2 dx

≤ [
4�(� – 1) + �n

]
∫

�
u2|∇v|2�–2 dx + E (2.23)

for all t ∈ [0, Tmax).

Proof The proof can be found in [18]. �

Lemma 2.6 Under assumptions (1.2)–(1.5), (H1), and (H2), let n ≥ 2 satisfy

0 ≤ s <

⎧
⎪⎪⎨

⎪⎪⎩

m+�
2 – n–1

n for � ∈ (1, n+2
n ],

m
2 + �(n+4)

2(n+2) – 1 for � ∈ ( n+2
n , n + 2),

m+�
2 for � ∈ [n + 2,∞),

and let S(u) and F(u) satisfy (1.8). If 
 ∈ (1,�), there exist sufficiently large k and t ∈
[0, Tmax) such that

‖u‖Lk (�) ≤ C. (2.24)

Proof Multiplying by (u + 1)k–1 the both sides of the first equation in (1.1), we have

1
k

d
dt

∫

�
(u + 1)k dx + CD(k – 1)

∫

�
(u + 1)k+m–3|∇u|2 dx

≤ �0(k – 1)
∫

�
S(u)(u + 1)k–2∇u · ∇v dx

– CF (k – 1)
∫

�
(u + 1)f �0

w
(u + 1)k–2∇u · ∇wdx

+ a
∫

�
(u + 1)k–1 dx – b

∫

�
(u + 1)k–1u� dx (2.25)

for all t ∈ (0, Tmax). Since (u + 1)� ≤ 2�–1(u� + 1) for � > 1, this implies that

u� ≥ 1
2�–1 (u + 1)� – 1.

Then (2.25) can be rewritten as

1
k

d
dt

∫

�
(u + 1)k dx + CD(k – 1)

∫

�
(u + 1)k+m–3|∇u|2 dx +

b
2�–1

∫

�
(u + 1)k+�–1 dx
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≤ �0(k – 1)
∫

�
S(u)(u + 1)k–2∇u · ∇v dx

– CF (k – 1)
∫

�
(u + 1)f �0

w
(u + 1)k–2∇u · ∇wdx + (a + b)

∫

�
(u + 1)k–1 dx

= I1 + I2 + I3, (2.26)

where

I1 = �0(k – 1)
∫

�
S(u)(u + 1)k–2∇u · ∇v dx

≤ �0CS(k – 1)
∫

�
(u + 1)k+s–2|∇u||∇v|dx

≤ CD(k – 1)
2

∫

�
(u + 1)k+m–3|∇u|2 dx

+
�2

0 C2
S (k – 1)
2CD

∫

�
(u + 1)k+2s–m–1|∇v|2 dx. (2.27)

Similarly, we have

I2 = –CF (k –1)
∫

�
(u+1)k+f –2 �0

w
∇u∇wdx =

CF (k – 1)�0

k + f – 1

∫

�
(u+1)k+f –1∇ ·

(
1
w

∇wdx
)

,

and then

I2 =
CF (k – 1)�0

k + f – 1

∫

�
(u + 1)k+f –1

(

–
1

w2 |∇w|2 +
1
w

�w
)

dx

≤ CF (k – 1)�0

k + f – 1

∫

�
(u + 1)k+f –1 1

w
(	w – � u) dx

≤ CF (k – 1)�0

k + f – 1
	
∫

(u + 1)k+f –1 dx. (2.28)

For all t ∈ (0, Tmax) with C16 > 0, we obtain

I3(a + b) =
∫

�
(u + 1)k–1 dx

≤ b
2�

∫

�
(u + 1)k+�–1 dx + C16. (2.29)

