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Abstract
In this paper, we deal with a class of cellular neural networks with time-varying delays.
Applying differential inequality strategies without assuming the boundedness
conditions on the activation functions, we obtain a new sufficient condition that
ensures that all solutions of the considered neural networks converge exponentially
to the zero equilibrium point. We give an example to illustrate the effectiveness of the
theoretical results. The results obtained in this paper are completely new and
complement the previously known studies of Tang (Appl. Math. Lett. 21:872–876,
2008).
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1 Introduction
It is well known that cellular neural networks have attracted broad attention in numer-
ous scientific fields due to their potential application prospect in psychophysics, speech,
perception, robotics, pattern recognition, signal and image processing, optimization and
population dynamics, and so on [2–6]. Noting that the design of cellular neural depends
largely on the global exponential convergence natures, a lot of authors investigated the
global exponential convergence of the equilibria and periodic solutions for cellular neural
networks, and many outstanding achievements have been stated. For example, Zhang [7]
focused on the exponential convergence for cellular neural networks with continuously
distributed leakage delays. Applying the Lyapunov function method and differential in-
equality strategies, sufficient conditions that ensure that all solutions of the networks con-
vergence exponentially to the zero equilibrium point are obtained. Liu [8] investigated the
convergence for HCNNs with delays and oscillating coefficients in leakage terms. Using
some suitable integral inequality technique, the authors established some sufficient con-
ditions to ensure that all solutions of the networks convergence exponentially to the zero
equilibrium point, Zhao and Wang [9] presented some sufficient conditions for exponen-
tial convergence via the Lyapunov functional method and differential inequality strategies
for a SICNN with leakage delays and continuously distributed delays of neutral type. Chen
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and Yang [10] established an exponential convergence criteria for HRNNs with continu-
ously distributed delays in the leakage terms by using the Lyapunov functional method
and differential inequality strategies. For more results on this topic, we refer the readers
to [11–42].

In 2008, Tang [1] considered the following delayed cellular neural networks with time-
varying coefficients:

x′
i(t) = –ci(t)xi(t) +

n∑

j=1

aij(t)fj
(
xj

(
t – τij(t)

))

+
n∑

j=1

bij(t)
∫ ∞

0
Kij(u)gj

(
xj(t – u)

)
du + Ii(t), (1.1)

where i = 1, 2, . . . , n, t ∈ R, n corresponds to the number of units in a neural network, xi(t)
denotes the state vector of the ith unit at the time t, ci(t) > 0 denotes the rate with which
the ith unit will reset its potential to the resting state in isolation when disconnected from
the network and external inputs at the time t, aij(t) and bij(t) represent the connection
weights at the time t, τij(t) ≥ 0 denotes the transmission delay of the ith unit along the
axon of the jth unit at the time t, Ii(t) denotes the external bias on the ith unit at the
time t, fj and gj are activation functions of signal transmission, and Kij(u) corresponds
to the transmission delay kernel. Mathematical analysis technique was applied under the
following conditions:

(A1) For each j ∈ {1, 2, . . . , n}, there exist nonnegative constants L̄j and Lj such that

∣∣fj(u)
∣∣ ≤ L̄j|u|, ∣∣gj(u)

∣∣ ≤ Lj|u| for all u ∈ R.

(A2) For i ∈ {1, 2, . . . , n}, there exist constants T0 > 0, η > 0, λ > 0, and ξ0 > 0 such that

–
[
ci(t) – λ

]
ξi +

N∑

j=1

∣∣aij(t)
∣∣eλτ L̄jξj +

N∑

j=1

∣∣bij(t)
∣∣
∫ ∞

0
Kij(u)eλu duLjξj

< –η < 0 for all t > T0,

where τ = max1≤i,j≤n{supt∈R τij(t)}.
(A3) For i ∈ {1, 2, . . . , n}, Ii(t) = O(e–λt).
Some sufficient conditions ensuring that all solutions of system (1.1) converge exponen-

tially to zero equilibrium point were obtained. Here we would like to point out that Tang
[1] investigated the exponential convergence by assuming that the leakage term coeffi-
cient functions ci(t) are not oscillating, that is, ci(t) > 0, i = 1, 2, . . . , n. However, in many
cases, oscillating coefficients usually occur in linearizations of population dynamics mod-
els due to seasonal fluctuations, for example, in winter the death rate maybe greater than
the birth rate [5, 43]. Thus the study on the exponential convergence for cellular neural
networks with oscillating coefficients in the leakage terms has important principle value
and important realistic significance.

