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Abstract
This paper is concerned with a nonlinearly modified Kawahara equation with periodic
boundary conditions

ut + uxxx – u5x + αu2ux = 0.

Based on an abstract infinite-dimensional KAM theorem for unbounded perturbation
vector fields and partial Birkhoff normal form, we prove the existence of
n-dimensional invariant tori for the equation.
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1 Introduction and main result
Let us begin with the nonlinear partial differential equation

ut + uxxx – u5x + αu2ux = 0 (1.1)

under periodic boundary conditions

u(t, x + 2π ) = u(t, x), –∞ < t < ∞. (1.2)

Equation (1.1) is the famously modified Kawahara equation, arising in several physical ap-
plications, for example, in the theory of magneto-acoustic waves in plasma [17] and in the
theory of long waves in shallow liquid under ice cover [27]. Demina and Kudryashov [14]
studied meromorphic traveling wave solutions of the following partial differential equa-
tion:

ut + buxxx – cu5x + aunux = 0. (1.3)

Abbasbandy [1] obtained a family of traveling-wave solutions of the Kawahara equation
by applying the homotopy analysis method (HAM). Some families of exact solutions to
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the Kawahara equation and the modified Kawahara equation also were given in [4, 31].
However, only a few papers discussed the existence of quasi-periodic solutions for the
Kawahara equation by using KAM method.

It was well known that KAM of Hamilton partial differential equation originated from
Kuksin and Wayne’s work. We consider the Hamiltonian partial differential equation
(HPDE)

ω̇ = Aω + f (ω).

For some Sobolev space Hp � ω, the linear operator A maps Hp into Hp–δ , and the non-
linear term f sends some neighborhood of Hp → Hp–a. The numbers δ ∈ R

+ and a are
called the orders of A and f , respectively.

When a ≤ 0, the vector-field f is called a bounded perturbation. Kuksin [18] and Wayne
[34] proved the earliest KAM theorem for PDEs with bounded perturbation and applied
it to the one-dimensional wave equation with Dirichlet bounded conditions

utt = uxx + Mξ u + u3 = 0, u(t, 0) = u(t,π ) = 0,

and the one-dimensional Schrödinger equation with Dirichlet boundary conditions

iut = uxx + Mξ u + |u|2u = 0, u(t, 0) = u(t,π ) = 0.

For these two equations, we have a = –1, δ = 2 and a = 0, δ = 2, respectively. Unfortu-
nately, when considering the one-dimensional wave and Schrödinger equations with pe-
riodic boundary conditions, the multiplicity of the eigenvalues becomes an obstacle. In
the 1990s, the people even doubted that KAM could not handle multiple normal fre-
quency case. To overcome this difficulty, using the Nash–Moser iteration and Lyapunov–
Schmidt decomposition, Craig and Wayne [10, 11] gave a good estimation of the inverse of
an infinite-dimensional matrix with small eigenvalues, and thus the quasi-periodic solu-
tions were successfully constructed to the equations with periodic boundary conditions.
Further developing Craig and Wayne’s method, Bourgain [5–8] proved the existence of
quasi-periodic solutions to higher-dimensional wave and Schrödinger equations. We need
to emphasize that the methods of Craig, Wayne, and Bourgain are very effective methods
to prove the existence of quasi-periodic solutions but do not get linear stability, so their
results are weaker than those obtained by KAM method. On the other hand, You [35] es-
tablished a KAM theorem for lower-dimensional tori in the finite-dimensional case and
applied it to multiple normal frequency case. In 2000, Chierchia and You [9] proved an
infinite-dimensional theorem that can deal with multiple normal frequency case. For more
detail, we refer the readers to [22, 32, 33, 36, 37] and the references therein.

When a > 0, the vector-field f is called an unbounded perturbation. For example, when
the people think about KdV equation with periodic boundary conditions with a = 1, δ = 3,
new difficulties appear, such as homological equations with variable coefficients and a
stronger inequality that the divisor need to satisfy to guarantee the boundedness of the
transformation. Kuksin [20, 21] gave the first KAM theorem and applied it to KdV equa-
tion by overcoming this difficulty under the assumption 0 < a < δ – 1. See also [16]. Based
on Kuksin’s estimate of solutions of homological equations with nonconstant coefficients
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[19], the existence of a family of linearly stable quasi-periodic solutions for the KdV equa-
tion with periodic boundary conditions was presented. Very recently, Cui et al. [13] were
concerned with small perturbation of the nonlinear partial differential equation

ut = u5x –
5

16
(
8u2

xx + 8uxuxxx
)

under periodic boundary conditions. They obtained the existence of many two-dimen-
sional invariant tori for this equation by using an infinite-dimensional KAM theorem.

