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Abstract
In this paper, we study a fractional Kirchhoff type equation with
Hardy–Littlewood–Sobolev critical exponent. By using variational methods, we obtain
the existence of mountain-pass type solution and negative energy solutions. Also, we
prove some further properties of solutions.
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1 Introduction
In this paper, we study the following fractional Kirchhoff type equation with Hardy–
Littlewood–Sobolev critical exponent:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(a + b
∫

Ω

∫

Ω

|u(x)–u(y)|2
|x–y|N+2α dx dy)(–�)αu

= (
∫

Ω

βF(u(y))+|u(y)|2∗
μ

|x–y|μ dy) × (βf (u) + 2∗
μ|u|2∗

μ–2u) + γ |u|q–2u in Ω ,

u ∈ Hα
0 (Ω),

(1.1)

where Ω ⊂ R
N (N ≥ 3) is a smooth bounded domain, a, b > 0 are constants, α ∈ (0, 1),

(–�)α is the fractional Laplace operator, μ ∈ (0, N), 2∗
μ = 2N–μ

N–2α
is the critical exponent of

the Hardy–Littlewood–Sobolev inequality, F is the primitive function of f , q ∈ (1, 2), β ,
γ > 0 are parameters.

The investigation of (1.1) is motivated by the following fractional Kirchhoff type equa-
tion:

⎧
⎨

⎩

(a + b
∫

Ω

∫

Ω

|u(x)–u(y)|2
|x–y|N+2α dx dy)(–�)αu = h(u) in Ω ,

u ∈ Hα
0 (Ω),

(1.2)

where h is a nonlinearity with subcritical growth, or involving the critical exponent. When
b = 0, problem (1.2) reduces to the standard fractional equation. The fractional equation
appears in various areas such as plasma physics, optimization, finance, free boundary ob-
stacle problems, population dynamics, and minimal surfaces. For more background, we
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refer to [4] and the references therein. In recent years, many papers have focused on frac-
tional problems on bounded or unbounded domains.

The Kirchhoff equation occurs in various branches of mathematical physics. For exam-
ple, it can be used to model suspension bridges. Also, it appears in other fields like biolog-
ical systems, such as population density. Because of the presence of the nonlocal term, the
problem is not a pointwise identity, which causes additional mathematical difficulties. In
[12], the authors established a stationary Dirichlet problem of Kirchhoff type and proved
the existence and asymptotic behavior to solutions. In [3], the authors extended the re-
sults in [12] to a more general case. In [11], the author obtained infinitely many solutions
to a critical Kirchhoff type fractional problem. There are also papers on problems in the
whole space. In [22], the authors obtained the existence and multiplicity of solutions to a
fractional Kirchhoff type eigenvalue problem. In [23], the authors studied a nonhomoge-
neous fractional p-Laplacian equation of Schrödinger–Kirchhoff type. In [17], the authors
considered ground states to a fractional Kirchhoff type problem with Sobolev critical ex-
ponent:

(

a + b
∫

RN

∣
∣(–�)

α
2 u

∣
∣2 dx

)

(–�)αu + V (x)u = f (u) in R
N , (1.3)

where N = 3 with α ∈ ( 3
4 , 1). In [29], we continued the studies in [17] and considered the

equation

(

1 + b
∫

R3

∫

R3

|u(x) – u(y)|2
|x – y|3+2α

dx dy
)

(–�)αu + u = βf (u) + u2∗
α–1 in R

3, (1.4)

where 2∗
α = 6

3–2α
is the Sobolev critical exponent. Under some conditions on b, β , f , we

obtained the existence of ground state solutions when α = 3
4 and the non-existence of non-

trivial solutions when α ∈ (0, 3
4 ]. All the critical problems mentioned above contain only

the Sobolev critical exponent. Also, when we consider the problem on a bounded domain,
we infer from [6] that the results may be quite different. Thus, it is natural to ask what
happens when we study the fractional Kirchhoff type equation with Hardy–Littlewood–
Sobolev critical exponent on a bounded domain?

The problem involving Hardy–Littlewood–Sobolev critical exponent is closely related
to the Choquard type equation, which has been well studied recently. The Choquard equa-
tion can be used to describe the quantum mechanics of a polaron at rest. Also, it is known
as the stationary Hartree equation, or the Schrödinger–Newton equation. In [15], Lieb
first proved the existence and uniqueness of radial ground state solutions to the following
equation:

–�u + u =
(∫

R3

|u(y)|p
|x – y|μ dy

)

|u|p–2u in R
3. (1.5)

Later, Lions [16] obtained the existence of infinitely many radial solutions. The authors
in [18, 19] studied the existence, qualitative properties, and decay asymptotics of ground
state solutions to a more general Choquard equation. For other related results, we refer the
readers to [1, 7, 20, 21] for the subcritical case. There are also papers studying Choquard
equations involving the Hardy–Littlewood–Sobolev critical exponent. In [13], the authors
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proved the existence and non-existence of solutions to a Brezis–Nirenberg type Choquard
equation. In [27], the authors studied multiple solutions for a nonhomogeneous Choquard
equation with Dirichlet boundary condition. In [30], we obtained multiplicity and concen-
tration behavior of positive solutions to a singularly perturbed Choquard problem with
critical growth.

In this paper, we study multiplicity of solutions to the fractional Dirichlet problem (1.1).
By using the Ekeland variational principle and the mountain pass theorem, we obtain non-
trivial solutions to (1.1) with positive or negative energy in a certain range of parameters.
Moreover, we show some further properties of the set of solutions. Our results are new
even in the case γ = 0. Recall that in [25], Servadei and Valdinoci first used the mountain
pass theorem to solve the fractional problem. In this paper, since problem (1.1) includes
the Kirchhoff type nonlocal term and the nonlocal critical term, it is not easy to check the
geometric structure of the functional associated with the equation, the boundedness and
convergence of the corresponding Palais–Smale sequence. Also, we have to distinguish be-
tween different solutions. Now we state the results. We first consider the case μ ∈ (0, 4α).
For this purpose, we assume f satisfies the following conditions:

(f1) f ∈ C(R,R) and limu→0
f (u)

u
N–μ

N
= limu→∞ f (u)

|u|2∗
μ–2u

= 0, where 2∗
μ = 2N–μ

N–2α
.

(f2) F(u) =
∫ u

0 f (s) ds ≥ 0 for u ∈ R. Moreover, there exists ξ > 0 such that F(ξ ) =
∫ ξ

0 f (s) ds > 0.
(f3) 1

2 f (u)u – F(u) ≥ 0 for u ∈ R, where F(u) =
∫ u

0 f (s) ds.

