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Abstract
We investigate the existence and multiplicity of solutions for second-order
Hamiltonian systems satisfying generalized periodic boundary value conditions at
resonance by means of the index theory, the critical point theory without
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1 Introduction and main results
Solutions of Hamiltonian systems are very important in applications. In recent years, the
existence and multiplicity of solutions for Hamiltonian systems via critical point theory
have been studied by many authors (see [2, 5–10, 12–22]). In particular, by means of criti-
cal point theory, the least action principle, and the minimax method, the existence and
multiplicity of periodic solutions for second-order Hamiltonian systems with periodic
boundary conditions were extensively studied in the cases where the gradient of the non-
linearity is bounded sublinearly and linearly, and many interesting results are given in [5,
9, 10, 13–19, 22]. In this paper, we discuss the existence and multiplicity of solutions for
the following second-order Hamiltonian systems satisfying generalized periodic bound-
ary value conditions:

⎧
⎨

⎩

–x′′ – B1(t)x = ∇xV (t, x), a.e. t ∈ [0, 1],

x(1) = Mx(0), x′(1) = Nx′(0),
(1.1)

where B1(t) ∈ L∞([0, 1],Ls(Rn)) = {B(t) = (bjk)n×n|bjk(t) = bkj(t), t ∈ [0, 1], bjk(t) ∈
L∞([0, 1])} with νs

M(B1) �= 0, M, N ∈ GL(n) = {A = (ajk)n×n|ajk ∈ R and det(A) �= 0}, and
MNT = In, where In is the unit matrix of order n, and ∇xV (t, x) denotes the gradient of
V (t, x) for x ∈ Rn. We suppose that V : [0, 1] × Rn → R satisfies the following condition:
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(A) V (t, x) is measurable in t for every x ∈ Rn and continuously differentiable in x for
a.e. t ∈ [0, 1]. Moreover, there exist a(x) ∈ C(R+, R+) and b(t) ∈ L1([0, 1], R+) such
that

∣
∣V (t, x)

∣
∣ ≤ a

(|x|)b(t) and
∣
∣∇xV (t, x)

∣
∣ ≤ a

(|x|)b(t)

for all x ∈ Rn and a.e. t ∈ [0, 1], where R+ = [0, +∞).
Note that if M = N = In and B1(t) ≡ 0, then νs

In (0) �= 0 via (2.5) in the next section. There-
fore the periodic solution problem

⎧
⎨

⎩

–x′′ = ∇xV (t, x) a.e. t ∈ [0, 1],

x(1) – x(0) = x′(1) – x′(0) = 0,
(1.2)

is a particular case of (1.1).
Now we use the index (is

M(B),νs
M(B)) ∈ Z × N defined in [6, 7] (see the next section) for

all B ∈ L∞([0, 1],Ls(Rn)) to reach our main results.

Theorem 1.1 Assume that V (t, x) is convex in x for a.e. t ∈ [0, 1] and satisfies (A) and
(A1) is

M(B1) = 0;
(A2)

∫ 1

0
V (t, x) dt → +∞ as ‖x‖ → ∞, x ∈ Z0(B1) = ker(Λ – B1);

(A3) there exists B2 ∈ L∞([0, 1],Ls(Rn)) such that B2 > B1, νs
M(B2) �= 0, and is

M(B2) =
is
M(B1) + νs

M(B1), and there exists γ (t) ∈ L1([0, 1], R+) such that

V (t, x) ≤ 1
2
((

B2(t) – B1(t)
)
x, x

)
+ γ (t)

for all x ∈ Rn and a.e. t ∈ [0, 1], and

meas

{

t ∈ [0, 1]
∣
∣
∣V (t, x) –

1
2
((

B2(t) – B1(t)
)
x, x

) → –∞ as ‖x̄‖ → ∞
}

> 0,

where x = x̃ + x̄ and x̄ ∈ Z0(B2).
Then problem (1.1) has at least one solution in Z = {x ∈ H1([0, 1], Rn)|x(1) = Mx(0)}.

Theorem 1.2 Assume that V (t, x) satisfies (A), (A1), and
(A4) there exist f , g ∈ L1([0, 1], R+) with νs

M(B1 + f (t)In) = 0 and is
M(B1 + f (t)In) = is

M(B1) +
νs

M(B1) such that

∣
∣∇xV (t, x)

∣
∣ ≤ f (t)|x| + g(t)

for all x ∈ Rn and a.e. t ∈ [0, 1];
(A5) there exists a function μ(t) ∈ L1([0, 1], R+) with inft∈[0,1] μ(t) > 0 such that V (t, x) –

1
2μ(t)|x|2 is convex in x for a.e. t ∈ [0, 1].
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Then problem (1.1) has at least one solution with saddle character in Z (i.e., the solution is
a saddle point).

Assume in addition that
(A6) there exist r > 0, B01, B02 ∈ L∞([0, 1],Ls(Rn)) such that B02 > B01 > B1 and νs

M(B0i) �=
0 (i = 1, 2), is

M(B02) = is
M(B01) + νs

M(B01), and for all ‖x‖ ≤ r,

1
2
((

B01(t) – B1(t)
)
x, x

) ≤ V (t, x) ≤ 1
2
((

B02(t) – B1(t)
)
x, x

)

for a.e. t ∈ [0, 1].
Then problem (1.1) has at least three distinct solutions in Z.

Theorem 1.3 Assume that V (t, x) satisfies (A), (A1), and
(A′

4) there exist α ∈ [0, 1), and f ∈ L2([0, 1], R+), and g ∈ L1([0, 1], R+) such that

∣
∣∇xV (t, x)

∣
∣ ≤ f (t)|x|α + g(t)

for all x ∈ Rn and a.e. t ∈ [0, 1];
(A7) there exists c0 > 0 large enough such that

lim inf‖x‖→∞ ‖x‖–2α

∫ 1

0
V (t, x) dt > c0 (1.3)

or

lim sup
‖x‖→∞

‖x‖–2α

∫ 1

0
V (t, x) dt < –c0 (1.4)

for x ∈ Z0(B1) = ker(Λ – B1).
Then problem (1.1) has at least one solution in Z.

Assume in addition that
(A′

6) there exist ε > 0, r > 0, B01, B02 ∈ L∞([0, 1],Ls(Rn)) such that B02 > B01 > B1 and
νs

M(B0i) �= 0 (i = 1, 2), is
M(B02) = is

M(B01) + νs
M(B01), and for all ‖x‖ ≤ r,

1
2
((

εIn + B01(t) – B1(t)
)
x, x

) ≤ V (t, x)

for a.e. t ∈ [0, 1], whereas for all x ∈ Rn,

V (t, x) ≤ 1
2
((

B02(t) – B1(t)
)
x, x

)

for a.e. t ∈ [0, 1].
Then problem (1.1) has at least two distinct solutions in Z.

Theorem 1.4 Assume that V (t, x) satisfies (A), (A′
4), (A7), and

(A′
1) is

M(B1) �= 0.
Then problem (1.1) has at least one solution in Z.

Assume in addition that
(A8) V (t, x) is an even function in x for a.e. t ∈ [0, 1];
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(A9) there exist ε > 0, r > 0, B2 ∈ L∞([0, 1],Ls(Rn)) such that B2 > B1 and νs
M(B2) �= 0,

is
M(B2) > is

M(B1) + νs
M(B1), and for all ‖x‖ ≤ r,

V (t, x) – V (t, 0) ≥ 1
2
((

εIn + B2(t) – B1(t)
)
x, x

)

for a.e. t ∈ [0, 1].
Then problem (1.1) has at least is

M(B2) – is
M(B1) – νs

M(B1) pairs of solutions in Z.

We give the proofs in Sect. 3, and now we return to some discussions on problem (1.2).

Corollary 1.5 Assume that V (t, x) is convex in x for a.e. t ∈ [0, 1] and satisfies (A) and the
following conditions:

(H1)

∫ 1

0
V (t, x) dt → +∞ as |x| → ∞, x ∈ Rn;

(H2) there exists γ (t) ∈ L1([0, 1], R+) such that

V (t, x) ≤ (2π )2

2
|x|2 + γ (t)

for all x ∈ Rn and a.e. t ∈ [0, 1], and

meas

{

t ∈ [0, 1]
∣
∣
∣V (t, x) –

(2π )2

2
|x|2 → –∞ as |x| → ∞

}

> 0.

Then problem (1.2) has at least one solution in H1
0 = {x ∈ H1([0, 1], Rn)|x(1) – x(0) = 0}.

Remark 1.6 For the interval [0, T] considered in second-order HS satisfying periodic
boundary value conditions, if T = 1, then Corollary 1.5 reduces to Theorem 3.2 in [17].
By Remark 1.4 and Remark 3.2 in [17] we can see that Corollary 1.5 generalizes Theo-
rem 3.5 in [10] and the corresponding theorem in [13] as T = 1.

Corollary 1.7 Assume that V (t, x) satisfies (A), (A5), and
(H3) there exist f , g ∈ L1([0, 1], R+) with 0 < f (t) < 4π2 such that

∣
∣∇xV (t, x)

∣
∣ ≤ f (t)|x| + g(t) (1.5)

for all x ∈ Rn and a.e. t ∈ [0, 1].
Then problem (1.2) has at least one solution with saddle character in H1

0 .
Assume in addition that
(H4) there exist δ > 0 and k ∈ N \ {0} such that, for all |x| ≤ δ,

2(kπ )2|x|2 ≤ V (t, x) ≤ 2
(
(k + 1)π

)2|x|2

for a.e. t ∈ [0, 1].
Then problem (1.2) has at least three distinct solutions in H1

0 .
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Remark 1.8 As T = 1, in Theorem 2.2 of [18], assume that V (t, x) satisfies (A), (H4), and
(H3,1) there exist f , g ∈ L1([0, 1], R+) with

∫ 1
0 f (t) dt < 12 such that (1.5) holds;

(A5,1) there exists a function μ(t) ∈ L1([0, 1], R+) with
∫ 1

0 μ(t) dt > 0 such that V (t, ·) is
μ(t)-monotone.

Then the conclusion of Corollary 1.7 is also true.
On one hand, by Remark 1.7 in [17] we know that the μ(t)-monotonicity of V (t, ·) is

equivalent to the convexity of V (t, ·) – 1
2μ(t). Since inft∈[0,1] μ(t) > 0 ⇒ ∫ 1

0 μ(t) dt > 0, this
shows that (A5) ⇒ (A5,1).