In this paper, we further consider the exponential convergence for cellular neural net-
works (1.1). The initial conditions associated with (1.1) are given by

xi(s) = ϕi(s), s ∈ (–∞, 0],ϕi ∈ BC, i = 1, 2, . . . , n, (1.2)
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where BC denotes the set of all real-valued bounded and continuous functions defined on
(–∞, 0]. Differently from the assumptions in [1], we establish other sufficient conditions
that guarantee that all solutions of the considered neural networks converge exponentially
to the zero equilibrium point. We believe that this research on the exponential conver-
gence for cellular neural networks plays an important role in designing the cellular neural
networks with time-varying delays. Our results are new and a good complement to the
work of [1].

For simplicity, we denote by Rp (R = R1) the set of all p-dimensional real vectors (real
numbers). Set x(t) = (x1(t), x2(t), . . . , xn(t))T ∈ Rn. For any x(t) ∈ Rn, we let |x| denote the ab-
solute value vector given by |x| = (|x1|, |x2|, . . . , |xn|)T and define ‖x‖ = max1≤i≤n |xi(t)|. For
f ∈ BC, we denote f + = supt∈R |f (t)| and f – = inft∈R |f (t)|. Let τ+ = max1≤i,j≤n{supt∈R τij(t)}.

Throughout this paper, we assume that the following conditions are satisfied:
(H1) For i = 1, 2, . . . , n, there exist constants c̄i > 0 and M > 0 such that

e–
∫ t

s ci(u) du ≤ Me–(t–s)c̄i for all t, s ∈ R such that t – s ≥ 0.

(H2) For j = 1, 2, . . . , n, there exist positive constants Lf
j and Lg

j such that

∣∣fj(u) – fj(v)
∣∣ ≤ Lf

j |u – v|, ∣∣gj(u) – gj(v)
∣∣ ≤ Lg

j |u – v|,
fj(0) = 0, gj(0) = 0

for u, v ∈ R.
(H3) For i, j = 1, 2, . . . , n, the delay kernel Kij : [0,∞) → R is continuous and absolutely

integrable.
(H4) For i = 1, 2, . . . , n, there exists a positive constant μ0 such that

Ii(t) = O
(
e–μ0t) (t → +∞),

MGi

c̄i
< 1,

where

Gi =
n∑

j=1

a+
ijL

f
j +

n∑

j=1

b+
ijL

g
j

∫ ∞

0
Kij(u) du.

The remainder of the paper is organized as follows. In Sect. 2, we establish a sufficient
condition which ensures the exponential convergence of all solutions of the considered
neural networks. In Sect. 3, we give an example that illustrates the theoretical findings.
The paper ends with a brief conclusion in Sect. 4.

2 Global exponential convergence
Theorem 2.1 If (H1)–(H4) hold, then for every solution x(t) = (x1(t), x2(t), . . . , xn(t))T of
system (1.1) with any initial value conditions (1.2), there exists a positive constant λ such
that xi(t) = O(e–λt) as t → +∞, i = 1, 2, . . . , n.