When 0 < a = δ – 1, the vector-field f is called the limiting case. In 2010, by careful anal-
ysis of a Töplitz matrix and its exponential Liu and Yuan [24] established a new estimate
for the small-denominator equation with critical unbounded variable coefficients. Hence,
a KAM theorem for infinite-dimensional Hamiltonian systems with 0 < a = δ –1 was given
in [25]. More results on PDEs with unbounded perturbation, see [12, 23, 26, 28–30] and
the references therein.

When a = δ, Baldi, Berti, and Montalto [3] proved the existence of quasi-periodic solu-
tions for the perturbed Airy equation

ut + uxxx + ε∂x
(
f (λt, x, u, ux, uxx)

)
= 0, x ∈ T, f ∈ Ck ,

where δ = 3 and a = 3. The crucial point of this problem is the reduction of the linear Airy
equation. We refer the reader to [2, 15].

The research in this area is very active at present, and the people are developing the
KAM method to deal with more complex Hamilton partial differential equations. In this
paper, the modified Kawahara equation with periodic boundary conditions belongs to
uncritical unbounded perturbation case with a = 1 and δ = 5. Hence the existence of n-
dimensional invariant tori was proven by using Kuksin’s KAM theorem in [16].

Now we study (1.1) as an infinite-dimensional Hamiltonian system on some suitable
phase space. For any integer p > 0, the phase space

Hp =
{

u ∈ L2(S;R) : ‖u‖p < ∞}

of the real-valued functions on S = R/2πZ, where

‖u‖2
p =

∣
∣û(0)

∣
∣2 +

∑

k∈Z
|k|2p∣∣û(k)

∣
∣2,

is defined in terms of the Fourier transform û of u, u(x) =
∑

k∈Z û(k)eikx. We endow Hp

with the Poisson structure proposed by Gardner:

{F , G} =
∫

S

∂F
∂u(x)

d
dx

∂G
∂u(x)

dx,

where F , G are differential functions on Hp with L2-gradients in H1. Under the standard
inner product on L2(S), the modified Kawahara equation (1.1) can be written in the form

ut =
d

dx

(
∂H
∂u

)
(1.4)
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with Hamiltonian

H(u) =
∫

S

(
1
2

u2
xx +

1
2

u2
x –

α

12
u4
)

dx. (1.5)

Now consider the phase space

Hp
0 =

{
u ∈Hp : [u] = 0

}
,

where [u] =
∫

S u(x) dx. The Poisson structure on Hp
0 is the same as that on Hp. In fact,

set u = v + c, where [v] = 0 and [u] = c. Then the Hamiltonian of the modified Kawahara
equation is

Hc(u) =
∫

S

(
1
2

v2
xx +

1
2

v2
x –

α

12
v4
)

dx –
∫

S

(
α

3
cv3

)
dx –

∫

S

(
α

2
c2v2

)
dx –

πα

6
c4,

where c is considered as a real parameter. For simplicity, we only consider c = 0 in the
following sections.

Our main result reads as follows.

Theorem 1.1 Consider the nonlinearly modified Kawahara equation

∂u
∂t

= –uxxx + u5x – αu2ux, (1.6)

where the Hamiltonian function H is defined by (1.5). Then, for any given index set J =
{j1 < j2 < · · · < jn} ⊂ N, there exists ε0 > 0, depending only on J , such that, for 0 < ε < ε0,
there exist

(1) a nonempty Cantor set Πε ⊂ Π with meas(Π \ Πε) → 0 as ε → 0, where Π is a
compact subset of Rn of positive Lebesgue measure,

(2) a Lipschitz family of real analytic torus embeddings

Φ : Tn × Πε → S2
p,

where S2
p = T

n ×R
n × �p × �p, and �p is the Hilbert space of all complex-valued

sequences with norm (2.2).
(3) a Lipschitz map φ : Πε →R

n such that, for each (θ , ξ ) ∈ T
n × Πε , the curve

u(t) = Φ(θ + φ(ξ )t, ξ ) is a quasi-periodic solution of equation (1.6) winding around
the invariant Φ(Tn × {ξ}). Moreover, each such torus is linearly stable.

2 Proof of the main theorem
First of all, we change the nonlinearly modified Kawahara equation (1.1) into Hamiltonian
form of infinitely many coordinates and then transform it into a partial normal form up
to order four. In the second subsection, we give the proof of Theorem 1.1.