On the other hand, for f ∈ L1([0, 1], R+), we have
∫ 1

0 f (t) dt < 12 � 0 < f (t) < 4π2 and

0 < f (t) < 4π2
�

∫ 1
0 f (t) dt < 12. Indeed, if f (t) =

{ 4π2, x ∈ [0, 1
4π2 ],

0, x ∈ ( 1
4π2 , 1],

then
∫ 1

0 f (t) dt = 1 and

f (t) ≥ 4π2 for x ∈ [0, 1
4π2 ]; if 12 < f (t) < 4π2, then

∫ 1
0 f (t) dt > 12. So Corollary 1.7 is a new

result and in a sense a development of Theorem 2.2 in [18].
Next, we give some examples of a potential function V (t, x) satisfying the assumptions

of Corollary 1.7. Let μ(t) = 2π2 for all t ∈ [0, 1], and let

V (t, x) =

⎧
⎨

⎩

π2|x|2 + 2π2|x| – π2, |x| ≥ 1,

2π2|x|2, |x| ≤ 1,

for all x ∈ Rn. Clearly, assumptions (A), (H3), (H4) hold, and F(x) = V (t, x) – 1
2μ(t)|x|2 is

convex in x because

F(x) = g
(
h(x)

)

is convex, which follows from the facts that

g(s) =

⎧
⎨

⎩

2π2s – π2, s ≥ 1,

π2s2, 0 ≤ s ≤ 1,

is convex and increasing and

h(x) = |x|, x ∈ Rn,

is convex. Thus V satisfies the conditions of Corollary 1.7. Similarly, we can see that

V (t, x) =

⎧
⎨

⎩

π2(1 + sin t)|x|2 + 2π2(1 + sin t)|x| – π2(1 + sin t), |x| ≥ 1,

2π2(1 + sin t)|x|2, |x| ≤ 1,

also satisfies the conditions of Corollary 1.7.

Corollary 1.9 Assume that V (t, x) satisfies (A), (A′
4), and

(H5) there exists c0 > 0 large enough such that

lim inf|x|→∞ |x|–2α

∫ 1

0
V (t, x) dt > c0 (1.6)
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or

lim sup
|x|→∞

|x|–2α

∫ 1

0
V (t, x) dt < –c0 (1.7)

for x ∈ Rn.
Then problem (1.2) has at least one solution in H1

0 .
Assume in addition that
(H′

4) there exist ε > 0, r > 0, and k ∈ N \ {0} such that

1
2
(
ε + (2kπ )2)|x|2 ≤ V (t, x)

for all |x| ≤ r and a.e. t ∈ [0, 1], and

V (t, x) ≤ 1
2
(
2(k + 1)π

)2|x|2

for all x ∈ Rn and a.e. t ∈ [0, 1].
Then problem (1.2) has at least two distinct solutions in H1

0 .

Remark 1.10 As T = 1, in Theorems 1–3 of [14] assume that V (t, x) satisfies (A), (H′
4), and

(A′′
4) there exist α ∈ [0, 1) and f , g ∈ L1([0, 1], R+) such that

∣
∣∇xV (t, x)

∣
∣ ≤ f (t)|x|α + g(t)

for all x ∈ Rn and a.e. t ∈ [0, 1];
(H5,1)

|x|–2α

∫ 1

0
V (t, x) dt → +∞ as |x| → ∞ (1.8)

or

|x|–2α

∫ 1

0
V (t, x) dt → –∞ as |x| → ∞. (1.9)

Then the conclusion of Corollary 1.9 is also true. Clearly, condition (H5,1) is stronger than
condition (H5), and condition (A′′

4) is weaker than condition (A′
4). Moreover, we can see

that Examples 3.1–3.2 in [16] satisfy the conditions of Corollary 1.9 but do not satisfy
Theorems 1–3 in [14]. So Corollary 1.9 is a new result and in a sense a development of
Theorems 1–3 in [14].

In addition, if T = 1 and c0 = 1
8π2

∫ 1
0 f 2(t) dt or c0 = – 3

8π2

∫ 1
0 f 2(t) dt, then Corollary 1.9

reduces to Theorems 1.1–1.2 in [16]. In particular, we need to point out that condition
(A′′

4) of Theorems 1.1–1.2 in [16] must be amended to condition (A′
4), because

∫ 1
0 f 2(t) dt

was used in the proof of Theorems 1.1–1.2 in [16].

Remark 1.11 As T = 1, in Theorem 1 of [22] assume that V (t, x) satisfies (A), (H′
4), (H3,1),

and
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(H′
5,1)

|x|–2
∫ 1

0
V (t, x) dt → +∞ as |x| → ∞ (1.10)

or

|x|–2
∫ 1

0
V (t, x) dt → –∞ as |x| → ∞. (1.11)

Then the conclusion of Corollary 1.9 holds. Unfortunately, Tang and Meng [16] pointed
out that (1.5) of condition (H3,1) and (1.10) or (1.11) of condition (H′

5,1) cannot hold to-
gether, so that Theorem 1 in [22] is also incorrect.

Corollary 1.12 Assume that V (t, x) satisfies (A), (A′
4), and

(H′
5) there exists c0 > 0 large enough such that (1.3) or (1.4) hold for x ∈ ker(Λ – (2kπ )2).

Then problem

⎧
⎨

⎩

–x′′ – (2kπ )2x = ∇xV (t, x) a.e. t ∈ [0, 1],

x(1) – x(0) = x′(1) – x′(0) = 0,
(1.12)

has at least one periodic solution in H1
0 . Further, assume that (A8) is satisfied together with

(H6) there exist ε > 0 and r > 0 such that, for all |x| ≤ r,

V (t, x) – V (t, 0) ≥ ε + 4m(2k + m)π2

2
|x|2

for a.e. t ∈ [0, 1] and k, m ∈ N \ {0} with m > 1.
Then problem (1.12) has at least 2nm – 2n pairs of solutions in H1

0 .

Remark 1.13 As T = 1, in Theorems 1.1–1.2 of [19] assume that V (t, x) satisfies (A), (A′′
4),

(H6), and
(H′

5,2)

‖x‖–2α

∫ 1

0
V (t, x) dt → +∞ as ‖x‖ → ∞ (1.13)

or

‖x‖–2α

∫ 1

0
V (t, x) dt → –∞ as ‖x‖ → ∞ (1.14)

for x ∈ ker(Λ – (2kπ )2).
Then the conclusion of Corollary 1.12 is also true. Clearly, condition (H′

5,2) is stronger
than condition (H′

5), and condition (A′′
4) is weaker than condition (A′

4). So Corollary 1.12
is a new conclusion and in a sense a development of Theorems 1.1–1.2 in [19].

Corollary 1.14 Assume that V (t, x) satisfies (A), (A′
4), and

(A′′
1) ker(Λ – A(t)) \ {θ} �= ∅;
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(H′
5) there exists c0 > 0 large enough such that (1.3) or (1.4) hold for x ∈ ker(Λ – A(t)).

Then problem

⎧
⎨

⎩

–x′′ – A(t)x = ∇xV (t, x) a.e. t ∈ [0, 1],

x(1) – x(0) = x′(1) – x′(0) = 0,
(1.15)

has at least one periodic solution in H1
0 , where A(t) is a continuous symmetric matrix of

order n.

Remark 1.15 As T = 1, in Theorems 2–3 in [15] assume that V (t, x) satisfies (A), (A′′
1),

(A′′
4), and
(H′

5,3) there exists γ (t) ∈ L1([0, 1], R+) such that |x|–2αV (t, x) ≥ –γ (t) for all x ∈ Rn and
a.e. t ∈ [0, 1], and there exists a subset E of [0, 1] with meas(E) > 0 such that

|x|–2αV (t, x) → +∞ as |x| → ∞

for a.e. t ∈ E; or there exists γ (t) ∈ L1([0, 1], R+) such that |x|–2αV (t, x) ≤ γ (t) for
all x ∈ Rn and a.e. t ∈ [0, 1], and there exists a subset E of [0, 1] with meas(E) > 0
such that

|x|–2αV (t, x) → –∞ as |x| → ∞

for a.e. t ∈ E.
Then the conclusion of Corollary 1.14 is also true. Clearly, from the proof of Theorems
2–3 in [15] we can see that (H′

5,3) ⇒ (H′
5,2). Moreover, we know that condition (H′

5) is
weaker than condition (H′

5,2). So, although condition (A′′
4) is weaker than condition (A′

4),
Corollary 1.14 is also a new conclusion and in a sense a development of Theorems 2–3 in
[15].

The proof of Theorems 1.1–1.4 and these corollaries will be given in Sect. 3, and in
Sect. 2, we recall some useful results concerning the index theory for linear second-order
Hamiltonian systems satisfying generalized periodic boundary value conditions in [6, 7],
which will be used in other sections.

2 Brief introduction of the index theory
Let L∞([0, 1],Ls(Rn)) = {B(t) ∈ GL(n)|bjk(t) = bkj(t) for t ∈ [0, 1] and bjk(t) ∈ L∞([0, 1])}.
Index theory in [6, 7] deals with a classification of L∞([0, 1],Ls(Rn)) associated with the
following system:

–x′′ – B(t)x = 0, (2.1)

x(1) = Mx(0), x′(1) = Nx′(0), (2.2)

where M, N ∈ GL(n) and MNT = In.
Let L = L2([0, 1], Rn) and Z = {x ∈ H1([0, 1], Rn)|x satisfies (2.2)}. Define Λ : D(Λ) → L

by (Λx)(t) = –x′′(t). From the Sect. 7.1 in [6] we can check that Λ is self-adjoint in L and
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σ (Λ) = σd(Λ) ⊂ [0, +∞). In particular, if M = N = In, then σ (Λ) = σd(Λ) = {(2k)2π2|k ∈ Z},
and if M = N = –In, then σ (Λ) = σd(Λ) = {(2k – 1)2π2|k ∈ Z}.

For any B(t) ∈ L∞([0, 1],Ls(Rn)), we define

qB(x, y) =
∫ 1

0

[(
x′, y′) –

(
B(t)x, y

)]
dt, x, y ∈ Z, (2.3)

where (·, ·) is the usual inner product in Rn, and Z is a Hilbert space with norm ‖x‖2 =
∫ 1

0 |x′|2 dt +
∫ 1

0 |x|2 dt for each x ∈ Z. Clearly, the embeddings Z ↪→ L and Z ↪→ L∞ are
compact.

Proposition 2.1 ([7], Proposition 7.2.1) For any B(t) ∈ L∞([0, 1],Ls(Rn)), the space Z has
a qB-orthogonal decomposition

Z = Z+(B) ⊕ Z0(B) ⊕ Z–(B)

such that qB is positive definite, null, and negative definite on Z+(B), Z0(B), and Z–(B),
respectively. Moreover, Z0(B) and Z–(B) are finite-dimensional.

Definition 2.2 ([6], Definition 2.4.1; [7], Definition 7.1.3) For any B(t) ∈ L∞([0, 1],Ls(Rn)),
we define

νs
M(B) = dim ker(Λ – B), is

M(B) =
∑

λ<0

νs
M(B + λIn).