Theorem 1.1 Let μ ∈ (0, 4α), a, b, β > 0. When N ≥ 4, or N = 3 with α ∈ (0, 3
4 ], we assume

(f1)–(f3); when N = 3 with α ∈ ( 3
4 , 1), we assume (f1)–(f3) and limu→+∞ F(u)

u
4α–μ
3–2α

= +∞. Then

there exists γ1 > 0 such that, for γ ∈ (0,γ1), problem (1.1) has a negative energy solution
u1,γ and a mountain-pass type solution u2,γ with positive energy. Moreover,

(i) u1,γ → 0 in Hα
0 (Ω) as γ → 0;

(ii) u2,γ → u0 in Hα
0 (Ω) as γ → 0, where u0 is the nontrivial solution of (1.1) with γ = 0.

Remark 1.1 A typical example satisfying (f1)–(f3) is the function f (u) = |u|q–2u, where q ∈
(2, 2∗

μ), u ∈R.

Now we consider the case μ ≥ 4α. Define the best fractional Sobolev constant:

Sα,μ := inf
Dα,2(RN )\{0}

∫

RN
∫

RN
|u(x)–u(y)|2
|x–y|N+2α dx dy

(
∫

RN
∫

RN
|u(x)|2∗

μ |u(y)|2∗
μ

|x–y|μ dx dy)
1

2∗
μ

, (1.6)

where 2∗
μ = 2N–μ

N–2α
is the critical exponent for the Hardy–Littlewood–Sobolev inequality.

Theorem 1.2 Let N ≥ 3, μ = 4α, a > 0, b > 2
S2
α,μ

, β > 0. Assume that (f1)–(f2). Then there
exist β0, γ2 > 0 such that, for β > β0 and γ ∈ (0,γ2), problem (1.1) has a mountain-pass type
solution v0,γ with positive energy and two negative energy solutions v1,γ , v2,γ . Moreover,

(i) v0,γ → v0 in Hα
0 (Ω) and v1,γ → v1 in Hα

0 (Ω) as γ → 0, where v0 �= v1 are nontrivial
solutions of (1.1) with γ = 0;

(ii) v2,γ → 0 in Hα
0 (Ω) as γ → 0.
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Let

a(b) =
μ – 4α

N – 2α

( 2∗
μ

S2∗
μ

α,μ

) 1
2–2∗

μ

(2∗
μ – 1

b

) N–μ+2α
μ–4α

. (1.7)

Theorem 1.3 Let N ≥ 3, μ > 4α, b > 0, a > a(b), β > 0. Assume that (f1). Moreover, F(u) =
∫ u

0 f (s) ds ≥ 0 for u ∈ R. Then there exist b0, γ3 > 0 such that, for b ∈ (0, b0) and γ ∈ (0,γ3),
problem (1.1) has a mountain-pass type solution w0,γ with positive energy and two negative
energy solutions w1,γ , w2,γ . Moreover,

(i) w0,γ → w0 in Hα
0 (Ω) and w1,γ → w1 in Hα

0 (Ω) as γ → 0, where w0 �= w1 are
nontrivial solutions of (1.1) with γ = 0;

(ii) w2,γ → 0 in Hα
0 (Ω) as γ → 0.

2 Preliminary lemmas
In this section, we give some definitions and lemmas. Let α ∈ (0, 1). Define Hα

0 (Ω) =
{u ∈ Hα(RN ) : u(x) = 0 a.e. x ∈ R

N \ Ω}. For u ∈ Hα
0 (Ω), define the norm ‖u‖α =

(
∫

RN
∫

RN
|u(x)–u(y)|2
|x–y|N+2α dx dy) 1

2 . By [10], we get ‖u‖α = (
∫

R3 |(–�) α
2 u|2 dx) 1

2 . Then (Hα
0 (Ω),

‖ · ‖α) is the fractional Hilbert space. Define ‖u‖t = (
∫

Ω
|u|t dx) 1

t , where t ≥ 1. Let 2∗
α =

2N
N–2α

be the fractional Sobolev critical exponent. By [10, 24], the embedding Hα(RN ) ↪→
Lt(RN ) is continuous for t ∈ [2, 2∗

α], and is locally compact for t ∈ [2, 2∗
α). So the embed-

ding Hα(RN ) ↪→ L2∗
α (RN ) is not compact. In this case, we define the best fractional Sobolev

constant:

Sα := inf
u∈Dα,2(RN )\{0}

∫

RN
∫

RN
|u(x)–u(y)|2
|x–y|N+2α dx dy

(
∫

RN |u(x)|2∗
α dx)

2
2∗
α

. (2.1)

By [8, 26], we know that Sα can be attained by

Uε(x) = ε– N–2α
2

κ0

(μ2 + | x

εS
1

2α
α

|2) N–2α
2

, (2.2)

where ε > 0, κ0 ∈R \ {0}, μ > 0. Moreover,

‖Uε‖2
α =

∫

RN
|Uε|2∗

α dx = S
N
2α
α . (2.3)

Choose r0 > 0 such that B2r0 (0) ⊂ Ω . Define uε(x) = ψ(x)Uε(x), where ψ ∈ C∞
0 (B2r0 (0))

such that ψ(x) = 1 for |x| < r0, 0 ≤ ψ ≤ 1 and |∇ψ | ≤ 2. By [26], we get

‖uε‖2
α ≤ S

N
2α
α + O

(
εN–2α

)
. (2.4)

We introduce the following Hardy–Littlewood–Sobolev inequality, which leads to a new
type of critical problem.

Lemma 2.1 (Hardy–Littlewood–Sobolev inequality [14]) Let s, t > 1 and μ ∈ (0, N) with
1
s + 1

t + μ

N = 2. Let f ∈ Ls(RN ) and h ∈ Lt(RN ). Then there exists a constant C(N , s, t,μ)
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independent of f , h such that

∫

RN

∫

RN

f (x)h(y)
|x – y|μ dx dy ≤ C(N , s, t,μ)‖f ‖s‖h‖t .

If s = t = 2N
2N–μ

, then C(N , s, t,μ) = C(N ,μ) = π
μ
2

Γ ( N
2 – μ

2 )
Γ (N– μ

2 ) {
Γ ( N

2 )
Γ (N) }–1+ μ

N .