2.1 Normal form
We write

u(t, x) =
∑

j 	=0

γjqj(t)ej(x), (2.1)
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where γj =
√|j|, ej(x) = 1√

2π
eijx. The coordinates are taken from the Hilbert space �p of all

complex-valued sequences (qj)j 	=0 with

‖q‖2
p =

∑

j 	=0

|j|2p|qj|2 < ∞, q–j = q̄j. (2.2)

Now Hamiltonian (1.5) can be written as

q̇j = iσj

(
∂H
∂q–j

)
, σj =

⎧
⎨

⎩
1, j ≥ 1,

–1, j ≤ –1,
(2.3)

with the new Hamiltonian

H(q) =
∑

j≥1

λj|qj|2 –
α

24π

∑

k+l+m+n=0

γkγlγmγnqkqlqmqn = Λ + G, (2.4)

where λj = j5 + j3, and the corresponding symplectic structure is

–i
∑

j≥1

dqj ∧ dq–j. (2.5)

So, the associated Hamilton vector field with Hamiltonian H is given by

XH = iσj
∑

j 	=0

∂H
∂q–j

∂

∂qj
.

Lemma 2.1 The Hamiltonian vector field XG is real analytic as a map from �p into �p–1

for each p > 3
2 . Moreover, ‖XG‖p–1 = O(‖q‖3

p).

Proof Since

G(q) = –
α

24π

∑

k+l+m+n=0

γkγlγmγnqkqlqmqn,

we easily obtain

∣
∣∣
∣
∂G
∂q–j

∣
∣∣
∣≤

α

6π

∑

j=k+l+m

γ–jγkγlγm|qkqlqm| =
α

6π
γjgj,

where gj =
∑

j=k+l+m γkγlγm|qkqlqm|.
Defining ω = (ωj)j = (γj|qj|)j, g = (gj), we get gj = (ω ∗ ω ∗ ω)j, so g = ω ∗ ω ∗ ω. For q ∈ �p,

it is obvious that ω ∈ �p– 1
2 . Hence we have

‖g‖p– 1
2

= ‖ω ∗ ω ∗ ω‖p– 1
2

≤ C‖ω‖3
p– 1

2
≤ C‖q‖3

p,

and consequently

‖∂qG‖p–1 ≤ C‖g‖p– 1
2

≤ C‖q‖3
p. �
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Lemma 2.2 Suppose k, l, m, n ∈ Z \ {0} and denote

� =
{

(k, l, m, n) ∈ Z
4 \ {0}|k + l + m + n = 0

}
,

�1 =
{

(k, l, m, n) ∈ �|k + l, k + m, k + n 	= 0
}

.

Then we have

|λk + λl + λm + λn| ≥ 5
4

max
{|k|3, |l|3, |m|3, |n|3}

for (k, l, m, n) ∈ �1.

Proof As (k, l, m, n) ∈ �1, we easily obtain

k5 + l5 + m5 + n5 = k5 + l5 + m5 – (k + l + m)5

= –5(k + l)(k + m)(k + n)
(
k2 + l2 + m2 + km + kl + lm

)

=
5
2

(k + l)(k + m)(k + n)
(
k2 + l2 + m2 + n2)

and

k3 + l3 + m3 + n3 = 3(k + l)(k + m)(k + n).

On the other hand, we know from [12] that

∣∣(k + l)(k + m)(k + n)
∣∣≥ 1

2
max

{|k|, |l|, |m|, |n|},

and hence

|λk + λl + λm + λn| =
∣
∣(k + l)(k + m)(k + n)

∣
∣
∣∣
∣∣
5
2
(
k2 + l2 + m2 + n2) + 3

∣∣
∣∣

>
∣∣(k + l)(k + m)(k + n)

∣∣
∣
∣∣
∣
5
2
(
k2 + l2 + m2 + n2)

∣
∣∣
∣

=
5
4

max
{|k|3, |l|3, |m|3, |n|3}. �

Lemma 2.3 There exists a real analytic symplectic coordinate transformation Φ defined
in a neighborhood of the origin of �p that transforms the Hamiltonian (2.4) into its normal
form up to order four. That is,

H1 = H ◦ Φ = Λ – B + P̃

with

B =
α

24π

(
3
∑

k 	=l

|k||l||qk|2|ql|2 + 2
∑

k 	=0

|k|2|qk|4
)

,

‖P̄q‖p–1 = O
(‖q‖5

p
)
.