Definition 2.3 ([7], Definition 7.2.1) For any B(t) ∈ L∞([0, 1],Ls(Rn)), we define

νq(B) = dim Z0(B), iq(B) = dim Z–(B).

We call νq(B) and iq(B) the nullity and index of B with respect to the bilinear form qB(·, ·),
respectively.

Proposition 2.4 ([7], Proposition 7.2.2) For any B(t) ∈ L∞([0, 1],Ls(Rn)), we have

νs
M(B) = νq(B), is

M(B) = iq(B).

For any B1, B2 ∈ L∞([0, 1],Ls(Rn)), we write B1 ≤ B2 if B1(t) ≤ B2(t) for a.e. t ∈ [0, 1] and
define B1 < B2 if B1 ≤ B2 and B1(t) < B2(t) on a subset of (0, 1) of positive measure.

Proposition 2.5
(1) For any B ∈ L∞([0, 1],Ls(Rn)), we have that Z0(B) is the solution subspace of systems

(2.1)–(2.2), and νs
M(B) ∈ {0, 1, 2, . . . , 2n} ([6], Proposition 2.4.2(1);

[7], Corollary 7.2.2(i)).
(2) For any B1, B2 ∈ L∞([0, 1],Ls(Rn)), if B1 ≤ B2, then is

M(B1) ≤ is
M(B2) and

is
M(B1) + νs

M(B1) ≤ is
M(B2) + νs

M(B2); if B1 < B2, then is
M(B1) + νs

M(B1) ≤ is
M(B2)

([6], Proposition 2.4.2(2); [7], Corollary 7.2.2(ii)).
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(3) For any B1, B2 ∈ L∞([0, 1],Ls(Rn)), if B1(t) < B2(t) for a.e. t ∈ [0, 1], then

is
M(B2) – is

M(B1) =
∑

λ∈[0,1)

νs
M

(
B1 + λ(B2 – B1)

)
.

The summand denoted by Is
M(B1, B2) is called the relative Morse index between B1

and B2 with respect to qB(·, ·) ([7], Proposition 7.2.2(iii)).
(4) (Poincaré inequality) For any B ∈ L∞([0, 1],Ls(Rn)), if is

M(B) = 0, then

qB(x, x) ≥ 0, x ∈ Z,

and the equality holds if and only if x ∈ Z0(B) ([7], Proposition 7.2.2(v)).
(5) For any B1, B2 ∈ L∞([0, 1],Ls(Rn)), if B1 < B2 and is

M(B2) = is
M(B1) + νs

M(B1), then
Z = Z–(B1) ⊕ Z0(B1) ⊕ Z0(B2) ⊕ Z+(B2), and (–qB1 (x1, x1)) 1

2 + (qB2 (x2, x2)) 1
2 is an

equivalent norm on Z for x = x1 + x2 with x1 ∈ Z–(B1) and x2 ∈ Z+(B2).

Proof We only prove (5). Let Z1 = Z–(B1) ⊕ Z0(B1), Z2 = Z0(B2) ⊕ Z+(B2). Noticing that
qB1 (x, x) ≥ qB2 (x, x) for all x ∈ Z, qB1 (x, x) ≤ 0 for all x ∈ Z1, and qB2 (x, x) ≥ 0 for all x ∈ Z2,
if x ∈ Z1 ∩ Z2, we have qB2 (x, x) = 0 = qB1 (x, x). It follows that x ∈ Z0(B2) ∩ Z0(B1) and
x(t) = 0 on a subset of [0, 1] of positive measure, and hence x = 0 via (1). Thus Z1 ∩Z2 = {θ}.
It remains to prove that Z = Z1 + Z2. By Proposition 2.1 we have Z = Z2 ⊕ Z–(B2), and
for any x ∈ Z, there exists a unique pair (x1, x2) ∈ Z2 × Z–(B2) such that x = x1 + x2. Let
{ej}k

j=1 be a basis of Z1, ej = e2
j + e–

j with e2
j ∈ Z2, e–

j ∈ Z–(B2) for j = 1, 2, . . . , k = is
M(B1) +

νs
M(B1). By is

M(B2) = is
M(B1) + νs

M(B1) = k, to prove that {e–
j }k

j=1 is a basis of Z–(B2), we only
need to show that {e–

j }k
j=1 is linearly independent. In fact, otherwise there would exist not

all zero constants c1, . . . , ck such that
∑k

j=1 cje–
j = 0. This leads to

∑k
j=1 cjej ∈ Z1 ∩ Z2, a

contradiction. The linear independence shows that there exist constants {αj}k
j=1 such that

x2 =
∑k

j=1 αje–
j , and hence x = x1 + x2 = x = x1 +

∑k
j=1 αje–

j =
∑k

j=1 αjej + (x1 –
∑k

j=1 αje2
j ).

Similarly to the proof of Proposition 7.2.2(iv) in [7], (–qB1 (x1, x1)) 1
2 + (qB2 (x2, x2)) 1

2 is an
equivalent norm on Z for x = x1 + x2 with x1 ∈ Z–(B1), x2 ∈ Z+(B2). �

Proposition 2.6 For any B(t) ∈ L∞([0, 1],Ls(Rn)) and Z = Z+(B)⊕Z0(B)⊕Z–(B), we have

qB(x, y) = 0, x, y ∈ Z0(B).

Proof By (2.3) and Proposition 2.1, for any x, y ∈ Z0(B), we have

0 = qB(x + y, x + y) = 2
∫ 1

0

[(
x′, y′) –

(
B(t)x, y

)]
dt = 2qB(x, y),

which shows that qB(x, y) = 0 for all x, y ∈ Z0(B). �

Proposition 2.7 For any B(t) ∈ L∞([0, 1],Ls(Rn)), if νs
M(B) �= 0, then there exists ε0 > 0 such

that νs
M(B + ε0In) = 0 and is

M(B + ε0In) = is
M(B) + νs

M(B).

Proof Clearly, B(t) < B(t) + εIn for all t ∈ [0, 1] and ε > 0. By (3) of Proposition 2.5 we have

is
M(B + εIn) – is

M(B) =
∑

λ∈[0,1)

νs
M(B + λεIn).
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Because is
M(B +εIn) is finite, there are only finitely many λ such that νs

M(B +λεIn) �= 0 via (2)
of Proposition 2.5. Thus, since νs

M(B) �= 0, we can choose ε0 > 0 such that νs
M(B + ε0In) = 0

and is
M(B + ε0In) – is

M(B) = νs
M(B). �

Remark 2.8 ([6], Example 2.4.3; [7], Remark 7.1.3) Let α1 ≤ α2 ≤ · · · ≤ αn be the eigenval-
ues of a constant n × n symmetric matrix B. Then

is
In (B) = #{k : αk > 0} + 2

n∑

k=1

#
{

j ∈ N : 4(jπ )2 < αk
}

, (2.4)

νs
In (B) = #{k : αk = 0} + 2

n∑

k=1

#
{

j ∈ N : 4(jπ )2 = αk
}

, (2.5)

is
–In (B) = 2

n∑

k=1

#
{

j ∈ N :
(
(2j – 1)π

)2 < αk
}

, (2.6)

νs
–In (B) = 2

n∑

k=1

#
{

j ∈ N :
(
(2j – 1)π

)2 = αk
}

, (2.7)

where #A denotes the number of elements in a set A. For η ∈ R \ {±1, 0} with λ0 =
arccos 2

η–1+η
, we have

is
ηIn (B) =

n∑

k=1

#
{

j ∈ N : (2jπ + λ0)2 < αk
}

+
n∑

k=1

#
{

j ∈ N : (2π – λ0 + 2jπ )2 < αk
}

,

νs
ηIn (B) =

n∑

k=1

#
{

j ∈ N : (2jπ + λ0)2 = αk
}

+
n∑

k=1

#
{

j ∈ N : (2π – λ0 + 2jπ )2 = αk
}

.

In particular, formulae (2.4) and (2.5) were given first by Mawhin and Willem in the book
[10].

3 Proof of the main results
In this section, we give proofs of the main results. To this end, we define

I(x) =
∫ 1

0

[

–
1
2
∣
∣x′∣∣2 +

1
2
(
B1(t)x, x

)
+ V (t, x)

]

dt, x ∈ Z. (3.1)

From assumption (A) it is easy to check that I is continuously differentiable and weakly
upper semicontinuous on Z (see [6, 7, 10]), where

Z =
{

x ∈ H1([0, 1], Rn)|x(1) = Mx(0)
}
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is a Hilbert space with the norm

‖x‖2 =
∫ 1

0

∣
∣x′∣∣2 dt +

∫ 1

0
|x|2 dt

for x ∈ Z. Clearly, for x ∈ Z, we have

∣
∣x(t)

∣
∣ ≤ ∥

∥x(t)
∥
∥∞ ≤ ∥

∥x(t)
∥
∥.

Moreover, we have

I ′(x)y =
∫ 1

0

[
–
(
x′, y′) +

(
B1(t)x, y

)
+

(∇xV (t, x), y
)]

dt, x, y ∈ Z,

and I ′ is weakly continuous. As in the proof of Proposition 2.4.2(1) in [6], we can find that
the critical points of I correspond to the solutions of (1.1) and omit the details.

3.1 Proof of Theorem 1.1
To prove Theorem 1.1, we need the following critical point theorem without the compact-
ness assumptions.

Lemma 3.1 ([17], Theorem 1.1) Let X1 and X2 be reflexive Banach spaces, and let ϕ ∈
C1(X1 × X2, R) be such that ϕ(x1, ·) is weakly upper semicontinuous for all x1 ∈ X1, ϕ(·, x2) :
X1 → R is convex for all x2 ∈ X2, and ϕ′ is weakly continuous. Assume that

ϕ(θ , x2) → –∞ (3.2)

as ‖x2‖ → +∞ and, for every M > 0,

ϕ(x1, x2) → +∞ (3.3)

as ‖x1‖ → +∞ uniformly for ‖x2‖ ≤ M. Then ϕ has at least one critical point.

Proof of Theorem 1.1 By assumption (A1), Propositions 2.1–2.4, and Definition 2.3 we
have Z = Z0(B1) ⊕ Z+(B1). Set X1 = Z0(B1), X2 = Z+(B1), x ∈ Z, x = x1 + x2 with x1 ∈ X1 and
x2 ∈ X2. Next, we divide the proof into three steps.