By Lemma 2.1, we get, for all u ∈ Dα,2(RN ),

(∫

R3

∫

R3

|u(x)|2∗
μ |u(y)|2∗

μ

|x – y|μ dx dy
) 1

2∗
μ ≤ [

C(N ,μ)
] 1

2∗
μ ‖u‖2

2∗
α
. (2.5)

Here 2∗
μ = 2N–μ

N–2α
is called the critical exponent for the Hardy–Littlewood–Sobolev inequal-

ity. In order to deal with the term (
∫

Ω

|u(y)|2∗
μ

|x–y|μ dy)|u|2∗
μ–2u, we define the constant Sα,μ in

(1.6). Since (2.5) holds, by the definitions of Sα,μ and Sα , we have the following result. The
proof can be found in [9].

Lemma 2.2 Sα,μ = Sα

[C(N ,μ)]
N–2α
2N–μ

. Moreover, the constant Sα,μ is achieved if and only if

u(x) = C
(

c
c2 + |x – d|2

) N–2α
2

,

where C > 0, d ∈ R
N , and c > 0.

We establish the following Lemmas 2.3–2.5, which is crucial for estimating upper
boundedness for the functional of (1.1).

Lemma 2.3 Let ε ∈ (0, r0

μS
1

2α
α

). Then there exists σ > 0 such that
∫

Ω
|uε|q dx ≥ σε

(N–2α)q
2 .

Proof By ε ∈ (0, r0

μS
1

2α
α

), we get μ2ε2 ≤ r2
0

S
1
α
α

. Then

∫

Ω

|uε|q dx ≥
∫

Br0 (0)
|Uε|q dx =

∫

Br0 (0)

κ
q
0 ε

(N–2α)q
2

(μ2ε2 + | x

S
1

2α
α

|2)
(N–2α)q

2
dx

≥ κ
q
0 ε

(N–2α)q
2

( 2r2
0

S
1
α
α

)
(N–2α)q

2

∫

Br0 (0)
dx.

So Lemma 2.3 holds. �

The relationship between Sα,μ and Sα is crucial for proving the following estimate.

Lemma 2.4

∫

Ω

∫

Ω

|uε(y)|2∗
μ |uε(x)|2∗

μ

|x – y|μ dx dy ≥ [
C(N ,μ)

] N
2α S

2N–μ
2α

α,μ – O
(
ε

2N–μ
2

)
. (2.6)
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Proof By a direct calculation,

∫

Ω

∫

Ω

|uε(y)|2∗
μ |uε(x)|2∗

μ

|x – y|μ dx dy

≥
∫

Br0 (0)

∫

Br0 (0)

|Uε(y)|2∗
μ |Uε(x)|2∗

μ

|x – y|μ dx dy

=
∫

RN

∫

RN

|Uε(y)|2∗
μ |Uε(x)|2∗

μ

|x – y|μ dx dy – 2
∫

RN \Br0 (0)

∫

Br0 (0)

|Uε(y)|2∗
μ |Uε(x)|2∗

μ

|x – y|μ dx dy

–
∫

RN \Br0 (0)

∫

RN \Br0 (0)

|Uε(y)|2∗
μ |Uε(x)|2∗

μ

|x – y|μ dx dy. (2.7)

By Lemma 2.2, we know that Sα,μ is attained by Uε . Together with ‖Uε‖2
α = S

N
2α
α and Sα,μ =

Sα

[C(N ,μ)]
N–2α
2N–μ

, we get

∫

RN

∫

RN

|Uε(y)|2∗
μ |Uε(x)|2∗

μ

|x – y|μ dx dy =
[
C(N ,μ)

] N
2α S

2N–μ
2α

α,μ . (2.8)

By Lemma 2.1,

∫

RN \Br0 (0)

∫

Br0 (0)

|Uε(y)|2∗
μ |Uε(x)|2∗

μ

|x – y|μ dx dy

≤
∫

RN \Br0 (0)

∫

Br0 (0)

Cε2N–μ

(ε2 + |x|2)
2N–μ

2 (ε2 + |y|2)
2N–μ

2 |x – y|μ
dx dy

≤ Cε2N–μ

(∫

RN \Br0 (0)

1
(ε2 + |y|2)N dy

) 2N–μ
2N

(∫

Br0 (0)

1
(ε2 + |x|2)N dx

) 2N–μ
2N

= O
(
ε

2N–μ
2

)
. (2.9)

Also,

∫

RN \Br0 (0)

∫

RN \Br0 (0)

|Uε(y)|2∗
μ |Uε(x)|2∗

μ

|x – y|μ dx dy

≤
∫

RN \Br0 (0)

∫

RN \Br0 (0)

Cε2N–μ

(ε2 + |x|2)
2N–μ

2 (ε2 + |y|2)
2N–μ

2 |x – y|μ
dx dy

≤ Cε2N–μ

(∫

RN \Br0 (0)

1
(ε2 + |y|2)N dy

) 2N–μ
2N

(∫

RN \Br0 (0)

1
(ε2 + |x|2)N dx

) 2N–μ
2N

= O
(
ε2N–μ

)
. (2.10)

By (2.7)–(2.10), we get (2.6). �

Lemma 2.5 Let β > 0, μ ∈ (0, 4α), and t > 0. When N ≥ 4, or N = 3 with α ∈ (0, 3
4 ], we

assume (f1)–(f3); when N = 3 with α ∈ ( 3
4 , 1), we assume (f1)–(f2) and limu→+∞ F(u)

u
4α–μ
3–2α

=
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+∞. Then there exists C0 > 0 such that, for all L > 0, there exists ε(t, L) > 0 such that, for
ε ∈ (0, ε(t, L)),

∫

Ω

∫

Ω

βF(tuε(y))|tuε(x)|2∗
μ

|x – y|μ dx dy ≥ C0t
2(N+2α–μ)

N–2α LεN–2α .

Proof When N ≥ 4, or N = 3 with α ∈ (0, 3
4 ], by (f3), we get F(u)

u2 is increasing for u > 0.
Since 4α–μ

N–2α
< 2 when N ≥ 4, or N = 3 with α ∈ (0, 3

4 ], by (f2), we get limu→+∞ F(u)

u
4α–μ
N–2α

= +∞.

So, for all L > 0, there exists RL > 0 such that F(u) ≥ L|u| 4α–μ
N–2α for u ≥ RL. Let ε(t, L) =

min{1, r0

μS
1

2α
α

, 1
2μ2 ( tκ0

RL
)

2
N–2α } and ε ∈ (0, ε(t, L)). Since uε(x) ≥ κ0ε

2α–N
2

(2μ2)
N–2α

2
for |x| ≤ μS

1
2α
α ε, we

obtain that

F(tuε) ≥ Lt
4α–μ
N–2α κ

4α–μ
N–2α

0 ε
μ–4α

2

(2μ2)
4α–μ

2
, |x| ≤ μS

1
2α
α ε.