(2.6)
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Proof Let us begin to normalize the fourth-order term G of q. Let the transformation
Φ1 = X1

F be the time-1-map of the flow of the Hamiltonian vector field XF . Then

H1 = H ◦ Φ1 = H ◦ X1
F

= Λ + {Λ, F} + G +
∫ 1

0
(1 – t)

{{Λ, F}, F
} ◦ Xt

F dt +
∫ 1

0
{G, F} ◦ Xt

F dt

= Λ + {Λ, F} + G + P̄

= Λ + {Λ, F} – B + G1 + P̄,

where

P̄ =
∫ 1

0
(1 – t)

{{Λ, F}, F
} ◦ Xt

F dt +
∫ 1

0
{G, F} ◦ Xt

F dt

and G1 = G + B.
To solve the equation {Λ, F} + G1 = 0, we define

F =
∑

k,l,m,n	=0

Fklmnqkqlqmqn

by

–iFklmn =

⎧
⎨

⎩

αγkγlγmγn
24π (λk+λl+λm+λn) , (k, l, m, n) ∈ �1,

0 otherwise.

Then the Hamiltonian changes to

H1 = Λ – B + P̄.

Obviously, the function P̄ is real analytic in �p with real value, and its gradient is analytic
�p into �p–1 with ‖P̄q‖p–1 = O(‖q‖5

p).
In the next step, we need to establish the regularity of the vector field XF . Since the jth

element of the gradient ∂qF reads explicitly,

∂F
∂q–j

=
∑

l+m+n=j

(F(–j)lmn + Fl(–j)mn + Flm(–j)n + Flmn(–j))qlqmqn.

Thus we get the estimate

∣
∣∣
∣

∂F
∂q–j

∣
∣∣
∣≤

2α

15πγ 5
j

∑

l+m+n=j

γlγmγn|ql||qm||qn| :=
2α

15πγ 5
j

rj,

where

rj =
∑

l+m+n=j

γlγmγn|ql||qm||qn|.
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Then

‖∂qF‖p+2 = O
(‖q‖3

p
)
,

and the proof of the lemma is completed. �

2.2 Proof of Theorem 1.1
For any given index set J , considering the transformation Φ in Lemma 2.3, we get the
new Hamiltonian

H1 = Λ – B + P̄

which is analytic in some neighborhood of the origin of �p.
We introduce new symplectic polar and real coordinates (ϕ, y, z, z̄) by setting

⎧
⎨

⎩
qjb =

√
ξb + ybe–iϕb , q–jb =

√
ξb + ybeiϕb , b = 1, 2, . . . , n,

qj = zj, q–j = z̄j, j ∈N∗ = N \J ,

where ξ = (ξ1, ξ2, . . . , ξn) ∈R
n. Then

Λ =
∑

1≤b≤n

λjb (ξb + yb) +
∑

j∈N∗
λjzjz̄j,

B =
α

24π

(
3
∑

k 	=l

|k||l||qk|2|ql|2 + 2
∑

k 	=0

|k|2|qk|4
)

=
α

24π

(
12
∑

k,l>0

kl|qk|2|ql|2 + 4
∑

k>0

|k|2|qk|4
)

=
α

24π

[
12

∑

1≤a	=b≤n

jajb(ξa + ya)(ξb + yb)
]

+
α

24π

[
24

∑

1≤b≤n
j∈N∗

jjb(ξb + yb)zjz̄j

]

+
α

24π

[
12

∑

j,j′∈N∗
j 	=j′

jj′zjz̄jzj′ z̄j′
]

+
α

24π

[
4
∑

1≤b≤n

(jb)2(ξb + yb)2 + 4
∑

j∈N∗
j2z2

j z̄j
2
]

.

Thus the new Hamiltonian, denoted by H2, up to a constant depending on ξ , is given by

H2 = N + P =
∑

1≤b≤n

ωbyb +
∑

j∈N∗
Ωjzjz̄j – Q + P̄

with symplectic structure

∑

1≤b≤n

dϕb ∧ dyb – i
∑

j∈N∗
dzj ∧ dz̄j,
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where

ωb = λjb –
∑

a	=b

(
α

π
jajbξa –

α

3π
j2
bξb

)
, (2.7)

Ωj = λj –
α

π

∑

1≤b≤n

jjbξb, (2.8)

and P = –Q + P̄ with

Q =
α

24π

(∑

a	=b

12jajbyayb + 24
∑

1≤b≤n
j∈N∗

jjbybzjz̄j

)

+
α

24π

(
12

∑

j,j′∈N∗
j 	=j′

jj′zjz̄jzj′ z̄j′ + 4
∑

1≤b≤n

j2
by2

b + 4
∑

j∈N∗
j2z2

j z̄2
j

)
.

Now consider the phase space domain

{
D(s, r) : |�ϕ| < s, |y| < r2,‖u‖p + ‖v‖p < r

}
,

where for the definition of norm ‖u‖p and more notations, we refer to the Appendix. Next,
we will check Assumptions A, B, and C of the KAM Theorem A.1 in the Appendix.