Step 1. It is obvious that V (t, x1(t) + x2(t)) is convex in x1(t) ∈ X1, so is
∫ 1

0 V (t, x1(t) +
x2(t)) dt. From (2.3) and Proposition 2.1 we can see that for every x2(t) ∈ X2,

I(x1 + x2) =
∫ 1

0

[

–
1
2
∣
∣x′

2(t)
∣
∣2 +

1
2
(
B1(t)x2(t), x2(t)

)
+ V

(
t, x1(t) + x2(t)

)
]

dt

is convex in x1 ∈ X1.
Step 2. We prove that (3.3) of Lemma 3.1 holds. By assumption (A) and the convexity of

V (t, ·) we can see that there exists c1 > 0 such that

∫ 1

0
V

(
t, x1(t) + x2(t)

)
dt

≥ 2
∫ 1

0
V

(

t,
1
2

x1(t)
)

dt –
∫ 1

0
V

(
t, –x2(t)

)
dt
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≥ 2
∫ 1

0
V

(

t,
1
2

x1(t)
)

dt –
∫ 1

0
a
(∣
∣x2(t)

∣
∣
)
b(t) dt

≥ 2
∫ 1

0
V

(

t,
1
2

x1(t)
)

dt – max
0≤u≤‖x2‖∞

a(u)
∫ 1

0
b(t) dt

≥ 2
∫ 1

0
V

(

t,
1
2

x1(t)
)

dt – max
0≤u≤c1‖x2‖

a(u)
∫ 1

0
b(t) dt

≥ 2
∫ 1

0
V

(

t,
1
2

x1(t)
)

dt – max
0≤u≤c1M

a(u)
∫ 1

0
b(t) dt

for all x1 ∈ X1 and x2 ∈ X2 with ‖x2‖ ≤ M. Note that ‖x‖2 = ‖x′‖2
L2 + ‖x‖2

L2 and B1(t) ∈
L∞([0, 1],Ls(Rn)). By (2.3) and Proposition 2.1 we know that there exists c2 > 0 such that

I(x1 + x2)

≥ –
1
2
∥
∥x′

2
∥
∥2

L2 –
1
2

c2‖x2‖2
L2 + 2

∫ 1

0
V

(

t,
1
2

x1(t)
)

dt – max
0≤u≤c1M

a(u)
∫ 1

0
b(t) dt

≥ –
1 + c2

2
M2 + 2

∫ 1

0
V

(

t,
1
2

x1(t)
)

dt – max
0≤u≤c1M

a(u)
∫ 1

0
b(t) dt

for all x1 ∈ X1 and x2 ∈ X2 with ‖x2‖ ≤ M. By assumption (A2) it is easy to see that (3.3) of
Lemma 3.1 holds.

Step 3. We check (3.2) of Lemma 3.1. If not, there exist a constant c3 and a sequence x2,n

in X2 such that ‖x2,n‖ → +∞ as n → ∞ and

I(x2,n) ≥ c3 (3.4)

for all n. Notice that νs
M(B2) �= 0 and is

M(B2) = is
M(B1) + νs

M(B1) in (A3). By (A1) and (5)
of Proposition 2.5 we have Z = Z0(B1) ⊕ Z0(B2) ⊕ Z+(B2) and X2 = Z0(B2) ⊕ Z+(B2). Let
x2,n = un + vn, un ∈ Z0(B2), vn ∈ Z+(B2). Then by (A3), (3.4), (2.3), and Proposition 2.1, we
have

c3 ≤ I(x2,n) ≤
∫ 1

0

[

–
1
2
∣
∣x′

2,n
∣
∣2 +

1
2
(
B2(t)x2,n, x2,n

)
]

dt +
∫ 1

0
γ (t) dt

= –qB2 (vn, vn) +
∫ 1

0
γ (t) dt,

which shows that {vn} is bounded since (–qB1 (x1, x1)) 1
2 + (qB2 (x2, x2)) 1

2 is an equivalent
norm on Z for x = x1 + x2 with x1 ∈ Z–(B1)and x2 ∈ Z+(B2), where Z–(B1) = {θ}. Since
‖x2,n‖ ≤ ‖un‖ + ‖vn‖, we have ‖un‖ → ∞ as n → +∞. Set

E =
{

t ∈ [0, 1]
∣
∣
∣V (t, x) –

1
2
((

B2(t) – B1(t)
)
x, x

) → –∞ as ‖x̄‖ → ∞
}

,

where x = x̃ + x̄ and x̄ ∈ Z0(B2). Noting that x2,n ∈ X2 = Z0(B2) ⊕ Z+(B2), we have
qB2 (x2,n, x2,n) ≥ 0 for all n via Proposition 2.1. From the Lebesgue–Fatou lemma we have

lim sup
n→∞

I(x2,n)

≤ lim sup
n→∞

∫ 1

0

[

V (t, x2,n) –
1
2
((

B2(t) – B1(t)
)
x2,n, x2,n

)
]

dt
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≤ lim sup
n→∞

∫

E

[

V (t, x2,n) –
1
2
((

B2(t) – B1(t)
)
x2,n, x2,n

)
]

dt +
∫ 1

0
γ (t) dt

→ –∞

via (A3), which contradicts (3.4). Hence (3.2) of Lemma 3.1 holds.
By Lemma 3.1 I has at least one critical point. Hence problem (1.1) has at least one

solution in Z. The proof is complete. �

3.2 Proof of Theorem 1.2
To prove Theorem 1.2, we need the following saddle point reduction theorem under rather
general assumptions.

Lemma 3.2 ([1], Theorem 2.3) Let Y , X1, X2 be Hilbert spaces, and let ψ ∈ C1(Y × X1 ×
X2, R). Suppose that ψ satisfies the following conditions:

(1) D1ψ(·, x1, x2) : Y → Y is μ-monotone for all (x1, x2) ∈ X1 × X2, that is, there exists
μ > 0 such that

〈
D1ψ(y1, x1, x2) – D1ψ(y2, x1, x2), y1 – y2

〉 ≥ μ‖y1 – y2‖2, y1, y2 ∈ Y ;

(2) –D2ψ(y, ·, x2) : X1 → X1 is μ-monotone for all (y, x2) ∈ Y × X2.
Then there exists a map φ ∈ C(X2, Y × X1) such that φ(x2) = (y(x2), x1(x2)) is the unique
saddle point of ψ(·, ·, x2) for every x2 ∈ X2. Moreover, the map ϕ : X2 → R defined by

ϕ(x2) = ψ
(
y(x2), x1(x2), x2

)
= min

y∈Y
sup

x1∈X1
ψ(y, x1, x2) (3.5)

is continuously differentiable, and its derivative is given by

ϕ′(x2) = D3ψ
(
y(x2), x1(x2), x2

)
for every x2 ∈ X2. (3.6)

Proof of Theorem 1.2 By assumption (A1), Propositions 2.1–2.4, and Definition 2.3 we
have Z = Z0(B1) ⊕ Z+(B1). Set Y = {θ}, X1 = Z0(B1), X2 = Z+(B1). We define the functional
ϕ as follows:

ϕ(x2) = sup
x1∈X1

ψ(x1 + x2) = sup
x1∈X1

–I(x1 + x2), x2 ∈ X2.

By assumption (A) and the convexity of V (t, x) – 1
2μ(t)|x|2 in x for a.e. t ∈ [0, 1] we have

(∇xV (t, x) – ∇xV (t, y), x – y
) ≥ μ(t)|x – y|2, x, y ∈ Z.

Thus for each fixed x2 ∈ X2 and any x1,1, x1,2 ∈ X1, we have

∫ 1

0

(∇xV (t, x1,1 + x2) – ∇xV (t, x1,2 + x2), x1,1 – x1,2
)

dt

≥ μ

∫ 1

0
|x1,1 – x1,2|2 dt (3.7)
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for all x, y ∈ Z, where μ = inft∈[0,1] μ(t) > 0. Since Z = X1 ⊕X2 = Z0(B1)⊕Z+(B1), from (2.3)
and Propositions 2.1, and 2.6 we know that

〈
–ψ ′(x1,1 + x2) –

(
–ψ ′(x1,2 + x2)

)
, x1,1 – x1,2

〉

=
〈
I ′(x1,1 + x2) – I ′(x1,2 + x2), x1,1 – x1,2

〉

=
∫ 1

0

(∇xV (t, x1,1 + x2) – ∇xV (t, x1,2 + x2), x1,1 – x1,2
)

dt

≥ μ

∫ 1

0
|x1,1 – x1,2|2 dt.

Noticing that X1 = Z0(B1) is finite-dimensional, we can see that there exists c4 > 0 such
that

〈
–ψ ′(x1,1 + x2) –

(
–ψ ′(x1,2 + x2)

)
, x1,1 – x1,2

〉 ≥ c4μ‖x1,1 – x1,2‖2.

By Lemma 3.2 there exists a continuous mapping φ : X2 → X1 such that ϕ(x2) = ψ(φ(x2) +
x2) for all x2 ∈ X2, ϕ : X2 → R is continuously differentiable, and ϕ′(x2) = ψ ′(φ(x2) + x2)|X2

for x2 ∈ X2. Hence x2 ∈ X2 is a critical point of ϕ, which shows that φ(x2) + x2 is a critical
point of ψ and I .

Further, for every x2 ∈ X2, by assumption (A4) we have

∣
∣
∣
∣

∫ 1

0

(
V (t, x2) – V (t, θ )

)
dt

∣
∣
∣
∣ =

∣
∣
∣
∣

∫ 1

0

∫ 1

0

(∇xV (t, sx2), x2
)

ds dt
∣
∣
∣
∣

≤ 1
2

∫ 1

0
f (t)|x2|2 dt +

∫ 1

0
g(t)|x2|dt.