Then, by (f2), we derive that there exist C′
0, C0 > 0 such that

∫

Ω

∫

Ω

βF(tuε(y))|tuε(x)|2∗
μ

|x – y|μ dx dy

≥
∫

B
μS

1
2α
α ε

(0)

∫

B
μS

1
2α
α ε

(0)

C′
0F(tuε(y))|tuε(x)|2∗

μ

|x|μ + |y|μ dx dy

≥ C′
0

2(μS
1

2α
α ε)μ

∫

B
μS

1
2α
α ε

(0)

∫

B
μS

1
2α
α ε

(0)
F
(
tuε(y)

)∣
∣tuε(x)

∣
∣2∗

μ dx dy

≥ C0t
2(N+2α–μ)

N–2α LεN–2α .

So Lemma 2.5 holds. �

Let H(u) = βF(u) + |u|2∗
μ and h(u) = ∂H(u)

∂u . Define the functional on Hα
0 (Ω) by

Iγ (u) =
a
2
‖u‖2

α +
b
4
‖u‖4

α –
1
2

∫

Ω

∫

Ω

H(u(y))H(u(x))
|x – y|μ dx dy –

γ

q

∫

Ω

|u|q dx. (2.11)

Then Iγ : Hα
0 (Ω) →R is of class C1 and critical points of Iγ are solutions of (1.1).

Similar to the well-known Brezis–Lieb lemma in [28], we have the following Brezis–Lieb
splitting.

Lemma 2.6 Assume that (f1). If un ⇀ u weakly in Hα
0 (Ω), let vn = un – u, we have

∫

Ω

∫

Ω

H(un(y))H(un(x))
|x – y|μ dx dy –

∫

Ω

∫

Ω

H(u(y))H(u(x))
|x – y|μ dx dy

=
∫

Ω

∫

Ω

|vn(y)|2∗
μ |vn(x)|2∗

μ

|x – y|μ dx dy + on(1), (2.12)
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and
∫

Ω

∫

Ω

H(un(y))h(un(x))un(x)
|x – y|μ dx dy –

∫

Ω

∫

Ω

H(u(y))h(u(x))u(x)
|x – y|μ dx dy

= 2∗
μ

∫

Ω

∫

Ω

|vn(y)|2∗
μ |vn(x)|2∗

μ

|x – y|μ + on(1). (2.13)

Proof By Lemmas 2.2 and 2.4 in [5], we can prove that

∫

Ω

∫

Ω

H(un(y))H(un(x))
|x – y|μ dx dy –

∫

Ω

∫

Ω

H(u(y))H(u(x))
|x – y|μ dx dy

=
∫

Ω

∫

Ω

H(vn(y))H(vn(x))
|x – y|μ dx dy + on(1). (2.14)

Also,

∫

Ω

∫

Ω

H(vn(y))h(vn(x))vn(x)
|x – y|μ dx dy + on(1)

=
∫

Ω

∫

Ω

H(un(y))h(un(x))un(x)
|x – y|μ dx dy –

∫

Ω

∫

Ω

H(u(y))h(u(x))u(x)
|x – y|μ dx dy. (2.15)

By Lemma 2.1,

∫

Ω

∫

Ω

|F(vn(y))||F(vn(x))|
|x – y|μ dx dy ≤ C(N ,μ)

∥
∥F(vn)

∥
∥2

2N
2N–μ

,

∫

Ω

∫

Ω

|F(vn(y))||vn(x)|2∗
μ

|x – y|μ dx dy ≤ C(N ,μ)
∥
∥F(vn)

∥
∥ 2N

2N–μ
‖|vn|2∗

μ‖ 2N
2N–μ

,

∫

Ω

∫

Ω

|F(vn(y))||f (vn(x))||vn(x)|
|x – y|μ dx dy ≤ C(N ,μ)

∥
∥F(vn)

∥
∥ 2N

2N–μ

∥
∥f (vn)vn

∥
∥ 2N

2N–μ
,

∫

Ω

∫

Ω

|vn(y)|2∗
μ |f (vn(x))vn(x)|
|x – y|μ dx dy ≤ C(N ,μ)‖|vn|2∗

μ‖ 2N
2N–μ

∥
∥f (vn)vn

∥
∥ 2N

2N–μ
. (2.16)

Since limn→∞ ‖vn‖t = 0 for all t ∈ (2, 2∗
α), by (f1), we get ‖F(vn)‖ 2N

2N–μ
= ‖f (vn)vn‖ 2N

2N–μ
=

on(1). Together with (2.14)–(2.16), we get the results. �

3 The case μ < 4α

In this section, we study (1.1) for the case μ < 4α and prove Theorem 1.1. Since μ < 4α,
we get 2∗

μ = 2N–μ

N–2α
> 2. So 22∗

μ > 4. Let

h(t) =
aS

N
2α
α

2
t2 +

bS
N
α
α

4
t4 –

[C(N ,μ)] N
2α S

2N–μ
2α

α,μ

2
t22∗

μ ,

where t > 0. By the structure of h, there exists T ∈ (0, +∞) such that h(T) = supt≥0 h(t)
and h′(T) = 0. Moreover, h′(t) > 0 for t ∈ (0, T) and h′(t) < 0 for t ∈ (T , +∞). Let λ1 =
infu∈Hα

0 (Ω)\{0}
‖u‖2

α∫

Ω |u|2 dx . Then

λ1

∫

Ω

|u|2 dx ≤ ‖u‖2
α , ∀u ∈ Hα

0 (Ω). (3.1)
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By the Sobolev embedding theorem, there exists Sq > 0 such that

(∫

Ω

|u|q dx
) 2

q
≤ ‖u‖2

α

Sq
, ∀u ∈ Hα

0 (Ω). (3.2)

Let η0 = a(2–q)
4q ( 4–q

2a )
2

2–q 1

S
q

2–q
q

. We establish the following local compactness result for Iγ ,

which plays an important role in applying the critical point theorems.

Lemma 3.1 Let β > 0, γ ≥ 0. Assume that (f1) and (f3). If {un} ⊂ Hα
0 (Ω) is a sequence such

that Iγ (un) → c ∈ (0, supt≥0 h(t) – η0γ
2

2–q ) and I ′
γ (un) → 0, then {un} converges strongly in

Hα
0 (Ω) up to a subsequence.