Regarding Ω as an infinite-dimensional column vector with its index j ∈N∗, from (2.8),
we have

Ωj(ξ ) = Ω̄j + Ω̃j(ξ ),

where Ω̄j = λj = j5 + j3 is independent of ξ . Furthermore, we also get

|Ωj|lipΠ ≤ |α|
π

∑

1≤b≤n,
j∈N∗

|jb||j| ≤ |α|
π

max
1≤b≤n

{|jb||j|
}

.

Thus

|Ω|lip–1,Π = sup
j∈N∗

j–1|Ωj|lipΠ ≤ |α|
π

max
1≤b≤n

{|jb|
}

:= M1,

which means that Assumption A is fulfilled with d = 5 and δ = 1. Therefore the functions

ξ �→ Ω̃j(ξ )
j

, j ≥ 1,

are uniformly Lipschitz on Πε ,
In view of (2.7), we have that ξ �→ ω is an affine transformation from Πε to R

n. Consider

ω = ω̆ –
α

3π
Aξ ,
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where

ω̆ =

⎛

⎜
⎜⎜
⎝

λj1

λj2

· · ·
λjn

⎞

⎟
⎟⎟
⎠

=

⎛

⎜
⎜⎜
⎝

j5
1 + j3

1

j5
2 + j3

2

· · ·
j5
n + j3

n

⎞

⎟
⎟⎟
⎠

, ξ =

⎛

⎜
⎜⎜
⎝

ξ1

ξ2

· · ·
ξn

⎞

⎟
⎟⎟
⎠

,

A =

⎛

⎜
⎜⎜
⎜⎜
⎜
⎝

j2
1 3j1j2 3j1j3 · · · 3j1jn

3j2j1 j2
2 3j2j3 · · · 3j2jn

3j3j1 3j3j2 j2
3 · · · 3j3jn

· · · · · · · · · · · · · · ·
3jnj1 3jnj2 3jnj3 · · · j2

n

⎞

⎟
⎟⎟
⎟⎟
⎟
⎠

.

Hence simple computation yields

det A = (–2)n–1(3n – 2)j2
1j2

2 · · · j2
n 	= 0,

and therefore the real map ξ �→ ω is a lipeomorphism between Π and its image. This
implies that the first part of Assumption B is fulfilled with positive M2 and L depending
only on the set J .

We further check the second part of Assumption B. Rewriting

Ω(ξ ) = Ω̄ –
α

π
Bξ ,

where Ω̄ is an infinite-dimensional column vector with its jth element Ω̄j = j5 + j3, and
B is a –∞ × n matrix with its jth row Bj = j(j1, j2, . . . , jn). We have to check that, for all
k = (k1, k2, . . . , kn) ∈ Z

n and 1 ≤ |l| ≤ 2 with l ∈ Z
∞,

meas
{
ξ ∈ Πε :

〈
k,ω(ξ )

〉
+
〈
l,Ω(ξ )

〉
= 0

}
= 0. (2.9)

Take

g(ξ ) =
〈
k,ω(ξ )

〉
+
〈
l,Ω(ξ )

〉

= 〈k, ω̆〉 + 〈l, Ω̄〉 +
〈
k, –

α

3π
Aξ

〉
+
〈
l, –

α

π
Bξ

〉
.

From condition (2.9) it follows that

〈k, ω̆〉 + 〈l, Ω̄〉 	= 0 or kA + 3lB 	= 0. (2.10)

Indeed, if we suppose that

kA + 3lB = 0, (2.11)

then

k = –3lBA–1 = –lB̂,
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where B̂ = 3BA–1 = (B̂j). Direct calculation results in

A–1 =
1

6n – 4

⎛

⎜
⎜⎜⎜
⎜⎜
⎜
⎝

5–3n
j21

3
j1j2

3
j1j3

· · · 3
j1jn

3
j2j1

5–3n
j22

3
j2j 3

· · · 3
j2jn

3
j3j1

3
j3j2

5–3n
j23

· · · 3
j3jn

· · · · · · · · · · · · · · ·
3

jnj1
3

jnj2
3

jnj3
· · · 5–3n

j2n

⎞

⎟
⎟⎟⎟
⎟⎟
⎟
⎠

.

So, we easily obtain

B̂j =
j

3n – 2

(
1
j1

,
1
j2

, . . . ,
1
jn

)
.

