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Abstract
We are concerned with the following Schrödinger–Poisson system:

{
–�u + u + K (x)φu = a(x)u3, x ∈ R

3,

–�φ = K (x)u2, x ∈ R
3.

Assuming that K (x) and a(x) are nonnegative functions satisfying

lim|x|→∞a(x) = a∞ > 0, lim|x|→∞K (x) = 0,

and other suitable conditions, we show the existence of bound and ground states via
a global compactness lemma and the Nehari manifold. Our result extends the
existence result of positive solutions for Schrödinger–Poisson system with more than
three times growth by Cerami and Vaira (J. Differ. Equ. 248:521–543, 2010) to the
system with three times growth.
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1 Introduction and main result
In this paper we are devoted to the following Schrödinger–Poisson system

⎧⎨
⎩–�u + u + K(x)φu = a(x)u3, x ∈R

3,

–�φ = K(x)u2, x ∈R
3,

(SP)

where the potentials K and a satisfy:
(a1) a ∈ L∞(R3), lim|x|→∞ a(x) = a∞ > 0.
(K) K ∈ L2(R3), lim|x|→∞ K(x) = 0, K(x) ≥ 0, for all x ∈R

3, K �≡ 0.
(a2) a(x) ≥ a∞, ∀x ∈R

3, a(x) – a∞ > 0 on a positive measure set.
(a3) a(x) ≤ a∞, ∀x ∈R

3, infx∈R3 a(x) > 0.
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System (SP) is a special form of the Schrödinger–Poisson system

⎧⎨
⎩–�u + V (x)u + K(x)φu = f (x, u), x ∈R

3,

–�φ = K(x)u2, x ∈R
3,

(1.1)

which has been first introduced in [5] as a physical model describing a charged wave, in-
teracting with its own electrostatic field in quantum mechanics. The unknowns u and φ

represent the wave functions associated to the particle and electric potential, the functions
V and K are external potentials, and the nonlinearity f (x, u) simulates the interaction be-
tween many particles or external nonlinear perturbations. For more information on the
physical aspects, we refer the reader to [5].

There have been many works dealing with (1.1) and the existence of bound and ground
states, radial and nonradial solutions, sign-changing solutions, and semiclassical states.
Here we mainly are interested in the existence results of bound and ground states. It is well
known that the main difficulty of problem (1.1) is the lack of compactness for Sobolev’s
embedding theorem on the whole space R

3. To recover the compactness, many studies
were focused on the autonomous case (see [4, 9–11, 14, 17], for example) or on the ra-
dially symmetric function space which possesses compact embedding (see [3, 15, 17], for
instance). When the potentials are neither constants nor radially symmetric, system (1.1)
has also been increasingly receiving interest in recent years, for example, see [1–3, 13]. Az-
zollini and Pomponio [4] considered the existence of ground states of (1.1) when V is non-
constant and possibly unbounded below, K = 1, f (x, u) = |u|p–1u and f (x, u) = u5 + |u|p–1u
with 3 < p < 5. In [23], Zhao and Zhao established the existence of ground states of (1.1)
with pure power nonlinearity f (u) and V being weakly differentiable, K = 1. Later, Cerami
and Vaira [8] considered the system

⎧⎨
⎩–�u + u + K(x)φu = a(x)|u|p–1u, x ∈R

3,

–�φ = K(x)u2, x ∈R
3,

(1.2)

where 3 < p < 5. Assume that the potential K(x) satisfies condition (K) and a(x) satisfies
(a′

1) lim|x|→∞ a(x) = a∞ > 0, α(x) := a(x) – a∞ ∈ L
6

5–p (R3);
they discussed the existence of ground and bound states. More precisely, when (a′

1), (a2),
(K) and other suitable restrictions on K(x) and a(x) are satisfied, they showed that prob-
lem (1.2) has a ground state by the standard method of Nehari manifold and compactness
lemma. Moreover, when (a′