Proof By Iγ (un) → c, I ′
γ (un) → 0, (f3), and (3.2),

cγ + on(1) + on(1)‖un‖α

= Iγ (un) –
1
4
(
I ′
γ (un), un

)

=
a
4
‖un‖2

α +
1
2

∫

Ω

∫

Ω

H(un(y))( 1
2 h(un(x))un(x) – H(un(x)))

|x – y|μ dx dy

– γ

(
1
q

–
1
4

)∫

Ω

|un|q dx ≥ a
4
‖un‖2

α – γ

(
1
q

–
1
4

)‖un‖q
α

S
q
2
q

. (3.3)

So ‖un‖α is bounded. Assume that un ⇀ u weakly in Hα
0 (Ω). Let A = limn→∞ ‖un‖2

α . Define
the functionals Îγ , Ĩγ , Ĵ , J̃ on Hα

0 (Ω) by

Îγ (u) =
a
2
‖u‖2

α +
bA
4

‖u‖2
α –

γ

q

∫

Ω

|u|q dx –
1
2

∫

Ω

∫

Ω

H(u(y))H(u(x))
|x – y|μ dx dy,

Ĩγ (u) =
a
2
‖u‖2

α +
bA
2

‖u‖2
α –

γ

q

∫

Ω

|u|q dx –
1
2

∫

Ω

∫

Ω

H(u(y))H(u(x))
|x – y|μ dx dy,

Ĵ(u) =
a
2
‖u‖2

α +
bA
4

‖u‖2
α –

1
2

∫

Ω

∫

Ω

|u(y)|2∗
μ |u(x)|2∗

μ

|x – y|μ dx dy,

J̃(u) =
a
2
‖u‖2

α +
bA
2

‖u‖2
α –

1
2

∫

Ω

∫

Ω

|u(y)|2∗
μ |u(x)|2∗

μ

|x – y|μ dx dy.

By Iγ (un) → c, I ′
γ (un) → 0, we get Îγ (un) → c, Ĩ ′

γ (un) → 0. Then Ĩ ′
γ (u) = 0. Let vn = un – u.

By Lemma 2.6,

c – Îγ (u) = Îγ (un) – Îγ (u) + on(1) = Ĵ(vn) + on(1). (3.4)

Also,

on(1) =
(
Ĩ ′
γ (un), un

)
–

(
Ĩ ′
γ (u), u

)
=

(
J̃ ′(vn), vn

)
+ on(1). (3.5)
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By (2.1), (2.5), and (3.5),

a lim
n→∞‖vn‖2

α + b lim
n→∞‖vn‖4

α ≤ 2∗
μC(N ,μ)

S
2N–μ
N–2α
α

lim
n→∞‖vn‖22∗

μ
α . (3.6)

Assume that limn→∞ ‖vn‖2
α = l. If l > 0, by (3.6), we get

al + bl2 ≤ 2∗
μC(N ,μ)

S
2N–μ
N–2α
α

l2∗
μ . (3.7)

By (3.7) and Lemma 2.2, we have h′( l
1
2

S
N
4α
α

) ≤ 0. Then l
1
2

S
N
4α
α

≥ T . So, by (3.4)–(3.5) and

Lemma 2.2,

c = lim
n→∞

(

Ĵ(vn) –
1

22∗
μ

(
J̃ ′(vn), vn

)
)

+ Îγ (u)

≥ a(N + 2α – μ)
2(2N – μ)

lim
n→∞‖vn‖2

α +
b(4α – μ)
4(2N – μ)

lim
n→∞‖vn‖4

α + Îγ (u)

≥ a(N + 2α – μ)
2(2N – μ)

S
N
2α
α T2 +

b(4α – μ)
4(2N – μ)

S
N
α
α T4 + Îγ (u)

= h(T) –
1

22∗
μ

(
h′(T), T

)
+ Îγ (u) = sup

t≥0
h(t) + Îγ (u). (3.8)

Since Ĩ ′
γ (u) = 0, by (f3),

Îγ (u) = Îγ (u) –
1
4
(
Ĩ ′
γ (u), u

) ≥ a
4
‖u‖2

α – γ

(
1
q

–
1
4

)‖u‖q
α

S
q
2
q

≥ inf
t≥0

[
a
4

t2 – γ

(
1
q

–
1
4

)
1

S
q
2
q

tq
]

= –η0γ
2

2–q . (3.9)

By (3.8)–(3.9), we get a contradiction. So l = 0. By (2.1) and (2.5), we have

limn→∞
∫

Ω

∫

Ω

|vn(y)|2∗
μ |vn(x)|2∗

μ

|x–y|μ dx dy = 0. Then, by (3.5), we get un → uγ in Hα
0 (Ω). �

From Lemma 3.1, we know that it is crucial to prove the estimate of upper boundedness
for Iγ . Now we obtain the following result.

Lemma 3.2 Let β > 0. Assume that (f1)–(f3). Then there exists γ ′
1 > 0 such that

supt≥0 Iγ (tuε) < supt≥0 h(t) – η0γ
2

2–q for γ ∈ [0,γ ′
1).

Proof By (2.4) and Lemma 2.4, there exists ε1 ∈ (0, 1) such that ‖uε‖2
α ≤ 3S

N
2α
α

2 and
∫

Ω

∫

Ω

|uε(y)|2∗
μ |uε(x)|2∗

μ

|x–y|μ dx dy ≥ [C(N ,μ)]
N
2α S

2N–μ
2α

α,μ
2 for ε ∈ (0, ε1). Let ε ∈ (0, ε1). Then, by (f2),

there exist small t1 ∈ (0, 1) and large t2 > 1 independent of ε and γ such that
supt∈[0,t1]∪[t2,+∞) Iγ (tuε) ≤ 1

2 supt≥0 h(t). Let

y(t) =
at2

2
‖uε‖2

α +
bt4

4
‖uε‖4

α –
t22∗

μ

2

∫

Ω

∫

Ω

|uε(y)|2∗
μ |uε(x)|2∗

μ

|x – y|μ dx dy.
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By (2.4) and Lemma 2.4, there exists ε2 ∈ (0, ε1) such that, for ε ∈ (0, ε2),

max
t∈[t1,t2]

y(t) ≤ sup
t≥0

h(t) + CεN–2α + Cε
2N–μ

2 . (3.10)

By (3.10), Lemmas 2.3 and 2.5, there exists ε3 ∈ (0, ε2) such that, for ε ∈ (0, ε3),

max
t∈[t1,t2]

Iγ (tuε) < sup
t≥0

h(t) –
γ σ tq

1ε
(N–2α)q

2

q
. (3.11)

So supt≥0 Iγ (tuε) < supt≥0 h(t) for γ = 0. For γ > 0, we let ε = γ
1

(N–2α)(2–q) . Then

maxt∈[t1,t2] Iγ (tuε) < supt≥0 h(t) – σ tq
1γ

4–q
2(2–q)

q . Thus, there exists γ ′′
1 > 0 independent of t such

that maxt∈[t1,t2] Iγ (tuε) < supt≥0 h(t) – η0γ
2

2–q for γ ∈ (0,γ ′′
1 ). Recall that

supt∈[0,t1]∪[t2,+∞) Iγ (tuε) ≤ 1
2 supt≥0 h(t). Then there exists γ ′

1 ∈ (0,γ ′′
1 ) such that

supt≥0 Iγ (tuε) < supt≥0 h(t) – η0γ
2

2–q for γ ∈ (0,γ ′
1). �

Since Lemmas 3.1–3.2 hold, by using the Ekeland variational principle and the mountain
pass theorem, we prove that (1.1) has two different nontrivial solutions. Moreover, we
obtain some further properties of solutions.