We easily see that kA + 3lB 	= 0, except for the following four cases:

(1) lj =

⎧
⎨

⎩
±1, j = h(3n–2)

3 [j1, j2, . . . , jn],

0 otherwise,

k = ∓[j1, j2, . . . , jn]
(

1
j1

,
1
j2

, . . . ,
1
jn

)
, h ∈N,

(2) lj =

⎧
⎨

⎩
±2, j = h(3n–2)

6 [j1, j2, . . . , jn],

0 otherwise,

k = ∓h[j1, j2 · · · jn]
(

1
j1

,
1
j2

· · · 1
jn

)
, h ∈ N,

(3) lj =

⎧
⎨

⎩
±1, j = j′, j′′, 3(j′ + j′′) = h(3n – 2)[j1, j2, . . . , jn],

0 otherwise,

k = ∓3(j′ + j′′)
3n – 2

(
1
j1

,
1
j2

, . . . ,
1
jn

)
, h ∈N,

(4) lj =

⎧
⎪⎪⎨

⎪⎪⎩

±1, j = j′,

±1, j = j′′ < j′ and 3(j′ – j′′) = h(3n – 2)[j1, j2, . . . , jn],

0 otherwise,

k = ∓3(j′ – j′′)
3n – 2

(
1
j1

,
1
j2

, . . . ,
1
jn

)
, h ∈N,

where [j1, j2, . . . , jn] is the least common multiple of j1, j2, . . . , jn Next, we check that

〈k, ω̆〉 + 〈l, Ω̄〉 	= 0 (2.12)

due to these four cases. Therefore we only check (2.12) for cases (1) and (3) under the
proper condition. The others may be obtained by using the same method.
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Case 1. If (1) holds, then we have

〈k, ω̆〉 + 〈l, Ω̄〉 = ∓h[j1, j2, . . . , jn]

( n∑

i=1

j2
i +

n∑

i=1

j4
i

)

±
(

h(3n – 2)
3

[j1, j2, . . . , jn]
)5

±
(

h(3n – 2)
3

[j1, j2, . . . , jn]
)3

= ∓h[j1, j2, . . . , jn]

( n∑

i=1

j2
i +

n∑

i=1

j4
i – h4

(
(3n – 2)

3

)5(
[j1, j2, . . . , jn]

)4
)

∓ h[j1, j2, . . . , jn]
(

–h2
(

(3n – 2)
3

)3(
[j1, j2, . . . , jn]

)2
)

.

If [j1, j2, . . . , jn] 	= jn, then [j1, j2, . . . , jn] ≥ 2jn. Hence we have

n∑

i=1

j2
i < nj2

n ≤ n
4
(
[j1, j2, . . . , jn]

)2 < h2
(

(3n – 2)
3

)3(
[j1, j2, . . . , jn]

)3,

n∑

i=1

j4
i < nj4

n ≤ n
16
(
[j1, j2, . . . , jn]

)4 < h4
(

(3n – 2)
3

)5(
[j1, j2, . . . , jn]

)4.

This implies formula (2.12).
In case (3), we have

〈k, ω̆〉 + 〈l, Ω̄〉

= ∓(j′ + j′′
)
[

3
3n – 2

( n∑

i=1

j4
i +

n∑

i=1

j2
i

)

–
(j′)5 + (j′′)5 + (j′)3 + (j′′)3

j′ + j′′

]

.

When n ≥ 2, we easily obtain

√√√
√ 3

3n – 2

n∑

i=1

j2
i <

√
3n(jn)2

3n – 2
<

4
3

jn ≤ 4
6

[j1, j2, . . . , jn]

≤ 3n – 2
6

[j1, j2, . . . , jn] ≤ j′ + j′′

2
<

√
(j′)3 + (j′′)3

j′ + j′′
.

Completely similarly, we have

4

√√
√√ 3

3n – 2

n∑

i=1

j4
i <

j′ + j′′

2
< 4

√
(j′)5 + (j′′)5

j′ + j′′
.

So the proof of case (3) is complete.
It remains to check Assumption C. It is easy to see that the Hamiltonian vector field of

the perturbation P = Q + P̄ + εK ◦ Φ defines a map

XP : D(s, r) × Π →S
2
p–2,C,



Yin et al. Boundary Value Problems        (2019) 2019:116 Page 13 of 18

where S2
p,C is the phase space Sm

p,C defined in (A.3) with m = 2. We use the notation iξ XP

for XP evaluated at ξ and likewise in analogous cases. For each ξ , the vector field iξ XP ,
considered as a map from a subset of S2

p,C to S2
p–2,C, is of order p – (p – 2) = 2, which is

strictly smaller than d – 1 = 4. Moreover, it is easy to see that iξ XP is real analytic on D(s, r)
for each ξ ∈ Πε and that iwXP is uniformly Lipschitz on Πε for each w ∈ D(s, r). Namely,
Assumption C is satisfied.