1), (a3), (K), and certain restrictions on K(x) and a(x) are satis-
fied, they proved that system (1.2) possesses a bound state via the linking theorem. After
that some researchers focused on problem (1.2). Sun et al. in [19] generalized the existence
results of ground states to the asymptotically linear case. In [13], the authors dealt with
the equation system

⎧⎨
⎩–�u + V (x)u + K(x)φu = a(x)|u|p–1u, x ∈R

3,

–�φ = K(x)u2, x ∈R
3,

(1.3)

where 3 < p < 5, and they obtained a ground state of (1.3) by imposing some conditions
on the decay rate of the potentials. On the other hand, under suitable assumptions on the
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decay rate of the potentials, Cerami and Molle [6] proved the existence of bound states of
(1.3). Zhang et al. [22] considered system (1.3) with critical growth, namely

⎧⎨
⎩–�u + V (x)u + K(x)φu = u5, x ∈R

3,

–�φ = K(x)u2, x ∈R
3.

(1.4)

When V ∈ L 3
2 (R3), K ∈ L2(R3) are nonnegative functions, and |V | 3

2
+ |K |2 is suitably small,

they showed that (1.4) has a bound state via a linking theorem.
It seems that the existence of bound and ground states for problem (1.2) with p = 3,

namely system (SP), has not been studied. So in this paper we will fill this gap. Compared
with [8], the main difficulty is the lack of the higher-order term and the competing effect
of the nonlocal term with three times growth term. On the one hand, due to the lack of
the higher-order term, the standard method of Nehari manifold is invalid. Inspired by
[12], by restricting the functional in a set, this functional has a unique maximum point
along the nontrivial direction u in H1(R3). Then we use the one-to-one correspondence
of the functionals on the manifold and an open set of the unit sphere to establish the new
method of Nehari manifold. On the other hand, the competing effect of the nonlocal term
K(x)φu and three times growth term a(x)u3 makes some estimations and verifications
more complex.

Since we have no symmetry assumptions, similar to [8] we shall recover the compactness
of PS sequences by the problem at infinity:

–�u + u = a∞u3. (NSE)∞

In order to state the main results, we give some notations as follows. Denote by w the
unique radial solution of (NSE)∞, and set m∞ = 1

4‖w‖2, where ‖ · ‖ is the standard norm
of H1(R3).

In addition, when (a2) holds, the problem –�u + u = a(x)u3 possesses a ground state
wa, whose energy is ma = 1

4‖wa‖2 < m∞. We denote by S and S̄ the best constants for the
embeddings of H1(R3) and D1,2(R3) in L6(R3), respectively. Our results are as follows:

Theorem 1.1 Let (a1), (a2) and (K) hold. Furthermore, assume either

|K |22 <
(m∞ – ma)S̄2S4

4mam∞
(1.5)

or ∫
R3

K(x)φww2 dx <
∫
R3

(
a(x) – a∞

)
w4 dx, (1.6)

then system (SP) has a ground state.

Theorem 1.2 Let (a1), (a3) and (K) hold. In addition, assume

|K |22 <
(

infx∈R3 a(x)
a∞

–
1
2

)
S̄2S4

4m∞
, (1.7)

then the system (SP) has a bound state.
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The paper is organized as follows. In Sect. 2, we give some preliminaries. In Sect. 3,
we introduce the variational setting. In Sects. 4 and 5, we prove Theorems 1.1 and 1.2,
respectively.

2 Notations and preliminaries
In this paper we use the following notations:

H1(R3) is the Sobolev space with standard norm

‖u‖2 =
∫
R3

(|∇u|2 + u2)dx;

S1 = {u ∈ H1(R3) : ‖u‖2 = 1}; D1,2(R3) is the Sobolev space endowed with the scalar prod-
uct and norm

(u, v)D1,2 =
∫
R3

∇u · ∇v dx, ‖u‖2
D1,2 =

∫
R3

|∇u|2 dx.