Thus,

ϕ(x2) ≥ ψ(x2) = –I(x2)

≥ 1
2

∫ 1

0

[∣
∣x′

2
∣
∣2 –

(
B1(t)x2, x2

)
– f (t)|x2|2

]
dt

–
∫ 1

0
g(t)|x2|dt –

∫ 1

0
V (t, θ ) dt.

Since νs
M(B1 + f (t)In) = 0 and is

M(B1 + f (t)In) = is
M(B1) + νs

M(B1), by (5) of Proposition 2.5 we
know that (qB1+fIn (x2, x2)) 1

2 is an equivalent norm on Z for x = x2 with x2 ∈ X2 = Z+(B1) =
Z+(B1 + fIn). Hence there exist c5, c6, c7 > 0 such that

ϕ(x2) ≥ c5

2
‖x2‖2 – ‖x2‖∞

∫ 1

0
g(t) dt –

∫ 1

0
V (t, θ ) dt

≥ c5

2
‖x2‖2 – c6‖x2‖ – c7

→ +∞

as ‖x2‖ → +∞. Consequently, there exists x2,0 ∈ X2 such that ϕ(x2,0) = minx2∈X2 ϕ(x2), and
hence x2,0 + φ(x2,0) is a solution with saddle point character of problem (1.1) in Z.
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If condition (A6) holds, then Z = Z–(B01)⊕Z0(B01)⊕Z0(B02)⊕Z+(B02) via (5) of Propo-
sition 2.5. Since B01 > B1, there exists E ⊂ [0, 1] with meas E > 0 such that B01(t) > B1(t) for
all t ∈ E. Hence from (2.3) we have

qB1 (x, x) =
∫ 1

0

∣
∣x′∣∣2 dt –

∫

E

(
B1(t)x, x

)
dt –

∫

[0,1]\E

(
B1(t)x, x

)
dt

>
∫ 1

0

∣
∣x′∣∣2 dt –

∫

E

(
B01(t)x, x

)
dt –

∫

[0,1]\E

(
B01(t)x, x

)
dt

= qB01 (x, x)

for all x ∈ Z \ {θ}, which implies that qB1 (x, x) > qB01 (x, x) for all x ∈ Z \ {θ} and qB1 (x, x) > 0
for all x ∈ Z0(B01) \ {θ} with Z0(B01) ⊂ Z+(B1). Let X2,1 = (Z–(B01) ⊕ Z0(B01)) ∩ Z+(B1).
Then we can suppose that X2,2 is the orthogonal complement of X2,1 in X2. We claim
that φ(θ ) = θ . Indeed, (A6) implies V (t, θ ) = 0 and ∇xV (t, θ ) = θ for a.e. t ∈ [0, 1]. From
condition (A5) and (3.7) we have

0 =
〈
ψ ′(φ(θ )

)
, –φ(θ )

〉
=

〈
–I ′(φ(θ )

)
, –φ(θ )

〉

=
∫ 1

0

(
–∇xV

(
t,φ(θ )

)
, –φ(θ )

)
dt

=
∫ 1

0

(∇xV (t, θ ) – ∇xV
(
t,φ(θ )

)
, –φ(θ )

)
dt

≥ μ

∫ 1

0

∣
∣φ(θ )

∣
∣2 dt

≥ 0,

which shows that φ(θ ) = θ . From the continuity of φ, we know that there exists 0 < δ < r
such that ‖φ(x2)‖ < r as ‖x2‖ ≤ δ. Consequently, from (A6) and (2.3) we obtain

ϕ(x2,1) = ψ
(
x2,1 + φ(x2,1)

)
= –I

(
x2,1 + φ(x2,1)

)

≤ 1
2

∫ 1

0

[∣
∣x′

2,1 +
(
φ(x2,1)

)′∣∣2 –
(
B01(t)

(
x2,1 + φ(x2,1)

)
, x2,1 + φ(x2,1)

)]
dt

=
1
2

qB01

(
x2,1 + φ(x2,1), x2,1 + φ(x2,1)

)

≤ 0

for all x2,1 ∈ X2,1 with ‖x2,1‖ ≤ δ via B01 > B1 and x2,1 + φ(x2,1) ∈ (Z–(B01) ⊕ Z0(B01)) ∪
Z0(B1), and

ϕ(x2,2) ≥ ψ(x2,2) = –I(x2,2)

≥ 1
2

∫ 1

0

[∣
∣x′

2,2
∣
∣2 –

(
B02(t)x2,2, x2,2

)]
dt

=
1
2

qB02 (x2,2, x2,2)

≥ 0
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for all x2,2 ∈ X2,2 with ‖x2,2‖ ≤ δ via X2,2 = Z+(B01) ∩ Z+(B1) and Z+(B01) = Z+(B02) ⊕
Z0(B02).

Since I is weakly upper semicontinuous on Z, ϕ id weakly lower semicontinuous on
X2. By the coerciveness and weak lower semicontinuity of ϕ we see that satisfies (PS)-
condition and is bounded below.

If inf{ϕ(x2) : x2 ∈ X2} = 0, then all x2,1 ∈ X2,1 with ‖x2,1‖ ≤ δ are minima of ϕ, which
shows that ϕ has infinitely many critical points. If inf{ϕ(x2) : x2 ∈ X2} < 0, then ϕ has at
least two nonzero critical points via Theorem 4 in [2]. Thus problem (1.1) has at least
two nontrivial solutions in Z. In addition, since V (t, θ ) = 0 for a.e. t ∈ [0, 1], we know that
problem (1.1) has trivial solution θ . Hence problem (1.1) has three distinct solutions in Z.
The proof is complete. �

3.3 Proof of Theorem 1.3
In the section, we use the saddle point theorem (see Theorem 4.6, [12] or [10]) and a
generalization of the mountain pass theorem (see Theorem 5.29 and Example 5.26 in [12])
to prove Theorem 1.3.

Proof of Theorem 1.3 First, we verify that I satisfies the (PS)-condition. Suppose that
I ′(xn) → 0 as n → +∞ and I(xn) is bounded. From condition (A1) we have Z = Z0(B1) ⊕
Z+(B1). Set xn = x̄n + x̃n and x̄n ∈ Z0(B1), x̃n ∈ Z+(B1). By assumption (A′

4) we have

∣
∣
∣
∣

∫ 1

0

(∇xV (t, xn), x̃n
)

dt
∣
∣
∣
∣

≤
∫ 1

0
f (t)|x̄n + x̃n|α|x̃n|dt +

∫ 1

0
g(t)|x̃n|dt

≤
∫ 1

0
f (t)2

(|x̄n|α + |x̃n|α
)|x̃n|dt +

∫ 1

0
g(t)|x̃n|dt

≤ 2
(∫ 1

0
f 2(t) dt

) 1
2
(∫ 1

0
|x̃n|2|x̄n|2α dt

) 1
2

+ 2
∫ 1

0
f (t)|x̃n|1+α dt

+
∫ 1

0
g(t)|x̃n|dt

≤ 2β0‖x̄n‖α
∞

(∫ 1

0
|x̃n|2 dt

) 1
2

+ 2
∫ 1

0
f (t)|x̃n|1+α dt +

∫ 1

0
g(t)|x̃n|dt

≤ εβ0

∫ 1

0
|x̃n|2 dt +

β0

ε
‖x̄n‖2α

∞ + 2‖x̃n‖1+α
∞

∫ 1

0
f (t) dt

+ ‖x̃n‖∞
∫ 1

0
g(t) dt (3.8)

for all n, where β0 = (
∫ 1

0 f 2(t) dt) 1
2 and ε > 0. Thus, from x̄n ∈ Z0(B1), x̃n ∈ Z+(B1), (2.3),

and Proposition 2.1 we have

‖x̃n‖ ≥ 〈
–I ′(xn), x̃n

〉

≥
∫ 1

0

[(
x′

n, x̃′
n
)

–
(
B1(t)xn, x̃n

)
– εβ0|x̃n|2

]
dt –

β0

ε
‖x̄n‖2α

∞
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– 2‖x̃n‖1+α
∞

∫ 1

0
f (t) dt – ‖x̃n‖∞

∫ 1

0
g(t) dt

=
∫ 1

0

[∣
∣x̃′

n
∣
∣2 –

(
B1(t)x̃n, x̃n

)
– εβ0|x̃n|2

]
dt –

β0

ε
‖x̄n‖2α

∞

– 2‖x̃n‖1+α
∞

∫ 1

0
f (t) dt – ‖x̃n‖∞

∫ 1

0
g(t) dt

for n large enough. By Proposition 2.7 we can choose ε0 > 0 such that νs
M(B1 + ε0β0In) =

0 and is
M(B1 + ε0β0In) = is

M(B1) + νs
M(B1). From (5) of Proposition 2.5 we know that

(qB1+ε0β0In (x2, x2)) 1
2 is an equivalent norm on Z for x = x2 with x2 ∈ Z+(B1) = Z+(B1 +

ε0β0In). Hence there exist c8, c9, c10, c11 > 0 such that

‖x̃n‖ + c9‖x̄n‖2α + c10‖x̃n‖1+α + c11‖x̃n‖ ≥ c8‖x̃n‖2,

which implies that there are k1 > 0 and k2 > 0 such that

k1‖x̄n‖2α + k2 ≥ ‖x̃n‖2. (3.9)

In a way similar to (3.8), for all n, we obtain

∣
∣
∣
∣

∫ 1

0

(
V (t, xn) – V (t, x̄n)

)
dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

∫ 1

0

(∇xV (t, x̄n + sx̃n), x̃n
)

ds dt
∣
∣
∣
∣

≤
∫ 1

0

∫ 1

0
f (t)|x̄n + sx̃n|α|x̃n|ds dt +

∫ 1

0

∫ 1

0
g(t)|x̃n|ds dt

≤
∫ 1

0
2f (t)

(

|x̄n|α +
1

1 + α
|x̃n|α

)

|x̃n|dt +
∫ 1

0
g(t)|x̃n|dt

≤ 2
(∫ 1

0
f 2(t) dt

) 1
2
(∫ 1

0
|x̃n|2|x̄n|2α dt

) 1
2

+ 2
∫ 1

0
f (t)|x̃n|1+α dt

+
∫ 1

0
g(t)|x̃n|dt

≤ 2β0‖x̄n‖α
∞

(∫ 1

0
|x̃n|2 dt

) 1
2

+ 2
∫ 1

0
f (t)|x̃n|1+α dt +

∫ 1

0
g(t)|x̃n|dt

≤ ε0β0

2

∫ 1

0
|x̃n|2 dt +

2β0

ε0
‖x̄n‖2α

∞ + 2‖x̃n‖1+α
∞

∫ 1

0
f (t) dt

+ ‖x̃n‖∞
∫ 1

0
g(t) dt. (3.10)

Notice that by the boundedness of {I(xn)} and α ∈ [0, 1), the equivalence of the norm
(qB1+ε0β0In (x2, x2)) 1

2 on Z for x = x2 with x2 ∈ Z+(B1) = Z+(B1 + ε0β0In), and (3.9) we can
see that there exist c12 ∈ R and c13, c14, c15, c16 > 0 such that

c12 ≤ –I(xn)

=
∫ 1

0

1
2
[∣
∣x′

n
∣
∣2 –

(
B1(t)xn, xn

)]
dt
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–
∫ 1

0

(
V (t, xn) – V (t, x̄n)

)
dt –

∫ 1

0
V (t, x̄n) dt

≤
∫ 1

0

1
2
[∣
∣x̃′

n
∣
∣2 –

(
B1(t)x̃n, x̃n

)
– ε0β0|x̃n|2

]
dt + ε0β0

∫ 1

0
|x̃n|2 dt

+
2β0

ε0
‖x̄n‖2α

∞ + 2‖x̃n‖1+α
∞

∫ 1

0
f (t) dt + ‖x̃n‖∞

∫ 1

0
g(t) dt

–
∫ 1

0
V (t, x̄n) dt

≤ c13‖x̃n‖2 + c14‖x̃n‖2 + 2c9‖x̄n‖2α + c10‖x̃n‖1+α + c11‖x̃n‖

–
∫ 1

0
V (t, x̄n) dt

≤ c15‖x̃n‖2 + c16 + 2c9‖x̄n‖2α –
∫ 1

0
V (t, x̄n) dt

≤ (c15k1 + 2c9)‖x̄n‖2α + c15k2 + c16 –
∫ 1

0
V (t, x̄n) dt

≤ ‖x̄n‖2α

(

(c15k1 + 2c9) – ‖x̄n‖–2α

∫ 1

0
V (t, x̄n) dt

)

+ c15k2 + c16

for n large enough. Taking c0 > c15k1 + 2c9, by this inequality and (1.3) of condition (A7) we
obtain that {‖x̄n‖} is bounded. If (1.4) of condition (A7) holds, similarly to this inequality,
by (3.9) and (3.10) we have

–I(xn) ≥ –2c9‖x̄n‖2α – c10‖x̃n‖1+α – c11‖x̃n‖ –
∫ 1

0
V (t, x̄n) dt

≥ –2c9‖x̄n‖2α – (c10 + c11)‖x̃n‖2 –
∫ 1

0
V (t, x̄n) dt – (c10 + c11)

≥ ‖x̄n‖2α

[

–
(
k1(c10 + c11) + 2c9

)
– ‖x̄n‖–2α

∫ 1

0
V (t, x̄n) dt

]

– (k2 + 1)(c10 + c11).