Proof of Theorem 1.1 By (f1), Lemma 2.1, (2.1), and (3.1), there exists C1 > 0 such that

∫

Ω

∫

Ω

H(u(y))H(u(x))
|x – y|μ dx dy

≤ C1

(∫

Ω

|u|2 dx
) 2N–μ

N
+ C1

(∫

Ω

|u|2∗
α dx

) 2N–μ
N

≤ C1

λ
2N–μ

N
1

‖u‖
2(2N–μ)

N
α +

C1

S2∗
μ

α

‖u‖
2(2N–μ)

N–2α
α . (3.12)

By (3.2) and (3.12),

Iγ (u) ≥ a
2
‖u‖2

α –
C1

λ
2N–μ

N
1

‖u‖
2(2N–μ)

N
α –

C1

S2∗
μ

α

‖u‖
2(2N–μ)

N–2α
α –

γ

qS
q
2
q

‖u‖q
α . (3.13)

Let

L0 = min

{(
a

8C1

) N
2(N–μ)

λ

2N–μ
2(N–μ)
1 ,

(
a

8C1

) N–2α
2(N–μ+2α)

S
2N–μ

2(N–μ+2α)
α

}

.

Let γ ∈ (0, aqS
q
2
q

8 ( L0
2 )2–q). Choose ρ0 ∈ ( L0

2 , L0). Then, by (3.13), we get Iγ (u) ≥ a
8 ‖u‖2

α ≥ a
8 ρ2

0

for ‖u‖α = ρ0. Let γ ∈ (0, min{γ ′
1, aqS

q
2
q

8 ( L0
2 )2–q}) with γ ′

1 given in Lemma 3.2. Choose u0 ∈
Hα

0 (Ω)\{0}. By (f2), we have Iγ (tu0) ≤ at2

2 ‖u0‖2
α + bt4

4 ‖u0‖4
α – γ tq

q
∫

Ω
|u0|q dx. Then Iγ (tu0) <

0 for t > 0 sufficiently small. So inf‖u‖α≤ρ0 Iγ (u) < 0. By the Ekeland variational principle, we
derive that there exists a sequence {un} ⊂ Hα

0 (Ω) such that Iγ (un) → inf‖u‖α≤ρ0 Iγ (u) < 0
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and I ′
γ (un) → 0. By Lemma 3.1, there exists u1,γ ∈ Hα

0 (Ω) such that un → u1,γ in Hα
0 (Ω).

Then Iγ (u1,γ ) < 0, I ′
γ (u1,γ ) = 0. We note that

0 > Iγ (u1,γ ) –
1
4
(
I ′
γ (u1,γ ), u1,γ

)

≥ a
4
‖u1,γ ‖2

α – γ

(
1
q

–
1
4

)∫

Ω

|u1,γ |q dx ≥ a
4
‖u1,γ ‖2

α – γ

(
1
q

–
1
4

)‖u1,γ ‖q
α

S
q
2
q

,

from which we derive that ‖u1,γ ‖α → 0 as γ → 0.
By (f2), we get limt→+∞ Iγ (tu0) → –∞. Also, Iγ (0) = 0. By the mountain pass theorem in

[2], there exists a sequence {un} ⊂ Hα
0 (Ω) such that Iγ (un) → cγ and I ′

γ (un) → 0, where
cγ = infg∈Gγ max0≤t≤1 Iγ (g(t)) with Gγ = {g ∈ C([0, 1], Hα

0 (Ω)) : g(0) = 0, Iγ (g(1)) < 0}. Re-
call that cγ ≥ a

8 ρ2
0 . By the definition of cγ and Lemma 3.2, we get cγ ≤ supt≥0 Iγ (tuε) <

supt≥0 h(t) – η0γ
2

2–q . By Lemma 3.1, there exists u2,γ ∈ Hα
0 (Ω) such that un → u2,γ in

Hα
0 (Ω). So Iγ (u2,γ ) = cγ ≥ a

8 ρ2
0 and I ′

γ (u2,γ ) = 0.
Let γ ≥ 0. For all g ∈ G0, we have g ∈ Gγ . Then cγ ≤ maxt∈[0,1] Iγ (g(t)) ≤ maxt∈[0,1] I0(g(t))

for all g ∈ G0, from which we derive that cγ ≤ c0. Then Iγ (u2,γ ) = cγ ∈ [ a
8 ρ2

0 , c0], I ′
γ (u2,γ ) =

0. By (3.3), we know that ‖u2,γ ‖α is bounded. Then limγ→0 I0(u2,γ ) = limγ→0 Iγ (u2,γ ) ∈
[ a

8 ρ2
0 , c0], limγ→0 I ′

0(u2,γ ) = 0. By Lemma 3.2, we have c0 < supt≥0 h(t). Then, by Lemma 3.1,
we get u2,γ → u0 as γ → 0, I0(u0) ∈ [ a

8 ρ2
0 , c0] and I ′

0(u0) = 0. �

4 The case μ = 4α and b > 2
S2
α,μ

In this section, we study (1.1) for the case μ = 4α and prove Theorem 1.2. Since μ = 4α,
we have 2∗

μ = 2N–μ

N–2α
= 2. By (1.6),

b‖u‖4
α – 2

∫

Ω

∫

Ω

|u(y)|2|u(x)|2
|x – y|4α

dx dy ≥
(

b –
2

S2
α,μ

)

‖u‖4
α . (4.1)

We first establish the following compactness result for Iγ .

Lemma 4.1 Let β > 0, γ ≥ 0. Assume that (f1). If {un} ⊂ Hα
0 (Ω) is a sequence such that

Iγ (un) → c and I ′
γ (un) → 0, then {un} converges strongly in Hα

0 (Ω) up to a subsequence.