The norm in Lr(R3) (1 ≤ r ≤ ∞) is denoted by | · |r ; S and S̄ are the best Sobolev constants
for the embeddings of H1(R3) and D1,2(R3) in L6(R3), respectively, namely

S = inf
u∈H1(R3)\{0}

‖u‖
|u|6 , S̄ = inf

u∈D1,2(R3)\{0}
‖u‖D1,2

|u|6 .

Without loss of generality, in the sequel, we assume that a∞ = 1.
System (SP) can be easily transformed into a Schrödinger equation with a nonlocal term.

Actually, for all u ∈ H1(R3), consider the linear functional Lu defined in D1,2(R3) by

Lu(v) =
∫
R3

K(x)u2v dx.

By Hölder and Sobolev inequalities, we have

∣∣Lu(v)
∣∣ ≤ |K |2|u|26|v|6 ≤ S̄–1|K |2|u|26‖v‖D1,2 . (2.1)

Hence, the Lax–Milgram theorem implies that there exists a unique φu ∈ D1,2(R3) such
that

(φu, v)D1,2 = Lu(v) =
∫
R3

K(x)u2v dx, ∀v ∈ D1,2(
R

3). (2.2)

Namely, φu is the unique solution of –�φ = K(x)u2, and

φu(x) =
1

4π

∫
R3

K(y)
|x – y|u2(y) dy.

Substituting φu into the first equation of (SP), we get

–�u + u + K(x)φuu = a(x)u3. (SP)′

By (2.1) and (2.2), we obtain

‖φu‖D1,2 = ‖Lu‖L(D1,2(R3),R) ≤ S̄–1S–2|K |2‖u‖2.
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Then∣∣∣∣
∫
R3

K(x)φuu2 dx
∣∣∣∣ ≤ S̄–2S–4|K |22‖u‖4. (2.3)

In addition, one easily has that the functional

I(u) =
1
2
‖u‖2 +

1
4

∫
R3

K(x)φuu2 dx –
1
4

∫
R3

a(x)u4 dx

is of class C1 and its critical points are solutions of (SP)′.
Define the operator Φ : H1(R3) → D1,2(R3) as

Φ(u) = φu.

Below we summarize some properties of Φ , which were proved in [6, 8].

Lemma 2.1
(1) Φ is continuous;
(2) Φ maps bounded sets into bounded sets;
(3) Φ(tu) = t2Φ(u) for all t ∈R;
(4) If un ⇀ u in H1(R3), then Φ(un) → Φ(u) in D1,2(R3), and

∫
R3

K(x)φun u2
n dx →

∫
R3

K(x)φuu2 dx,
∫
R3

K(x)φun unψ dx →
∫
R3

K(x)φuuψ dx,

for any ψ ∈ H1(R3).

3 Variational setting
In this section we describe the variational framework for our problem. Firstly we give the
Nehari manifold M corresponding to I :

M =
{

u ∈ H1(
R

3)\{0} :
〈
I ′(u), u

〉
= 0

}
,

where

〈
I ′(u), u

〉
= ‖u‖2 +

∫
R3

K(x)φuu2 dx –
∫
R3

a(x)u4 dx,

and the least energy on M is defined by c := infM I .

Lemma 3.1 Let (K), (a1), and either (a2) or (a3) hold. Then I is coercive on M.

Proof For all u ∈ M, we have

I(u) = I(u) –
1
4
〈
I ′(u), u

〉
=

1
4
‖u‖2. (3.1)

Hence I|M is coercive. �
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Next we introduce a set to construct the new method of Nehari manifold as in [21].
Define

Θ :=
{

u ∈ H1(
R

3) :
∫
R3

K(x)φuu2 dx <
∫
R3

a(x)u4 dx
}

.