Proof We first define the continuous function

Θi(ε) = –c̄i + ε + M

[ n∑

j=1

a+
ijL

f
j eετ+

+
n∑

j=1

b+
ijL

g
j

∫ ∞

0
Kij(u)eεu du + ε

]
, (2.1)
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where ε ∈ [0, min{μ0, min1≤i≤n c̄i}). By (H4) we get

Θi(0) = –c̄i + M

[ n∑

j=1

a+
ijL

f
j +

n∑

j=1

b+
ijL

g
j

∫ ∞

0
Kij(u) du

]

= c̄i

(
MGi

c̄i
– 1

)
< 0, i = 1, 2, . . . , n. (2.2)

In view of the continuity of Θi(ε), we can choose a constant λ ∈ [0, min{μ0, min1≤i≤n c̄i})
such that

–c̄i + λ + M

[ n∑

j=1

a+
ijL

f
j eλτ+

+
n∑

j=1

b+
ijL

g
j

∫ ∞

0
Kij(u)eλu du + λ

]

= (c̄i – λ)
(

Mγi

c̄i – λ
– 1

)
< 0, i = 1, 2, . . . , n, (2.3)

where

γi =
n∑

j=1

a+
ijL

f
j eλτ+

+
n∑

j=1

b+
ijL

g
j

∫ ∞

0
Kij(u)eλu du + λ.

Let x(t) = (x1(t), x2(t), . . . , xn(t))T be the solution of system (1.1) with any initial value ϕ(t) =
(ϕ1(t),ϕ2(t), . . . ,ϕn(t))T satisfying (1.2) and ‖ϕ‖0 = supt≤0 max1≤i≤n |ϕi(t)|. For any ε > 0, we
have

∥∥x(t)
∥∥ <

(‖ϕ‖0 + ε
)
e–λt < Ω

(‖ϕ‖0 + ε
)
e–λt for all t ∈ (–∞, 0], (2.4)

where Ω is a sufficiently large constant such that

∥∥Ii(t)
∥∥ < λΩ

(‖ϕ‖0 + ε
)
e–λt for all t ∈ R (2.5)

and

Ω >
c̄i – λ

γi
+ 1, i = 1, 2, . . . , n. (2.6)

It follows from (2.3) and (2.6) that

1
Ω

–
c̄i – λ

γi
< 0,

Mγi

c̄i – λ
< 1, i = 1, 2, . . . , n. (2.7)

Now we will prove that

∥∥x(t)
∥∥ < Ω

(‖ϕ‖0 + ε
)
e–λt for all t > 0. (2.8)

If (2.8) does not hold, then there must exist i and t0 such that

⎧
⎨

⎩
‖x(t0)‖ = |xi(t0)| = Ω(‖ϕ‖0 + ε)e–λt0 ,

‖x(t)‖ < Ω(‖ϕ‖0 + ε)e–λt for all t ∈ (–∞, t0).
(2.9)
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Notice that

x′
i(s) + ci(s)xi(s) =

n∑

j=1

aij(s)fj
(
xj

(
s – τij(s)

))

+
n∑

j=1

bij(s)
∫ ∞

0
Kij(u)gj

(
xj(s – u)

)
du

+ Ii(s), s ∈ [0, t], t ∈ [0, t0]. (2.10)

Multiplying both sides of (2.10) by e–
∫ s

0 ci(u) du and then integrating on [0, t], we have

xi(t) = xi(0)e–
∫ t

0 ci(u) du +
∫ t

0
e–

∫ t
s ci(u) du

[ n∑

j=1

aij(s)fj
(
xj

(
s – τij(s)

))

+
n∑

j=1

bij(s)
∫ ∞

0
Kij(u)gj

(
xj(s – u)

)
du + Ii(s)

]
, t ∈ [0, t0], (2.11)

and

∣∣xi(t0)
∣∣ =

∣∣∣∣∣xi(0)e–
∫ t0

0 ci(u) du +
∫ t0

0
e–

∫ t0
s ci(u) du

[ n∑

j=1

aij(s)fj
(
xj

(
s – τij(s)

))

+
n∑

j=1

bij(s)
∫ ∞

0
Kij(u)gj

(
xj(s – u)

)
du + Ii(s)

∣∣∣∣∣. (2.12)