Proof By (f1), for all δ > 0, there exists Cδ > 0 such that |F(u)| ≤ δ|u|2∗
μ + Cδ|u| 2N–μ

N for
u ∈ R. Then by (2.1), (3.1), and Lemma 2.1, there exists C2 > 0 such that

∣
∣
∣
∣

∫

Ω

∫

Ω

β2F(u(y))F(u(x)) + 2βF(u(y))|u(x)|2∗
μ

|x – y|μ dx dy
∣
∣
∣
∣

≤ β2C(N ,μ)
∥
∥F(u)

∥
∥2

2N
2N–μ

+ 2βC(N ,μ)
∥
∥F(u)

∥
∥ 2N

2N–μ
‖|u|2∗

μ‖ 2N
2N–μ

≤ C2β
2
[

δ2
(∫

Ω

|u|2∗
α dx

) 2N–μ
N

+ C2
δ

(∫

Ω

|u|2 dx
) 2N–μ

N
]

+ C2β

[

δ

(∫

Ω

|u|2∗
α dx

) 2N–μ
N

+ Cδ

(∫

Ω

|u|2 dx
) 2N–μ

2N
(∫

Ω

|u|2∗
α dx

) 2N–μ
2N

]
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≤ C2β
2
(

δ2

S
2N–μ
N–2α
α

‖u‖
2(2N–μ)

N–2α
α +

C2
δ

λ
2N–μ

N
1

‖u‖
2(2N–μ)

N
α

)

+ C2β

[
δ

S
2N–μ
N–2α
α

‖u‖
2(2N–μ)

N–2α
α +

Cδ

S
2N–μ

2(N–2α)
α λ

2N–μ
2N

1

‖u‖
2N–μ
N–2α

+ 2N–μ
N

α

]

. (4.2)

Since μ = 4α, by (3.2) and (4.1)–(4.2),

Iγ (u) ≥ a
2
‖u‖2

α +
1
4

(

b –
2

S2
α,μ

)

‖u‖4
α – C2β

2
(

δ2

S2
α

‖u‖4
α +

C2
δ

λ
2(N–2α)

N
1

‖u‖
4(N–2α)

N
α

)

– C2β

[
δ

S2
α

‖u‖4
α +

Cδ

Sαλ
N–2α

N
1

‖u‖2+ 2(N–2α)
N

α

]

–
γ

qS
q
2
q

‖u‖q
α . (4.3)

By choosing δ > 0 sufficiently small, we get Iγ (u) → +∞ as ‖u‖α → ∞. Since Iγ (un) →
c, we obtain that ‖un‖α is bounded. Assume that un ⇀ u weakly in Hα

0 (Ω). Let A =
limn→∞ ‖un‖2

α . Define the functionals Ĩγ , J̃ on Hα
0 (Ω) by

Ĩγ (u) =
a
2
‖u‖2

α +
bA
2

‖u‖2
α –

γ

q

∫

Ω

|u|q dx –
1
2

∫

Ω

∫

Ω

H(u(y))H(u(x))
|x – y|4α

dx dy,

J̃(u) =
a
2
‖u‖2

α +
bA
2

‖u‖2
α –

1
2

∫

Ω

∫

Ω

|u(y)|2|u(x)|2
|x – y|4α

dx dy.

By I ′
γ (un) → 0, we get Ĩ ′

γ (un) → 0. Then Ĩ ′
γ (u) = 0. Let vn = un – u. By (4.1) and Lemma 2.6,

on(1) =
(
J̃ ′(vn), vn

) ≥ a‖vn‖2
α + b‖vn‖4

α – 2
∫

Ω

∫

Ω

|vn(y)|2|vn(x)|2
|x – y|4α

dx dy

≥ a‖vn‖2
α +

(

b –
2

S2
α,μ

)

‖vn‖4
α . (4.4)

So un → u in Hα
0 (Ω). �

Now we use Lemma 4.1 to prove Theorem 1.2.

Proof of Theorem 1.2 Choose r > 0 sufficiently small such that B2r(0) ⊂ Ω . Define wr ∈
C∞

0 (B2r(0)) \ {0} such that wr(x) = ξ for |x| ≤ r, wr(x) ≥ 0 for |x| ≤ 2r, and wr(x) = 0 for
|x| ≥ 2r. Then wr ∈ Hα

0 (Ω). Moreover, we have F(wr) = F(ξ ) > 0 for |x| ≤ r. By (f2),

Iγ (wr) ≤ I0(wr) ≤ a
2
‖wr‖2

α +
b
4
‖wr‖4

α –
∫

Br(0)

∫

Br(0)

βF(wr(y))|wr(x)|2∗
μ

|x – y|μ dx dy. (4.5)

Then there exists β0 > 0 such that Iγ (wr) < 0 for β > β0. Let β > β0. By choosing δ > 0
sufficiently small in (4.3), we derive that

Iγ (u) ≥ a
2
‖u‖2

α –
C2C2

δ β
2

λ
2(N–2α)

N
1

‖u‖
4(N–2α)

N
α –

C2Cδβ

Sαλ
N–2α

N
1

‖u‖2+ 2(N–2α)
N

α –
γ

qS
q
2
q

‖u‖q
α . (4.6)
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Let

L1 = min

{

‖wr‖α ,
(

aλ
2(N–2α)

N
1

8C2C2
δ β

2

) N
2(N–4α)

,
(

aSαλ
2(N–2α)

2N
1

8C2Cδβ

) N
2(N–2α)

}

.

Let γ ∈ (0, aqS
q
2
q

8 ( L1
2 )2–q). Choose � ∈ ( L1

2 , L1). By (4.6), we get Iγ (u) ≥ a
8 ‖u‖2

α = a
8 �2 for

‖u‖α = �. Also, Iγ (0) = 0. By the mountain pass theorem in [2], there exists a sequence
{un} ⊂ Hα

0 (Ω) such that Iγ (un) → c′
γ and I ′

γ (un) → 0, where c′
γ = infg∈Gγ max0≤t≤1 Iγ (g(t))

with Gγ = {g ∈ C([0, 1], Hα
0 (Ω)) : g(0) = 0, Iγ (g(1)) < 0}. Moreover, c′

γ ≥ a
8 �2. By Lemma 4.1,

there exists v0,γ ∈ Hα
0 (Ω) such that un → v0,γ in Hα

0 (Ω). Then Iγ (v0,γ ) = c′
γ ≥ a

8 �2 and
I ′
γ (v0,γ ) = 0. By the proof of Theorem 1.1, we get c′

γ ≤ c′
0. Similar to (4.2), we can derive

from (f1) that, for all δ > 0, there exists Cδ > 0 such that, for all u ∈ Hα
0 (Ω),