We claim that

Θ �= ∅. (3.2)

We shall argue as in [21] to show (3.2), but we need some modifications since K ∈ L2(R3) in
this paper, which is different than L∞(R3) considered in [21]. Firstly, we need the following
inequality:

Proposition 3.1 (Hardy–Littlewood–Sobolev inequality; see [16]) Let s, r > 1, 0 < μ < 3
with 1

s + μ

3 + 1
r = 2, f ∈ Ls(R3), and h ∈ Lr(R3). There exists a sharp constant C(s,μ, r),

independent of f and h, such that

∫
R3

∫
R3

f (x)h(y)
|x – y|μ dy dx ≤ C(s,μ, r)|f |s|h|r .

Now we prove (3.2). In fact, let u0 ∈ C∞
0 (R3, [0, 1]) be such that u0 ≡ 1 in Br(0), u0 ≡ 0

in R
3 \ B2r(0), where r is to be determined. Then

∫
R3

K(x)φu0 u2
0 dx =

1
4π

∫
R3

∫
R3

K(x)K(y)u2
0(x)u2

0(y)
|x – y| dy dx ≤ C|K |22|u0|46.

Then∫
R3

K(x)φu0 u2
0 dx ≤ C1r2.

Moreover,
∫
R3

a(x)u4
0 dx ≥ inf

R3
a

∫
|x|≤r

dx = C2r3.

Hence we can choose r be so large that u0 ∈ Θ . Then (3.2) follows.
Set

h(t) := I(tu) =
t2

2
‖u‖2 +

t4

4

[∫
R3

K(x)φuu2 dx –
∫
R3

a(x)u4 dx
]

.

Lemma 3.2 Under the assumptions of Lemma 3.1, we have that:
(i) For all u ∈ Θ , there exists a unique tu > 0 such that h′(t) > 0 for 0 < t < tu, and

h′(t) < 0 for t > tu. Moreover, tuu ∈ M and I(tuu) = maxt>0 I(tu).
(ii) If u /∈ Θ , then tu /∈ M for any t > 0.

(iii) For each compact subset W of Θ ∩ S1, there exists CW > 0 such that tw ≤ CW for all
w ∈ W .

(iv) There exists ρ > 0 such that infSρ I > 0 and then c = infM I ≥ infSρ I > 0, where
Sρ = {u ∈ H1(R3) : ‖u‖2 = ρ}.

(v) ‖u‖2 ≥ 4c for all u ∈ M.
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Proof The proof is similar to that given in [21], and we state it for the reader’s convenience.
(i) For each u ∈ Θ , one easily has that h(t) > 0 when t is sufficiently small, and h(t) < 0

when t is large enough. Then h has a positive maximum point in (0,∞). Moreover, the
maximum point t satisfies

‖u‖2 = t2
[∫

R3
a(x)u4 dx –

∫
R3

K(x)φuu2 dx
]

. (3.3)

Then the maximum point is unique, and denoted by tu. Therefore, conclusion (i) follows.
(ii) We argue by contradiction. Assume that there exists t > 0 such that tu ∈ M. Then

〈I ′(tu), tu〉 = 0. So (3.3) holds. Then u ∈ Θ . This contradicts the fact that u /∈ Θ .
(iii) Suppose that there exist a compact subset W ⊂ Θ ∩ S1 and a sequence {wn} ⊂ W

such that twn → ∞. Assume w ∈ W is such that wn → w in H1(R3). Then one easily has
that ∫

R3
K(x)φwn w2

n –
∫
R3

a(x)w4
n →

∫
R3

K(x)φww2 –
∫
R3

a(x)w4 < 0.

So

I(twn wn)
t2
wn

=
1
2

+
t2
wn

4

[∫
R3

K(x)φwn w2
n –

∫
R3

a(x)w4
n

]
→ –∞.