Now we consider the supremum norm and Lipschitz seminorm of the perturbation P
on D(s, r) × Π , where the parameter domain

Π =
{
ξ ∈R

n : |ξ | ≤ r
16
11
}

.

Obviously, we have

‖XQ‖r,p–2,D(s,r)×Π = O
(
r2). (2.13)

Moreover, P̄ is at least of the fifth order of q, so we get

‖XP̄‖r,p–2,D(s,r)×Π = O
((

r
8

11
)5 · r–2) = O

(
r

18
11
)
. (2.14)

From (2.13) and (2.14) we have

‖XP‖r,p–2,D(s,r)×Π = O
(
r

18
11
)
.

Since XP is real analytic in ξ , we have

‖XP‖lip
r,p–2,D(s,r)×Π

= O
(
r

18
11 · r– 16

11
)

= O
(
r

2
11
)
.

We choose

α = r
17
11 γ –1,

where γ is taken from KAM Theorem A.1. Set M := M1 + M2, which only depends on the
index set J . It is obvious that when r is small enough,

‖XP‖r,p–2,D(s,r)×Π +
α

M
‖XP‖lip

r,p–2,D(s,r)×Π = O
(
r

18
11
)

= O(ε) ≤ αγ ,

which is just the smallness condition (A.5) in KAM Theorem A.1. Therefore Theorem 1.1
follows from Theorem A.1 in the Appendix.

3 Conclusion
Based on an abstract infinite dimensional KAM theorem for unbounded perturbation vec-
tor fields and partial Birkhoff normal form, we prove the existence of n-dimensional invari-
ant tori for a nonlinearly modified Kawahara equation with periodic boundary conditions

ut + uxxx – u5x + αu2ux = 0.
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Appendix: The KAM theorem
Consider a small perturbation H = N + P of an infinite-dimensional Hamiltonian in the
parameter-dependent normal form

N =
∑

1≤j≤m

ωj(ξ )yj +
∑

j∈N∗
Ωjzjz̄j (A.1)

on the phase space

S
m
p = T

m ×R
m × �p × �p � (x, y, z, z̄)

with symplectic structure

∑

1≤j≤m

dxj ∧ dyj +
∑

j≥1

dzj ∧ dz̄j,

where

�p =
{

z ∈ �2(N,R) : ‖z‖2
p =

∑

j 	=0

|zj|2j2p < ∞
}

, p ≥ 0.

The tangential frequencies ω = (ω1,ω2, . . . ,ωm) and normal frequencies Ω = (Ω1,Ω2, . . .)
are real analytic in the space coordinates and Lipschitz in the parameters. The Hamilto-
nian N depends on parameters

ξ ∈ Π ⊂R
m,

where Π is a compact Cantor set in R
m of positive Lebesgue measure. Moreover, for each

ξ ∈ Π , its Hamiltonian vector field

XP =
(
(Pyb )1≤b≤n, –(Pϕb )1≤b≤n, i(Pz̄j )j∈N∗ , –i(Pzj )j∈N∗

)T

defines near T0 := T
m × {y = 0} × {z = 0} × {z̄ = 0} a real analytic map

XP : Sm
p →S

m
q ,

where

p – d = d̃.

To state the KAM theorem, we need to introduce some domains and norms. For s, r > 0,
we introduce the complex T0-neighborhoods

D(s, r) =
{|�ϕ| < s

}× {|y| < r2}× {‖z‖p + ‖z̄‖p < r
}

(A.2)

⊂C
m ×C

m × �
p
C

× �
p
C

= S
m
p,C (A.3)
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and, for W = (X, Y , Z, Z̄) ∈Sm
q,C, the weighted norm

‖W‖r,q = |X| +
|Y |
r2 +

‖Z‖q

r
+

‖Z̄‖q

r
,

where | · | denotes the sup-norm for complex vectors. Furthermore, for a map W : U ×
Π →Sm

q,C, such as the Hamiltonian vector field XP , we define the norms

‖W‖sup
r,q;U×Π = sup

(w,ξ )∈U×Π

∥∥W (w, ξ )
∥∥

r,q,

‖W‖lip
r,q;U×Π = sup

ξ ,ζ∈Π ,ξ 	=ζ

‖�ξζ W‖sup
r,q;U

|ξ – ζ | ,

where �ξζ W = iξ W – iζ W and

‖iξ W‖sup
r,q;U = sup

w∈U

∥∥W (w, ξ )
∥∥

r,q.