Combining (2.23), (2.27), (2.28), (2.29), and Young’s inequality, we deduce

d
dt

∫

�
(u + 1)k dx +

d
dt

∫

�
|∇v|2� dx +

2CDk(k – 1)
(k + m – 1)2

∫

�

∣
∣∇(u + 1)

k+m–1
2

∣
∣2 dx

+
bk
2�

∫

�
(u + 1)k+�–1 dx +

� – 1
�

∫

�

∣
∣∇|∇v|� ∣

∣2 dx

≤ �2
0 C2

s k(k – 1)
2CD

∫

�
(u + 1)k+2s–m–1|∇v|2 dx +

CF�0k(k – 1)
k + f – 1

	
∫

�
(u + 1)k+f –1 dx + C16

+
[
4�(� – 1) + �n

]
∫

�
u2|∇v|2�–2 dx + E



Yan and Yang Boundary Value Problems        (2019) 2019:120 Page 11 of 13

≤ bk
2�+1

∫

�
(u + 1)k+�–1 dx + C17

∫

�
|∇v|�2 dx + C18

∫

�
|∇v|�3 dx

+
CF�0k(k – 1)

k + f – 1
	
∫

	
(u + 1)k+f –1 dx + C19 (2.30)

with C17, C18, C19 > 0 and �2, �3 as shown in Lemma 2.4 for all t ∈ (0, Tmax). By Lemma 1.5,
Lemma 1.6, and the Gagliardo–Nirenberg inequality we have

∫

�
|∇v|�i dx

=
∥
∥|∇v|�∥

∥
�i
�

L
�i
�

≤ C20
(∥
∥∇|∇v|�∥

∥	i
L2

∥
∥|∇v|�∥

∥1–	i

L
h
�

+
∥
∥|∇v|�∥

∥
L

h
�

) �i
�

≤ C21
∥
∥∇|∇v|�∥

∥
	i�i
�

L2
+ C22

with �i, 	i as in Lemma 2.4, where i = 2, 3. Since wi = 	i�i
� < 2, by Young’s inequality we have

∫

�
|∇v|�i dx ≤ C23

∫

�

∣
∣∇|∇v|� ∣

∣2 + C24. (2.31)

From (2.30) and (2.31) we have that there exist constants D1, D2, D3 > 0 such that

d
dt

∫

�
(u + 1)k dx +

d
dt

∫

�
|∇v|2� dx + D1

∫

�

∣
∣∇(u + 1)

k+m–1
2

∣
∣2 dx

+
bk

2�+1

∫

�
(u + 1)k+�–1 dx +

∫

�
|∇v|2� dx

≤ D2

∫

�
(u + 1)k+
–1 dx + D3, (2.32)

where D1 = 2CDk(k–1)
(k+m–1)2 and D2 = CF �0k(k–1)

k+
–1 . By Lemma 2.1 we have

d
dt

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

+ C25

(∫

�
(u + 1)k dx +

∫

�
|∇v|2� dx

)

≤ C26 (2.33)

for all t ∈ (0, Tmax). By an ODE comparison argument we obtain (2.24).
For � ∈ [n + 2,∞), from the Lemma 1.6 we have

∫

�
|∇v|�i dx ≤ C. (2.34)

In addition, s < m+�
2 is equivalent to k + 2s – m – 1 < k + � – 1, so by (2.30), (2.34), and

Lemma 2.1, using an ODE comparison argument, we derive (2.24). �

Remark 2.1 If 
 ∈ (�, m) in Theorem 1.1, then by (2.32), Lemma 2.2, and Lemma 2.4 we
obtain (2.24).
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Remark 2.2 If m > max{1, n
+2–2

n+2 , n
–2

n } in Theorem 1.1, then by (2.32), Lemma 2.3, and
Lemma 2.4 we obtain (2.24).

Proof of Theorem 1.1 For k > n
2 , by Lemmas 1.4 and 2.6 there exists a positive constant C27

such that

∥
∥v(·, t)∥∥W1,∞(�) ≤ C27.

Using the elliptic regularity theory, we have

∥
∥w(·, t)∥∥w2,k (�) ≤ C28. (2.35)

Then, for a sufficiently large k, by the Sobolev embedding theorem there exists a positive
constant C29 such that

∥
∥∇w(·, t)∥∥L∞(�) ≤ C29. (2.36)

By using Lemma A.1 in [10] we conclude that u is uniformly bounded in � × (0, Tmax).
Thus there exists a positive constant C30 such that

∥
∥u(·, t)∥∥L∞ ≤ C30, t ∈ (0, Tmax), (2.37)

that is, (u, v, w) is a global bounded classical solution to (1.1). �
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