However, by (3.1), we know that I(twn wn) ≥ 0. This is a contradiction.
(iv) By (2.3), one easily has that there exists ρ > 0 such that infSρ I > 0. For any u ∈ M,

there is t > 0 such that tu ∈ Sρ . Note that I(u) ≥ I(tu), then infSρ I ≤ infM I = c. Hence c > 0.
In addition, (v) easily follows from (3.1). This ends the proof. �

From Lemma 3.2(i), we define the mapping m̂ : Θ → M by m̂(u) = tuu. In addition, ∀v ∈
R

+u, we have m̂(v) = m̂(u). Let U := Θ ∩ S1. Now we easily infer that U is an open subset
of S1. Define m := m̂|U . Then m is a bijection from U to M. Moreover, as in the proof of
[20, Proposition 3.1], Lemma 3.2 implies

Lemma 3.3 Under the assumptions of Lemma 3.1, the mapping m is a homeomorphism
between U and M, and the inverse of m is given by m–1(u) = u

‖u‖ .

By Lemma 3.3, the least energy c has the following minimax characterization:

c := inf
u∈M

I(u) = inf
u∈U

max
t≥0

I(tu). (3.4)

Considering the functional Ψ : U →R given by

Ψ (u) := I
(
m(u)

)
,

and as in [20, Corollary 3.3], we deduce

Lemma 3.4 Under the assumptions of Lemma 3.1, the following results hold:
(1) If {wn} is a PS sequence for Ψ , then {m(wn)} is a PS sequence for I . If {un} ⊂ M is a

bounded PS sequence for I , then {m–1(un)} is a PS sequence for Ψ .
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(2) u is a critical point of Ψ if and only if m(u) is a nontrivial critical point of I .
Moreover, infM I = infU Ψ .

In order to restore the compactness for the PS sequence of (SP)′, we introduce two equa-
tions. If K(x) = 0, then (SP)′ turns out to be

–�u + u = a(x)u3, (NSE)

whose functional is

Ia(u) =
1
2
‖u‖2 –

1
4

∫
R3

a(x)u4 dx,

and the Nehari manifold is

Ma =
{

u ∈ H1(
R

3)\{0} :
〈
I ′

a(u), u
〉

= 0
}

.

When a(x) = a∞ = 1, (NSE) becomes

–�u + u = u3. (NSE)1

The functional of (NSE)1 is

I∞(u) = I1(u) =
1
2
‖u‖2 –

1
4

∫
R3

u4 dx,

and the Nehari manifold is

M∞ = M1 =
{

u ∈ H1(
R

3)\{0} :
〈
I ′

1(u), u
〉

= 0
}

.

Moreover, we define the least energy of (NSE) and (NSE)1 by ma := infMa Ia and m∞ =
m1 := infM1 I1, respectively. We recall some known results about (NSE) and (NSE)1; see
[8].

Proposition 3.2 Equation (NSE)1 has a positive ground state w ∈ H1(R3), radially sym-
metric about the origin, unique up to translations, decaying exponentially, together its
derivatives, as |x| → ∞.

Proposition 3.3 Let (a2) hold. Equation (NSE) has a positive ground state wa ∈ H1(R3).

From the above two propositions, we know that

ma = Ia(wa) =
1
4
‖wa‖2, m1 = I1(w) =

1
4
‖w‖2 =

1
4
|w|44. (3.5)

Next we give a compactness lemma, which can be deduced by the argument in [8,
Lemma 4.1] and Lemma 2.1.

Lemma 3.5 Let {un} be a bounded (PS)d sequence for I with d > 0, then replacing un, if
necessary, with a subsequence, there exist u ∈ H1(R3) with I ′(u) = 0, a number k ∈N∪ {0},
functions w1, w2, . . . , wk , and k sequences of points {yj

n} ⊂R
3, 1 ≤ j ≤ k, such that
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(i) |yj
n| → ∞, |yj

n – yi
n| → ∞ as n → ∞ if i �= j;

(ii) wj �= 0, and I ′∞(wj) = 0;
(iii) ‖un – u –

∑k
j=1 wj(· – yj

n)‖ → 0 as n → ∞;
(iv) I(un) = I(u) +

∑k
j=1 I∞(wj) + on(1).