In a completely analogous manner, the Lipschitz seminorm of a frequency ω is defined as

|ω|lipΠ = sup
ξ ,ζ∈Π ,ξ 	=ζ

‖�ξζω‖
|ξ – ζ | ,

and the Lipschitz seminorm of Ω̃ : Π → �∞
–δ is defined as

|Ω̃|lip–δ,Π = sup
ξ ,ζ∈Π ,ξ 	=ζ

‖�ξζ Ω̃‖–δ

|ξ – ζ |

for any real number δ. Since Ω̄ = Ω – Ω̃ is independent of ξ , we obtain |Ω̃|lip–δ,Π = |Ω|lip–δ,Π .
For the normal form N described previously, we introduce the following assumptions.

Assumption A (Frequency asymptotics) There exist two real numbers d > 1 and δ < d – 1
such that the following condition holds. Firstly, the frequencies Ωn are real-valued func-
tions of ξ of the form

Ωn(ξ ) = Ω̄n + Ω̃n(ξ ),

where Ω̄n is independent of ξ and the form Ω̃n = cnd + · · · , in which the dots stand for an
expansion in lower order terms in n. Secondly, the functions

ξ �→ Ω̃n(ξ )
nδ

, n ≥ 1,

are uniformly Lipschitz on Π , or, equivalently, the map

Ω̃ : Π → �∞
–δ , ξ �→ Ω̃(ξ ) =

(
Ω̃n(ξ )

)
n≥1

is Lipschitz on Π .
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Assumption B (Nondegeneracy) The map ξ → ω(ξ ) between Π and its image is a home-
omorphism, which is Lipschitz continuous in both directions. Moreover, for all k ∈ Z

m and
l ∈ Z

∞ with 1 ≤ |l| ≤ 2 (here |l| =
∑

j≥1 |lj|), the resonance set

�kl =
{
ξ ∈ Π :

〈
k,ω(ξ )

〉
+
〈
l,Ω(ξ )

〉
= 0

}
(A.4)

has zero Lebesgue measure.

Assumption C (Regularity) There exists a neighborhood U of T0 in Sm
p,C such that P is

defined on U × Π , and its Hamiltonian vector field defines a map

XP : U × Π →S
m
q,C,

where q satisfies

p – q < d – 1.

Moreover, iξ XP is real analytic on U for each ξ ∈ Π , and iwXP is uniformly Lipschitz on Π

for each w ∈ U .

We introduce one more constant. By Assumptions A and B,

|ω|lipΠ + |Ω|lipΠ ≤ M < ∞.

Finally observe that if XP satisfies Assumption C, then it does so with the T0-neighbor-
hoods D(s, r) for all s > 0 and r > 0 sufficiently small. Under the conditions stated, we have
the following KAM theorem.

Theorem A.1 Suppose N is a family of Hamiltonian of the form (A.1) defined on a phase
space Sm

p and depending on parameters in Π so that Assumptions A and B are satisfied.
Then there exist a positive constant γ , depending only on m, d, δ, and the frequencies ω

and Ω , and the real number s > 0 such that, for every perturbed Hamiltonian H = N + P
that satisfies Assumption C and the smallness condition

ε = ‖XP‖sup
r,q,D(s,r)×Π +

α

M
‖XP‖lip

r,q,D(s,r)×Π ≤ αγ (A.5)

for some r > 0 and 0 < α < 1, the following holds: There exist
(i) a Cantor set Πα ⊂ Π with meas(Π \ Πα) → 0 (α → 0),

(ii) a Lipschitz family of real analytic torus embeddings Φ : Tm × Πα →Sm
p , and

(iii) a Lipschitz map φ : Πα →R
m

such that, for each ξ ∈ Πα , the map Φ restricted to T
m × {ξ} is a real analytic embedding

of a rotational frequency φ(ξ ) for the perturbed Hamiltonian H at ξ . In other words,

t �→ Φ
(
θ + tφ(ξ ), ξ

)
, t ∈R,

is a real analytic quasi-periodic solution for the Hamiltonian iξ H for every θ ∈ T
m and

ξ ∈ Πα .
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Moreover, each embedding is real analytic on D(s/2) = {|�x| < s/2}, and

‖Φ – Φ0‖sup
r,p,D(s/2)×Πα

+
α

M
‖Φ – Φ0‖lip

r,p,D(s/2)×Πα
≤ cε

α
,

|φ – ω|sup
Πα

+
α

M
|φ – ω|lipΠα

≤ cε,

where

Φ0 : Tm × Π → T0, (x, ξ ) �→ (x, 0, 0, 0)

is the trivial embedding for each ξ , and c is a positive constant depending on the same
parameters as γ .

Proof The proof can be found in [16]. �
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