Taking c0 > k1(c10 + c11) + 2c9, by this inequality and (1.4) of condition (A7) we also obtain
that {‖x̄n‖} is bounded. Hence {‖xn‖} is bounded by (3.9). Arguing then as in Proposi-
tion 4.1 of [10], we easily conclude that the (PS)-condition is satisfied.

Next, we will check that

–I(x) → +∞ (3.11)

as ‖x‖ → +∞ in Z+(B1). In fact, by the proof of (3.10) we have

∣
∣
∣
∣

∫ 1

0

(
V (t, x) – V (t, θ )

)
dt

∣
∣
∣
∣

≤ 1
1 + α

∫ 1

0
f (t)|x|1+α dt +

∫ 1

0
g(t)|x|dt
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≤ 2
(∫ 1

0
f 2(t) dt

) 1
2
(∫ 1

0
|x|2(1+α) dt

) 1
2

+ ‖x‖
∫ 1

0
g(t) dt

≤ ε0β0

2

∫ 1

0
|x|2 dt +

2β0

ε0
‖x‖2α

∞ + ‖x‖
∫ 1

0
g(t) dt

for all x ∈ Z+(B1). It follows that

–I(x) =
∫ 1

0

1
2
[∣
∣x′∣∣2 –

(
B1(t)x, x

)]
dt

–
∫ 1

0

(
V (t, x) – V (t, θ )

)
dt –

∫ 1

0
V (t, θ ) dt

≥
∫ 1

0

1
2
[∣
∣x′∣∣2 –

(
B1(t)x, x

)
– ε0β0|x|2]dt –

2β0

ε0
‖x‖2α

∞

– ‖x‖
∫ 1

0
g(t) dt –

∫ 1

0
V (t, θ ) dt

≥ c8‖x‖2 –
2β0

ε0
‖x‖2α – ‖x‖

∫ 1

0
g(t) dt –

∫ 1

0
V (t, θ ) dt

→ +∞

as ‖x‖ → +∞ in Z+(B1), which shows (3.11).
On the other hand, if (1.3) of condition (A7) holds, then we clearly have

–I(x) → –∞ (3.12)

as ‖x‖ → +∞ in Z0(B1). Thus by (3.11), (3.12), and the saddle point theorem (see Theo-
rem 4.6 in [12] or [10]) we obtain that problem (1.1) has at least one solution in Z. If (1.4)
of condition (A7) holds, then we have

–I(x) → +∞

as ‖x‖ → +∞ in Z0(B1). Thus by (3.11) we can see that –I(x) → +∞ as ‖x‖ → +∞ in Z.
From Theorem 1.1 and Corollary 1.1 in [10] we know that problem (1.1) also has at least
one solution in Z.

Further, if condition (A′
6) holds, then Z = Z–(B01)⊕Z0(B01)⊕Z0(B02)⊕Z+(B02) via (5) of

Proposition 2.5. Let X1 = Z–(B01)⊕Z0(B01) and X2 = Z–(B01). Then X⊥
1 = Z0(B02)⊕Z+(B02)

and X⊥
2 = Z0(B01) ⊕ Z0(B02) ⊕ Z+(B02). Note that I ∈ C1(Z, R) satisfies the (PS)-condition.

By Theorem 5.29 and Example 5.26 in [12] we only need to verify that
(I1) lim inf‖x‖–2I(x) > 0 as ‖x‖ → 0 in X1,
(I2) I(x) ≤ 0 for all x ∈ X⊥

1 , and
(I3) I(x) → –∞ as ‖x‖ → +∞ in X⊥

2 .
By condition (A′

6) we can see that V (t, θ ) = 0. Since

V (t, x) – V (t, θ ) =
∫ 1

0

(∇xV (t, sx), x
)

ds

for all x ∈ Rn and a.e. t ∈ [0, 1], from condition (A′
4) we obtain

∣
∣V (t, x)

∣
∣ ≤ 1

1 + α
f (t)|x|1+α + g(t)|x|
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for all x ∈ Rn and a.e. t ∈ [0, 1], and there exist c17, c18 > 0 such that

∣
∣
∣
∣

∫ 1

0
V (t, x) dt

∣
∣
∣
∣ ≤ 1

1 + α

∫ 1

0
f (t)|x|1+α dt +

∫ 1

0
g(t)|x|dt

≤ 1
1 + α

‖x‖1+α
∞

∫ 1

0
f (t) dt + ‖x‖∞

∫ 1

0
g(t) dt

≤ c17‖x‖1+α + c18‖x‖ ≤ k3‖x‖3

for all ‖x‖ ≥ r and k3 > 0 given by k3 = c17rα–2 + c18r–2. Now it follows from condition (A′
6)

that
∫ 1

0
V (t, x) dt ≥

∫ 1

0

1
2
((

εIn + B01(t) – B1(t)
)
x, x

)
dt – k3‖x‖3

for all x ∈ Z. Hence by (3.1) we have

I(x) ≥ –
∫ 1

0

1
2
[∣
∣x′∣∣2 –

(
B01(t)x, x

)]
dt +

1
2
ε

∫ 1

0
|x|2 dt – k3‖x‖3

= –
1
2

qB01 (x, x) +
1
2
ε‖x‖2

L2 – k3‖x‖3.

Noting that X1 = Z–(B01)⊕Z0(B01) is finite-dimensional, we can see that there exists k4 > 0
such that

I(x) ≥ 1
2
εk4‖x‖2 – k3‖x‖3

for all x ∈ X1, from which (I1) follows.
For x ∈ X⊥

1 , again by condition (A′
6) we have

I(x) ≤ –
∫ 1

0

1
2
[∣
∣x′∣∣2 –

(
B02(t)x, x

)]
dt ≤ 0

via X⊥
1 = Z0(B02) ⊕ Z+(B02) and Proposition 2.1, which shows that (I2) holds.

Since B02 > B01 > B1, by (2.3) we have

qB1 (x, x) > qB01 (x, x) > qB02 (x, x), x ∈ Z \ {θ}.

Noticing that X⊥
2 = Z0(B01)⊕Z0(B02)⊕Z+(B02), we have X⊥

2 ⊂ Z+(B1). Finally, (I3) follows
from (3.11). Hence the proof is completed. �

3.4 Proof of Theorem 1.4
In the section, we first use the saddle point theorem (see Theorem 4.6, [12] or [10]) to
prove that problem (1.1) has at least one solution. Then, to prove that problem (1.1) has
multiple periodic solutions, we need the following abstract critical point theorem devel-
oped recently in [3].

Lemma 3.3 ([3], Theorem 5.2.23) Let X be a Banach space, and let ϕ ∈ C1(X, R) be an even
function satisfying the (PS)-condition. Assume that a < b and ϕ(θ ) ≥ b. Further, suppose
that
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(1) there are an m-dimensional linear subspace G and ρ > 0 such that

sup
x∈G∩∂Bρ (θ )

ϕ(x) < b,

where ∂Bρ(θ ) = {x ∈ X|‖x‖ = ρ};
(2) there is a j-dimensional linear subspace F such that

inf
x∈F⊥

ϕ(x) > a,

where F⊥ is the orthogonal complementary space of F ;
(3) m > j.

Then ϕ has at least m – j pairs of distinct critical points.

Proof of Theorem 1.4 By assumption (A′
1), Propositions 2.1–2.4 and Definition 2.3 we have

Z = Z–(B1) ⊕ Z0(B1) ⊕ Z+(B1). Set X0 = Z–(B1), X1 = Z0(B1), X2 = Z+(B1), x ∈ Z, x = x0 +
x1 + x2 with x0 ∈ X0, x1 ∈ X1, x2 ∈ X2. Next, we divide the proof into four steps.

Step 1. We verify that I satisfies the (PS)-condition. Suppose that I ′(xn) → 0 as n → ∞
and I(xn) is bounded. Let xn = xn0 + xn1 + xn2 with xn0 ∈ Z–(B1), xn1 ∈ Z0(B1) and xn2 ∈
Z+(B1). In a way similar to (3.8), by assumption (A′

4) we have

∣
∣
∣
∣

∫ 1

0

(∇xV (t, xn), xn2 – xn0
)

dt
∣
∣
∣
∣

≤
∫ 1

0
f (t)|xn2 + xn1 + xn0|α|xn2 – xn0|dt +

∫ 1

0
g(t)|xn2 – xn0|dt

≤
∫ 1

0
2f (t)