Moreover, we agree that in the case k = 0 the above holds without wj.

As in the proof of Lemma 3.1, any (PS)d sequence of I is bounded in H1(R3). Then from
Lemma 3.5 we easily infer the following two propositions.

Proposition 3.4 Functional I satisfies the PS condition at any level d < m1.

Proposition 3.5 Let {un} be a (PS)m1 sequence. Then either {un} is relatively compact or
the statement of Lemma 3.5 holds with k = 1, u = 0, and w1 = w, where w is the ground state
of (NSE)1.

4 Existence of a ground state
In this section, we suppose that (a2) holds.

Lemma 4.1 Let (1.5) or (1.6) hold. Then c < m∞.

Proof First we assume that (1.5) holds.
Let wa be a ground state of (NSE). Then wa ∈ Ma and Ia(wa) = ma. By (1.5) and (2.3), we

have that
∫
R3

K(x)φwa w2
a dx ≤ S̄–2S–4|K |22‖wa‖4

= 4maS̄–2S–4|K |22‖wa‖2 < ‖wa‖2 =
∫
R3

a(x)w4
a dx.

Then wa ∈ Θ , and so there exists t > 0 such that twa ∈ M. Note that

t2 =
‖wa‖2∫

R3 a(x)w4
a dx –

∫
R3 K(x)φwa w2

a dx

≤ ‖wa‖2

‖wa‖2 – S̄–2S–4|K |22‖wa‖4
=

1
1 – S̄–2S–4|K |224ma

<
m1

ma
.

Hence,

c ≤ I(twa) =
1
4

t2‖wa‖2 = t2ma < m1.

Next we assume (1.6) holds.
Let w be the ground state of (NSE)1. By (1.6), we get w ∈ Θ . Then there exists t > 0 such

that tw ∈ M. First we show that t < 1. Indeed, if t ≥ 1, using ‖w‖2 = |w|44 we infer that

0 = t2‖w‖2 + t4
∫
R3

K(x)φww2 dx – t4
∫
R3

a(x)|w|4 dx

≤ t4
∫
R3

K(x)φww2 dx – t4
∫
R3

(
a(x) – 1

)|w|4 dx.
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This contradicts (1.6). So t < 1. Then

c ≤ I(tw) = I(tw) –
1
4
〈
I ′(tw), tw

〉
=

1
4

t2‖w‖2 = t2m1 < m1,

completing the proof. �

Proof of Theorem 1.1 Assume that wn ∈ U satisfies that Ψ (wn) → infU Ψ . By the Ekeland
variational principle, we may suppose that Ψ ′(wn) → 0. From Lemma 3.4 it follows that
I ′(un) → 0 and I(un) → c, where un = m(wn) ∈ M. Then by Lemma 4.1 and Proposition 3.4,
there exists u ∈ H1(R3) such that un → u in H1(R3). Then I(u) = c and I ′(u) = 0. This ends
the proof. �

5 Existence of a bound state
Throughout this section we suppose that (a3) holds. First we show that, under (a3), prob-
lem (SP)′ cannot be solved by minimization.

Lemma 5.1 c = m1 and c is not attained.

Proof First we show that c ≥ m1. For all u ∈ U , by the standard argument, there exists
t0 > 0 such that t0u ∈ M1. By K ≥ 0 and a(x) ≤ 1, we have

m1 ≤ I1(t0u) ≤ I(t0u) ≤ max
t>0

I(tu).