By (H1)–(H4) and (2.12) we get

∣∣xi(t0)
∣∣ ≤ M

(‖ϕ‖0 + ε
)
e–c̄it0 +

∫ t0

0
Me–(t0–s)c̄i

[ n∑

j=1

a+
ijL

f
j eλτ+

Ω
(‖ϕ‖0 + ε

)
e–λs

+
n∑

j=1

b+
ijL

g
j

∫ ∞

0
Kij(u)eλu duΩ

(‖ϕ‖0 + ε
)
e–λs + λΩ

(‖ϕ‖0 + ε
)
e–λs

]
ds

≤ Ω
(‖ϕ‖0 + ε

)
{

Me–c̄it0

Ω
+

∫ t0

0
Me–(t0–s)c̄i e–λs

[ n∑

j=1

a+
ijL

f
j eλτ+

+
n∑

j=1

b+
ijL

g
j

∫ ∞

0
Kij(u)eλu du + λ

]
ds

}
. (2.13)

By (2.3), (2.6), (2.7), and (2.13) we have

∣∣xi(t0)
∣∣ ≤ Ω

(‖ϕ‖0 + ε
)[Me–c̄it0

Ω
+ e–c̄it0

∫ t0

0
e(c̄i–λ)s dsγi

]
M

= Ω
(‖ϕ‖0 + ε

)
e–λt0

[
Me(λ–c̄i)t0

Ω
+

γi

c̄i – λ

(
1 – e(λ–c̄i)t0

)]
M

= Ω
(‖ϕ‖0 + ε

)
e–λt0

[(
1
Ω

–
γi

c̄i – λ

)
e(λ–c̄i)t0 +

γi

c̄i – λ

]
M
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< Ω
(‖ϕ‖0 + ε

)
e–λt0

γi

c̄i – λ
M

< Ω
(‖ϕ‖0 + ε

)
e–λt0 , (2.14)

which contradicts (2.9). So (2.8) holds. Letting ε → 0+, it follows from (2.8) that

∥∥x(t)
∥∥ < Ω‖ϕ‖0e–λt for all t > 0. (2.15)

The proof of Theorem 2.1 is complete. �

Remark 2.1 Tang [1] analyzed the exponential convergence for cellular neural network
model (1.1) under conditions (A1)–(A3). In this paper, we discuss the exponential conver-
gence for cellular neural network model (1.1) under conditions (H1)–(H4). Moreover, the
analysis method is different from that in [1].

3 Example
In this section, we present an example to verify the analytical predictions obtained in the
previous section. Consider the following cellular neural networks with time-varying de-
lays:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = –c1(t)x1(t) +

∑2
j=1 a1j(t)fj(xj(t – τ1j(t)))

+
∑2

j=1 b1j(t)
∫ ∞

0 K1j(u)gj(xj(t – u)) du + I1(t),

x′
2(t) = –c2(t)x2(t) +

∑2
j=1 a2j(t)fj(xj(t – τ2j(t)))

+
∑2

j=1 b2j(t)
∫ ∞

0 K2j(u)gj(xj(t – u)) du + I2(t),

x′
3(t) = –c3(t)x3(t) +

∑2
j=1 a3j(t)fj(xj(t – τ3j(t)))

+
∑2

j=1 b3j(t)
∫ ∞

0 K3j(u)gj(xj(t – u)) du + I3(t),

(3.1)

where gj(x) = fj(x) = 0.03 sin x2 (j = 1, 2, 3) and

[
a11(t) a12(t)
b11(t) b12(t)

]
=

[
0.2 + 0.4 sin 4500t 0.2 + 0.3 sin 4500t
0.1 + 0.4 cos 4500t 0.1 + 0.4 cos 4500t

]
,

[
a21(t) a22(t)
b21(t) b22(t)

]
=

[
0.1 + 0.4 cos 5000t 0.2 + 0.3 cos 5000t
0.2 + 0.2 cos 5000t 0.1 + 0.4 sin 5000t

]
,

[
a31(t) a32(t)
b31(t) b32(t)

]
=

[
0.2 + 0.3 sin 6000t 0.1 + 0.2 cos 6000t
0.1 + 0.2 sin 6000t 0.2 + 0.3 sin 6000t