(|xn2 + xn0|α + |xn1|α
)|xn2 – xn0|dt +

∫ 1

0
g(t)|xn2 – xn0|dt

≤
∫ 1

0
2f (t)|xn1|α|xn2|dt +

∫ 1

0
2f (t)|xn1|α|xn0|dt

+ 2
(‖xn2‖∞ + ‖xn0‖∞

)1+α

∫ 1

0
f (t) dt +

(‖xn2‖∞ + ‖xn0‖∞
)
∫ 1

0
g(t) dt

≤ 2
(∫ 1

0
f 2(t) dt

) 1
2
(∫ 1

0
|xn1|2α|xn2|2 dt

) 1
2

+ 2‖xn1‖α
∞

(‖xn2‖∞ + ‖xn0‖∞
)
∫ 1

0
f (t) dt

+ 2
(‖xn2‖∞ + ‖xn0‖∞

)1+α

∫ 1

0
f (t) dt +

(‖xn2‖∞ + ‖xn0‖∞
)
∫ 1

0
g(t) dt

≤ 2β0‖xn1‖α
∞

(∫ 1

0
|xn2|2 dt

) 1
2

+ 2‖xn1‖α
∞

(‖xn2‖∞ + ‖xn0‖∞
)
∫ 1

0
f (t) dt

+ 2
(‖xn2‖∞ + ‖xn0‖∞

)1+α
∫ 1

0
f (t) dt +

(‖xn2‖∞ + ‖xn0‖∞
)
∫ 1

0
g(t) dt

≤ εβ0

∫ 1

0
|xn2|2 dt +

β0

ε
‖xn1‖2α

∞ + 2‖xn1‖α
∞

(‖xn2‖∞ + ‖xn0‖∞
)
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·
∫ 1

0
f (t) dt + 2

(‖xn2‖∞ + ‖xn0‖∞
)1+α

∫ 1

0
f (t) dt

+
(‖xn2‖∞ + ‖xn0‖∞

)
∫ 1

0
g(t) dt (3.13)

for all n, where β0 = (
∫ 1

0 f 2(t) dt) 1
2 and ε > 0. Thus from xn0 ∈ Z–(B1), xn1 ∈ Z0(B1), xn2 ∈

Z+(B1), (3.13), (2.3), and Proposition 2.1 we have

‖xn2‖ + ‖xn0‖ ≥ ‖xn2 – xn0‖ ≥ 〈
–I ′(xn), xn2 – xn0

〉

=
∫ 1

0

[(
x′

n, x′
n2 – x′

n0
)

–
(
B1(t)xn, xn2 – xn0

)]
dt

–
∫ 1

0

(∇xV (t, xn), xn2 – xn0
)

dt

≥
∫ 1

0

[∣
∣x′

n2
∣
∣2 –

(
B1(t)xn2, xn2

)
– εβ0|xn2|2

]
dt

–
∫ 1

0

[∣
∣x′

n0
∣
∣2 –

(
B1(t)xn0, xn0

)]
dt –

β0

ε
‖xn1‖2α

∞

– 2‖xn1‖α
∞

(‖xn2‖∞ + ‖xn0‖∞
)
∫ 1

0
f (t) dt

– 2
(‖xn2‖∞ + ‖xn0‖∞

)1+α

∫ 1

0
f (t) dt –

(‖xn2‖∞ + ‖xn0‖∞
)
∫ 1

0
g(t) dt

= qB1+εβ0In (xn2, xn2) – qB1 (xn0, xn0) –
β0

ε
‖xn1‖2α

∞ – 2‖xn1‖α
∞

· (‖xn2‖∞ + ‖xn0‖∞
)
∫ 1

0
f (t) dt – 2

(‖xn2‖∞ + ‖xn0‖∞
)1+α

∫ 1

0
f (t) dt

–
(‖xn2‖∞ + ‖xn0‖∞

)
∫ 1

0
g(t) dt

for n large enough. By Proposition 2.7 we can choose ε0 > 0 such that νs
M(B1 + ε0β0In) =

0 and is
M(B1 + ε0β0In) = is

M(B1) + νs
M(B1). From (5) of Proposition 2.5 we know that

(–qB1 (x0, x0)) 1
2 + (qB1+ε0β0In (x2, x2)) 1

2 is an equivalent norm on Z for x = x0 + x2 with
x0 ∈ Z–(B1) and x2 ∈ Z+(B1) = Z+(B1 + ε0β0In). Hence there exist c19, c20, c21, c22 > 0 such
that

(‖xn2‖ + ‖xn0‖
)2

≤ c19‖xn1‖2α + c20‖xn1‖α
(‖xn2‖ + ‖xn0‖

)
+ c21

(‖xn2‖ + ‖xn0‖
)1+α

+ c22
(‖xn2‖ + ‖xn0‖

)
. (3.14)

From (3.14) we claim that there exist n large enough and k5, k6 > 0 such that

k5‖xn1‖2α + k6 ≥ (‖xn2‖ + ‖xn0‖
)2. (3.15)

In fact, we only need to consider two cases: ‖xn2‖ + ‖xn0‖ is bounded, or ‖xn2‖ + ‖xn0‖ is
unbounded.
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(i) If ‖xn2‖ + ‖xn0‖ is bounded, then ‖xn2‖ + ‖xn0‖ ≤ c23. By (3.14) we have

(c19 + c20 + c23)‖xn1‖2α + c21c1+α
23 + 2c22c23 ≥ (‖xn2‖ + ‖xn0‖

)2.

Thus (3.15) follows.
(ii) If ‖xn2‖ + ‖xn0‖ is unbounded, then there is n large enough such that

c19
‖xn1‖2α

(‖xn2‖ + ‖xn0‖)2 + c20
‖xn1‖α

‖xn2‖ + ‖xn0‖
≥ 1 – c21

1
(‖xn2‖ + ‖xn0‖)1–α

– c22
1

‖xn2‖ + ‖xn0‖ ≥ 1
2

,

which implies that there is c24 > 0 such that ‖xn1‖α

‖xn2‖+‖xn0‖ ≥ c24. From (i) and (ii) we get that
(3.15) holds.

To prove the boundedness of {xn}, by (3.15) it suffices to prove that {xn1} is bounded. In
a way similar to (3.8), for all n, we have

∣
∣
∣
∣

∫ 1

0

(
V (t, xn) – V (t, xn1)

)
dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

∫ 1

0

(∇xV
(
t, xn1 + s(xn0 + xn2)

)
, xn0 + xn2

)
ds dt

∣
∣
∣
∣

≤
∫ 1

0

∫ 1

0
f (t)

∣
∣xn1 + s(xn0 + xn2)

∣
∣α|xn0 + xn2|ds dt

+
∫ 1

0

∫ 1

0
g(t)|xn0 + xn2|ds dt

≤
∫ 1

0
2f (t)

(

|xn1|α +
1

1 + α

(|xn0| + |xn2|
)α

)
(|xn0| + |xn2|

)
dt

+
∫ 1

0
g(t)

(|xn0| + |xn2|
)

dt

≤ 2β0‖xn1‖α
∞

(∫ 1

0

(|xn0| + |xn2|
)2 dt

) 1
2

+ 2
(‖xn0‖∞ + ‖xn2‖∞

)1+α

·
∫ 1

0
f (t) dt +

(‖xn0‖∞ + ‖xn2‖∞
)
∫ 1

0
g(t) dt

≤ ε0β0

4

∫ 1

0

(|xn0| + |xn2|
)2 dt +

4β0

ε0
‖xn1‖2α

∞ + 2
∫ 1

0
f (t) dt

· (‖xn0‖∞ + ‖xn2‖∞
)1+α +

(‖xn0‖∞ + ‖xn2‖∞
)
∫ 1

0
g(t) dt

≤ –
ε0β0

2

∫ 1

0
|xn2|2 dt + ε0β0

(‖xn0‖∞ + ‖xn2‖∞
)2 +

4β0

ε0
‖xn1‖2α

∞

+ 2
(‖xn0‖∞ + ‖xn2‖∞

)1+α

∫ 1

0
f (t) dt

+
(‖xn0‖∞ + ‖xn2‖∞

)
∫ 1

0
g(t) dt. (3.16)



Song Boundary Value Problems        (2019) 2019:118 Page 25 of 29

Notice that by the boundedness of {I(xn)} and α ∈ [0, 1), the equivalence of the norm
(qB1+ε0β0In (x2, x2)) 1

2 on Z for x = x2 with x2 ∈ Z+(B1) = Z+(B1 + ε0β0In), qB1 (x1, x1) < 0 on Z
and for x = x0 with x0 ∈ Z–(B1), (3.15), and (3.16) we obtain that there exist c25 ∈ R and
c26, c27 > 0 such that

c25 ≤ –I(xn)

=
∫ 1

0

1
2
[∣
∣x′

n
∣
∣2 –

(
B1(t)xn, xn

)]
dt –

∫ 1

0

(
V (t, xn) – V (t, xn1)

)
dt

–
∫ 1

0
V (t, xn1) dt

≤
∫ 1

0

1
2
[∣
∣x′

n2
∣
∣2 –

(
B1(t)xn2, xn2

)
– ε0β0|xn2|2

]
dt

+
∫ 1

0

1
2
[∣
∣x′

n1
∣
∣2 –

(
B1(t)xn1, xn1

)]
dt + ε0β0

(‖xn0‖∞ + ‖xn2‖∞
)2

+
4β0

ε0
‖xn1‖2α

∞ + 2
(‖xn0‖∞ + ‖xn2‖∞

)1+α

∫ 1

0
f (t) dt

+
(‖xn0‖∞ + ‖xn2‖∞

)
∫ 1

0
g(t) dt –

∫ 1

0
V (t, xn1) dt

≤ c26‖xn2‖2 + c26
(‖xn0‖ + ‖xn2‖

)2 + c26‖xn1‖2α

+ c26
(‖xn0‖ + ‖xn2‖

)1+α + c26
(‖xn0‖ + ‖xn2‖

)
–

∫ 1

0
V (t, xn1) dt

≤ 4c26
(‖xn0‖ + ‖xn2‖

)2 + c26‖xn1‖2α + c27 –
∫ 1

0
V (t, xn1) dt

≤ (4c26k5 + c26)‖xn1‖2α + 4c26k6 + c27 –
∫ 1

0
V (t, xn1) dt

≤ ‖xn1‖2α

(

(4c26k5 + c26) – ‖xn1‖–2α

∫ 1

0
V (t, xn1) dt

)

+ 4c26k6 + c27

for n large enough. Taking c0 > 4c26k5 + c26 in this inequality, by (1.3) of condition (A7)
we get that {‖xn1‖} is bounded. If (1.4) of condition (A7) holds, then similarly to the proof
of Theorem 1.3, by this inequality, (3.15), and (3.16) we also get that {‖xn1‖} is bounded.
Hence {‖xn‖} is bounded by (3.15). Arguing then as in Proposition 4.1 in [10], we easily
conclude that the (PS)-condition is satisfied.

Step 2. We prove that –I(x2) → +∞ as ‖x2‖ → +∞ with x2 ∈ X2 = Z+(B1) and –I(x0) →
–∞ as ‖x0‖ → +∞ with x0 ∈ X2 = Z–(B1).