Using (3.4), we get m1 ≤ infu∈U maxt>0 I(tu) = c.
Below we shall show that c ≤ m∞. Indeed, set wn(x) = w(x – zn), where w the positive

solution centered at zero of (NSE)1, and |zn| → ∞ as n → ∞.
In fact, since wn ⇀ 0 in H1(R3), by Lemma 2.1(4) we have that

∫
R3

K(x)φwn w2
n dx → 0,

∫
R3

a(x)w4
n dx →

∫
R3

w4 dx, (5.1)

so for n large enough, we have

∫
R3

K(x)φwn w2
n dx <

∫
R3

a(x)w4
n dx,

and then

wn ∈ Θ . (5.2)

Considering un = tnwn ∈ M, we claim that

I(un) → m1 as n → ∞. (5.3)

Since tnwn ∈ M, we get

1
t2
n
‖wn‖2 +

∫
R3

K(x)φwn w2
n dx =

∫
R3

a(x)w4
n dx.
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By (5.1), we have

1
t2
n
‖w‖2 =

∫
R3

w4 dx + on(1).

Observe that

‖w‖2 =
∫
R3

w4 dx,

then we have tn = 1 + on(1), and, using (5.1) again, infer

I(un) = I(tnwn) → 1
4
‖w‖2 = m1.

Then (5.3) follows and so c ≤ m1. Hence, c = m1.
Finally, arguing by contradiction, we assume that there exists ū ∈ M such that I(ū) = c =

m1. By a standard argument, there exists ξ > 0 such that ξ ū ∈ M1, and it is easy to see that
ξ ≤ 1. Then

m1 ≤ I1(ξ ū) =
1
4
‖ξ ū‖2 ≤ 1

4
‖ū‖2 = I(ū) –

1
4
〈
I ′(ū), ū

〉
= c = m1.

Therefore, ξ = 1, ū ∈ M1 and I1(ū) = I(ū) = m1. Then

1
2
‖ū‖2 –

1
4

∫
R3

|ū|4 dx =
1
2
‖ū‖2 +

1
4

∫
R3

K(x)φūū2 dx –
1
4

∫
R3

a(x)|ū|4 dx.

Since K ≥ 0 and a(x) ≤ 1, we get

∫
R3

K(x)φūū2 dx = 0. (5.4)

Hence, by the uniqueness of the family realizing m1, we have

ū(·) = wz := w(· – z) > 0,

for some z ∈ R
3. Therefore,

∫
R3

K(x)φūū2 dx =
∫
R3

K(x)φwz w2
z dx > 0,

which contradicts (5.4). �

By the previous lemma, we can only hope to find critical points of I at a level higher than
m1. Similar to [8, Lemma 6.2], we have

Lemma 5.2 Functional I satisfies the (PS)d condition for all d ∈ (m1, 2m1).

Below we shall use the notion of a barycenter to build a suitable min–max level which
belongs to (m1, 2m1). Firstly we recall the definition of the barycenter of a function u ∈
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H1(R3)\{0} given in [7]. Setting

μ(u)(x) =
1

|B1(0)|
∫

B1(x)

∣∣u(y)
∣∣dy, μ(u) ∈ L∞(

R
3) and is continuous,

û(x) =
[
μ(u)(x) –

1
2

maxμ(u)(x)
]+

, û ∈ C0
(
R

3),

we define the barycenter β : H1(R3)\{0} → R
3 by

β(u) =
1

|û|1
∫
R3

xû(x) dx ∈R
3.

Since û has a compact support, β is well defined. Moreover, the following properties hold:

Lemma 5.3
(1) β is continuous in H1(R3)\{0}.
(2) If u is a radial function, β(u) = 0.
(3) For all t �= 0 and for all u ∈ H1(R3)\{0}, β(tu) = β(u).
(4) Given z ∈R

3 and setting uz(x) = u(x – z), β(uz) = β(u) + z.

Let us define

b0 := inf
{

I(u) : u ∈ M,β(u) = 0
}

.

By Lemmas 3.3 and 5.3(3), it is easy to see that

b0 := inf
{
Ψ (v) : v ∈ U ,β(v) = 0

}
. (5.5)

Lemma 5.4 b0 > c.