]
,

⎡

⎢⎣
K11(u) K12(u)
K21(u) K22(u)
K31(u) K32(u)

⎤

⎥⎦ =

⎡

⎢⎣
| sin u|e–u | sin u|e–u

| sin u|e–u | sin u|e–u

| sin u|e–u | sin u|e–u

⎤

⎥⎦ ,

⎡

⎢⎣
c1(u) I1(u)
c2(u) I2(u)
c3(u) I3(u)

⎤

⎥⎦ =

⎡

⎢⎣
0.2 + 3 sin 6000t e–2t sin t
0.1 + 2 sin 4000t e–3t sin t
0.1 + 2 cos 5000t e–5t sin t

⎤

⎥⎦ ,

⎡

⎢⎣
τ11(u) τ12(u)
τ21(u) τ22(u)
τ31(u) τ32(u)

⎤

⎥⎦ =

⎡

⎢⎣
0.2 sin3 t 0.4 sin3 t
0.1 sin3 t 0.3 sin3 t
0.2 sin3 t 0.4 sin3 t

⎤

⎥⎦ .
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Then c̄1 = 0.2, c̄2 = 0.1, c̄3 = 0.1, Lf
j = Lg

j = 0.03, and

[
a+

11 a+
12

b+
11 b+

12

]
=

[
0.6 0.5
0.5 0.5

]
,

[
a+

21 a+
22

b+
21 b+

22

]
=

[
0.5 0.5
0.4 0.5

]
,

[
a+

31 a+
32

b+
31 b+

32

]
=

[
0.5 0.3
0.3 0.5

]
.

Let M = e0.01. Then

G1 =
2∑

j=1

a+
1jL

f
j +

2∑

j=1

b+
1jL

g
j

∫ ∞

0
K1j(u) du

= (0.6 + 0.5) × 0.03 + (0.5 + 0.5) × 0.03 × 0.5

= 0.0480,

G2 =
2∑

j=1

a+
2jL

f
j +

2∑

j=1

b+
2jL

g
j

∫ ∞

0
K2j(u) du

= (0.5 + 0.5) × 0.03 + (0.4 + 0.5) × 0.03 × 0.5

= 0.0313,

G3 =
2∑

j=1

a+
3jL

f
j +

2∑

j=1

b+
3jL

g
j

∫ ∞

0
K3j(u) du

= (0.5 + 0.3) × 0.03 + (0.3 + 0.5) × 0.03 × 0.5

= 0.0360,

MG1

c̄1
=

e0.01 × 0.0480
0.2

= 0.2425 < 1,

MG2

c̄2
=

e0.01 × 0.0313
0.2

= 0.3160 < 1,

MG3

c̄3
=

e0.01 × 0.0360
0.2

= 0.3640 < 1.

Thus all the conditions of Theorem 2.1 are satisfied. So we can conclude that all solutions
of (3.1) converge exponentially to the zero equilibrium point (0, 0, 0)T . This result is shown
by computer simulation in Figs. 1–3.

4 Conclusions
In this paper, we are concerned with a class of cellular neural networks with time-varying
delays. Using the differential inequality under the unboundedness conditions of the acti-
vation functions, we establish a sufficient condition guaranteeing that all solutions of the
considered neural networks converge exponentially to the zero equilibrium point. The ob-
tained sufficient condition is easy to check in practice. The results derived in this paper
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Figure 1 Time history of model (3.1)

Figure 2 Time history of system (3.1)

Figure 3 Time history of model (3.1)
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are completely new and complement the previously known ones [1]. We present an ex-
ample to illustrate the effectiveness of our theoretical results. The obtained results play a
key role in designing neural networks and can be applied in many areas such as artificial
intelligence, image recognition, disease diagnosis, and so on. Recently, pseudo-almost pe-
riodic solutions of cellular neural networks have also become a hot issue. However, there
are rare results on pseudo-almost periodic solutions of cellular neural networks, which
are worth studying in near future.
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