For x2 ∈ Z+(B1), from condition (A′
4) we have

∣
∣
∣
∣

∫ 1

0

(
V (t, x2) – V (t, θ )

)
dt

∣
∣
∣
∣

≤ 1
1 + α

∫ 1

0
f (t)|x2|1+α dt +

∫ 1

0
g(t)|x2|dt

≤ 2β0

(∫ 1

0
|x2|2(1+α) dt

) 1
2

+ ‖x2‖
∫ 1

0
g(t) dt

≤ ε0β0

2

∫ 1

0
|x2|2 dt +

2β0

ε0
‖x2‖2α + ‖x2‖

∫ 1

0
g(t) dt.
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It follows that

–I(x2) =
∫ 1

0

1
2
[∣
∣x′

2
∣
∣2 –

(
B1(t)x2, x2

)]
dt –

∫ 1

0

(
V (t, x2) – V (t, θ )

)
dt

–
∫ 1

0
V (t, θ ) dt

≥
∫ 1

0

1
2
[∣
∣x′

2
∣
∣2 –

(
B1(t)x2, x2

)
– ε0β0|x2|2

]
dt

–
2β0

ε0
‖x2‖2α – ‖x2‖

∫ 1

0
g(t) dt –

∫ 1

0
V (t, θ ) dt

≥ c28‖x2‖2 –
2β0

ε0
‖x2‖2α – ‖x2‖

∫ 1

0
g(t) dt –

∫ 1

0
V (t, θ ) dt

→ +∞ (3.17)

as ‖x‖ → +∞ in Z+(B1), where c28 > 0.
Similarly, for x0 ∈ Z–(B1), from condition (A′

4) we have

∣
∣
∣
∣

∫ 1

0

(
V (t, x0) – V (t, θ )

)
dt

∣
∣
∣
∣

≤ 1
1 + α

∫ 1

0
f (t)|x0|1+α dt +

∫ 1

0
g(t)|x0|dt

≤ 1
1 + α

‖x0‖1+α

∫ 1

0
f (t) dt + ‖x0‖

∫ 1

0
g(t) dt.

It follows that

–I(x0) ≤
∫ 1

0

1
2
[∣
∣x′

0
∣
∣2 –

(
B1(t)x0, x0

)]
dt +

1
1 + α

‖x0‖1+α

∫ 1

0
f (t) dt

+ ‖x0‖
∫ 1

0
g(t) dt –

∫ 1

0
V (t, θ ) dt

= –
1
2
(
–qB1 (x0, x0)

)
+

1
1 + α

‖x0‖1+α

∫ 1

0
f (t) dt

+ ‖x0‖
∫ 1

0
g(t) dt –

∫ 1

0
V (t, θ ) dt

≤ –
c29

2
‖x0‖2 +

1
1 + α

‖x0‖1+α

∫ 1

0
f (t) dt

+ ‖x0‖
∫ 1

0
g(t) dt –

∫ 1

0
V (t, θ ) dt

→ –∞ (3.18)

as ‖x0‖ → +∞ in Z–(B1), where c29 > 0.
Step 3. Next, we prove that problem (1.1) has at least one solution in Z. If (1.3) of con-

dition (A7) holds, then we let X– = Z–(B1) ⊕ Z0(B1) and X+ = Z+(B1). For x = x0 + x1 ∈ X–
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with x0 ∈ Z–(B1) and x1 ∈ Z0(B1), by condition (A′
4) we have

∣
∣
∣
∣

∫ 1

0

(
V (t, x) – V (t, x1)

)
dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

∫ 1

0

(∇xV (t, sx0 + x1), x0
)

ds dt
∣
∣
∣
∣

≤
∫ 1

0

∫ 1

0
f (t)|sx0 + x1|α|x0|ds dt +

∫ 1

0

∫ 1

0
g(t)|x0|ds dt

≤ 2
∫ 1

0
f (t)|x1|α|x0|dt + 2‖x0‖1+α

∫ 1

0
f (t) dt + ‖x0‖

∫ 1

0
g(t) dt.

Thus, there is ε > 0 with 2ε
∫ 1

0 f (t) dt < c29 such that

–I(x) ≤
∫ 1

0

1
2
[∣
∣x′

0
∣
∣2 –

(
B1(t)x0, x0

)]
dt + 2

∫ 1

0
f (t)|x1|α|x0|dt

+ 2‖x0‖1+α

∫ 1

0
f (t) dt + ‖x0‖

∫ 1

0
g(t) dt –

∫ 1

0
V (t, x1) dt

≤ –
c29

2
‖x0‖2 + ε‖x0‖2

∫ 1

0
f (t) dt +

1
ε
‖x1‖2α

∫ 1

0
f (t) dt

+ 2‖x0‖1+α

∫ 1

0
f (t) dt + ‖x0‖

∫ 1

0
g(t) dt –

∫ 1

0
V (t, x1) dt

≤
[

–
(

c29

2
– ε

∫ 1

0
f (t) dt

)

‖x0‖2 + 2‖x0‖1+α

∫ 1

0
f (t) dt + ‖x0‖

∫ 1

0
g(t) dt

]

+ ‖x1‖2α

(
1
ε

∫ 1

0
f (t) dt – ‖x1‖–2α

∫ 1

0
V (t, x1) dt

)

.

Taking c0 > 1
ε

∫ 1
0 f (t) dt, by (1.3) of condition (A7) we see that –I(x) → –∞ as ‖x‖ → +∞

in X–.
If (1.4) of condition (A7) holds, then we let X– = Z–(B1) and X+ = Z0(B1) ⊕ Z+(B1). As

before, we easily get that –I(x) → +∞ as ‖x‖ → +∞ in X+. Together, from (3.17) and
(3.18) we have –I(x) → +∞ as ‖x‖ → +∞ in X+ and –I(x) → –∞ as ‖x‖ → +∞ in X–. By
the saddle point theorem (see Theorem 4.6 in [12] or [10]) we see that problem (1.1) has
at least one solution in Z.

Step 4. Finally, we prove that problem (1.1) has at least is
M(B2) – is

M(B1) – νs
M(B1) pairs

of solutions in Z. Since B2 > B1 and νs
M(B2) �= 0, we have Z = Z–(B1) ⊕ Z0(B1) ⊕ Z+(B1) =

Z–(B2)⊕Z0(B2)⊕Z+(B2) and Z+(B2) ⊂ Z+(B1). Set G = Z–(B2), F = Z–(B1)⊕Z0(B1), b = 0.
We define ϕ(x) = –I(x) +

∫ 1
0 V (t, θ ) dt for all x ∈ Z. Then ϕ(θ ) = 0 ≥ b. Noting that F⊥ =

Z+(B1), we get that (2) of Lemma 3.3 holds. By condition (A8) and the proof of Step 1 it
suffices to show that (1) of Lemma 3.3 holds.

By condition (A9), for any x ∈ G ∩ Br(θ ), we have

ϕ(x) =
∫ 1

0

1
2
[∣
∣x′∣∣2 –

(
B1(t)x, x

)]
dt –

∫ 1

0
V (t, x) dt +

∫ 1

0
V (t, θ ) dt

≤
∫ 1

0

1
2
[∣
∣x′∣∣2 –

(
B2(t)x, x

)]
dt –

ε

2

∫ 1

0
|x|2 dt =

1
2

qB2 (x, x) –
ε

2
‖x‖2

L2 .
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Noticing that E = Z–(B2) is finite-dimensional, we get that there exists k7 > 0 such that

ϕ(x) ≤ –
k7ε

2
‖x‖2,

which implies that, for all x ∈ G ∩ ∂Br(θ ),

ϕ(x) ≤ –
rk7ε

2
< 0.

Thus ϕ has at least is
M(B2) – is

M(B1) – νs
M(B1) pairs of distinct critical points, which implies

that problem (1.1) has at least is
M(B2) – is

M(B1) – νs
M(B1) pairs of solutions in Z. �

3.5 Proof of the corollaries
In the section, we use Theorems 1.1–1.4 to prove that the corollaries.

Proof of Corollary 1.5 Letting M = N = In and B1(t) ≡ 0, from the index theory of Sect. 2
we easily see that Z = H1

0 , νs
In (0) �= 0, ker(Λ) = Rn, and is

In (0) = 0, that is, (A1) holds. By
ker(Λ) = Rn we know that |x| = ‖x‖ for all x ∈ ker(Λ). Again setting B2(t) ≡ (2π )2, from
(2.4) and (2.5) of Remark 2.8 we have νs

In ((2π )2) �= 0 and is
In ((2π )2) = is

In (0) + νs
In (0). Thus

(A2) and (A3) follow from (H1) and (H2). The proof is complete. �

Proof of Corollary 1.7 Letting M = N = In and B1(t) ≡ 0, we have Z = H1
0 , νs

In (0) �= 0,
ker(Λ) = Rn, and is

In (0) = 0, that is, (A1) holds. We need only to show that (A4) follows
from (H3) and (A6) follows from (H4). In fact, from (2.4) and (2.5) of Remark 2.8 we ob-
tain that νs

In (f (t)In) = 0 and is
In (f (t)In) = is

In (0) + νs
In (0), which shows that (A4) holds.

Moreover, setting B01(t) ≡ (2kπ )2 and B02(t) ≡ (2(k + 1)π )2, from (2.4) and (2.5) of Re-
mark 2.8 we see that νs

In (B0i) �= 0 (i = 1, 2) and is
In (B02) = is

In (B01) + νs
In (B01). Noting that

|x| ≤ ‖x‖∞ ≤ ‖x‖ for x ∈ H1
0 , we have |x| ≤ δ as ‖x‖ ≤ δ, which implies that (A6) holds.

The proof is complete. �

Proof of Corollary 1.9 Letting M = N = In and B1(t) ≡ 0, we have Z = H1
0 , νs

In (0) �= 0,
ker(Λ) = Rn, and is

In (0) = 0, that is, (A1) holds. Similarly to the proof of Corollary 1.7, (A′
6)

follows from (H′
4). Since ker(Λ) = Rn, we have that |x| = ‖x‖ for all x ∈ ker(Λ). So (A7)

follows from (H5). The proof is complete. �

Proof of Corollary 1.12 Letting M = N = In, B1(t) ≡ (2kπ )2, and B2(t) ≡ (2(k + m)π )2, from
(2.4) and (2.5) of Remark 2.8 we obtain Z = H1

0 , νs
In (Bi) �= 0 (i = 1, 2), νs

In (B1 + f (t)In) = 0,
is
In (B1 + f (t)In) = is

In (B1) + νs
In (B1), and is

In (B2) – is
In (B1) – νs

In (B1) = 2nm – 2n > 0 via some
simple calculation. Similarly to the proof of Corollary 1.7, we see that the conditions of
Theorem 1.4 hold. The proof is complete. �

Proof of Corollary 1.14 Letting M = N = In and B1(t) = A(t), from (2.4) and (2.5) of Re-
mark 2.8 we obtain that Z = H1

0 , νs
In (B1) �= 0, and is

In (A(t)) is at most finite-dimensional. If
is
In (A(t)) = 0, then we see that the conditions of Theorem 1.3 hold, and if is

In (A(t)) �= 0, then
we also see that the conditions of Theorem 1.4 hold. The proof is complete. �
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