Proof Clearly, b0 ≥ c. Assume that b0 = c. By (5.5), there exists vn ∈ U such that β(vn) = 0,
and Ψ (vn) → b0 = c = m∞. By Lemma 3.4(2), Ψ (vn) → infU Ψ . By the Ekeland variational
principle, we may assume that Ψ ′(vn) → 0. Set un = m(vn) = tvn vn. Then I(un) → c = m∞,
I ′(un) → 0 and β(un) = 0 by Lemma 5.3(3). Then Proposition 3.5 and Lemma 5.1 yield

un(x) = w(x – zn) + on(1),

where |zn| → +∞ and w is the positive solution of (NSE)1. Then

β
(
un(x + zn)

)
= β(un) – zn = –zn.

However,

β
(
un(x + zn)

)
= β

(
w(x) + on(1)

)
= β

(
w(x)

)
= 0.

This is a contradiction since |zn| → +∞. �
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Now let us define the operator Γ : R3 → M as Γ [z](x) = tzw(x–z), where w is the positive
solution of (NSE)∞ and tz is chosen such that Γ [z] ∈ M. As (5.2), w(x – z) ∈ Θ for any
z ∈R

3. Then Γ is well defined. From Lemma 5.3 it follows that

β
(
Γ [z]

)
= β

(
tzw(x – z)

)
= β

(
w(x – z)

)
= z. (5.6)

Lemma 5.5 Assume that (1.7) holds. Then I(Γ [z]) < 2m1.

Proof Since Γ [z] ∈ M, we have

I
(
Γ [z]

)
=

1
4
∥∥Γ [z]

∥∥2 =
1
4

t2
z ‖wz‖2 =

1
4

t2
z ‖w‖2 = t2

z m1.

It suffices to show t2
z < 2. Note that

t2
z ‖wz‖2 + t4

z

∫
R3

K(x)φwz w2
z dx = t4

z

∫
R3

a(x)w4
z dx.

Then

t2
z =

‖wz‖2∫
R3 a(x)w4

z dx –
∫
R3 K(x)φwz w2

z dx

<
‖wz‖2

infx∈R3 a(x)‖wz‖2 – S̄–2S–4|K |22‖wz‖4

=
1

infx∈R3 a(x) – S̄–2S–4|K |224m1
< 2.

This completes the proof. �

Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2 Arguing as when deriving (5.3), we obtain lim|z|→+∞ I(Γ [z]) = m1.
Combining with Lemmas 5.4 and 5.1, there exists ρ > 0 such that

max
|z|=ρ

I
(
Γ [z]

)
< b0. (5.7)

Set

Q = Γ
(
B̄ρ(0)

)
, S =

{
u ∈ M : β(u) = 0

}
.

We claim that S and ∂Q link, that is,

(i) ∂Q ∩ S = ∅;

(ii) h(Q) ∩ S �= ∅, ∀h ∈H =
{

h ∈ C(Q, M) : h|∂Q = id
}

.
(5.8)

Firstly, we show (5.8)(i). Indeed, if u ∈ ∂Q, then u = Γ [z], |z| = ρ . By (5.6), we get β(u) =
β(Γ [z]) = z, and so u /∈ S. Next we show (5.8)(ii). Consider h ∈H and define

T : B̄ρ(0) →R
3, T(z) = β ◦ h ◦ Γ [z].
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This T is a continuous function. Moreover, for all |z| = ρ , Γ [z] ∈ ∂Q, we have h ◦ Γ [z] =
Γ [z]. Then T(z) = z. Brouwer fixed point theorem implies that there exists z ∈ Bρ(0) such
that T(z) = 0, and then h(Γ [z]) ∈ S. Thus h(Q) ∩ S �= ∅.

By (5.7), we get b0 = infS I > max∂Q I . Define

d := inf
h∈H

max
u∈Q

I
(
h(u)

)
.

By (5.8)(ii), d ≥ b0 > c = m1. Moreover, taking h = id and using Lemma 5.5, we have that
d < 2m1. By Lemma 5.2, the PS condition holds in (m1, 2m1). Then the linking theorem
[18, Theorem 8.4] implies that d is a critical value of I . This ends the proof. �
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