∣
∣
∣
∣

∫

Ω

∫

Ω

β2F(u(y))f (u(x))u(x) + β(2∗
μF(u(y)) + f (u(y))u(y))|u(x)|2∗

μ

|x – y|μ dx dy
∣
∣
∣
∣

≤ Cβ2(δ2‖u‖
2(2N–μ)

N–2α
α + C2

δ ‖u‖
2(2N–μ)

N
α

)
+ Cβ

(
δ‖u‖

2(2N–μ)
N–2α

α + Cδ‖u‖
2N–μ
N–2α

+ 2N–μ
N

α

)
. (4.7)

Since I ′
γ (v0,γ ) = 0, by (3.2), (4.1), and (4.7),

a‖v0,γ ‖2
α +

(

b –
2

S2
α,μ

)

‖v0,γ ‖4
α –

γ

S
q
2
q

‖v0,γ ‖q
α

≤ Cβ2(δ2‖v0,γ ‖4
α + C2

δ ‖v0,γ ‖
4(N–2α)

N
α

)
+ Cβ

(
δ‖v0,γ ‖4

α + Cδ‖v0,γ ‖2+ 2(N–2α)
N

α

)
. (4.8)

By choosing δ > 0 sufficiently small, we derive that ‖v0,γ ‖α is bounded. Then we have
limγ→0 I0(v0,γ ) ∈ [ a

8 �2, c′
0] and limγ→0 I ′

0(v0,γ ) = 0. By Lemma 4.1, we get v0,γ → v0 as
γ → 0, I0(v0) ∈ [ a

8 �2, c′
0] and I ′

0(v0) = 0.
Recall that Iγ (wr) ≤ I0(wr) < 0 with ‖wr‖α > � and Iγ (u) → +∞ as ‖u‖α → ∞. Then

there exists R > 0 independent of γ such that � < ‖wr‖α < R and Iγ (u) > 0 for ‖u‖α = R.
Let m1,γ = inf�≤‖u‖α≤R Iγ (u). Then m1,γ ≤ Iγ (wr) ≤ I0(wr) < 0. By the Ekeland variational
principle, there exists a sequence {un} ⊂ H1

0 (Ω) such that � < ‖un‖α < R, Iγ (un) → m1,γ ,
and I ′

γ (un) → 0. By Lemma 4.1, there exists v1,γ ∈ H1
0 (Ω) such that un → v1,γ in H1

0 (Ω).
Then � < ‖v1,γ ‖α < R, Iγ (v1,γ ) = m1,γ ≤ I0(wr) < 0, and I ′

γ (v1,γ ) = 0.
By (f2), we get

Iγ (twr) ≤ at2

2
‖wr‖2

α +
bt4

4
‖wr‖4

α –
γ tq

q

∫

Ω

|wr|q dx.

Then there exists small tr > 0 such that ‖trwr‖α < � and Iγ (trwr) < 0. Let m2,γ =
inf‖u‖α≤� Iγ (u). Then m2,γ < 0. By the Ekeland variational principle, we derive that there
exists a sequence {un} ⊂ H1

0 (Ω) such that ‖un‖α < �, Iγ (un) → m2,γ , and I ′
γ (un) → 0. By

Lemma 4.1, there exists v2,γ ∈ H1
0 (Ω) such that un → v2,γ in H1

0 (Ω). Then ‖v2,γ ‖α < �,
Iγ (v2,γ ) = m2,γ < 0, and I ′

γ (v2,γ ) = 0.
Assume that there exists vγ ∈ Hα

0 (Ω) such that ‖vγ ‖α is bounded, Iγ (vγ ) < 0 and
I ′
γ (vγ ) = 0. Then I0(vγ ) ≤ oγ (1) and I ′

0(vγ ) = oγ (1). By Lemma 4.1, we get vγ → v in
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Hα
0 (Ω) as γ → 0. Thus, by � < ‖v1,γ ‖α < R, Iγ (v1,γ ) ≤ I0(wr) < 0, and I ′

γ (v1,γ ) = 0, we ob-
tain that v1,γ → v1 in Hα

0 (Ω) as γ → 0, I0(v1) < 0 and I ′
0(v1) = 0. Also, by ‖v2,γ ‖α < �,

Iγ (v2,γ ) = m2,γ < 0, and I ′
γ (v2,γ ) = 0, we obtain that v2,γ → v2 in Hα

0 (Ω) as γ → 0 with
‖v2‖α ≤ �, I0(v2) ≤ 0, and I ′

0(v2) = 0. By (4.6), we get I0(u) ≥ a
4 ‖u‖2

α – γ

qS
q
2
q

‖u‖q
α for ‖u‖α ≤ �.

Then v2 = 0. �

5 The case μ > 4α

In this section, we study (1.1) for the case μ > 4α and prove Theorem 1.3. Since μ > 4α,
we have 2∗

μ = 2N–μ

N–2α
< 2. Then 22∗

μ < 4. We first establish the following compactness result
for Iγ .

Lemma 5.1 Let b > 0, a > a(b), γ ≥ 0 with a(b) given in (1.7). Assume that (f1). If {un} ⊂
Hα

0 (Ω) is a sequence such that Iγ (un) → c and I ′
γ (un) → 0, then {un} converges strongly in

Hα
0 (Ω) up to a subsequence.

Proof In this case, we know that (3.12) holds. By (3.2) and (3.12),

Iγ (u) ≥ a
2
‖u‖2

α +
b
4
‖u‖4

α –
C1

λ
2N–μ

N
1

‖u‖
2(2N–μ)

N
α –

C1

S2∗
μ

α

‖u‖22∗
μ

α –
γ

qS
q
2
q

‖u‖q
α . (5.1)

By (5.1), we get Iγ (u) → +∞ as ‖u‖α → ∞. Then ‖un‖α is bounded. We assume that
un ⇀ u weakly in Hα

0 (Ω). Let A = limn→∞ ‖un‖2
α . Define the functionals Ĩγ , J̃ on Hα

0 (Ω) by

Ĩγ (u) =
a
2
‖u‖2

α +
bA
2

‖u‖2
α –

γ

q

∫

Ω

|u|q dx –
1
2

∫

Ω

∫

Ω

H(u(y))H(u(x))
|x – y|μ dx dy,

J̃(u) =
a
2
‖u‖2

α +
bA
2

‖u‖2
α –

1
2

∫

Ω

∫

Ω

|u(y)|2∗
μ |u(x)|2∗

μ

|x – y|μ dx dy.

By I ′
γ (un) → 0, we get Ĩ ′

γ (un) → 0. Then Ĩ ′
γ (u) = 0. Together with Lemma 2.6, we have

(J̃ ′(vn), vn) = on(1). Here vn = un – u. Then, by (1.6),

a lim
n→∞‖vn‖2

α + b lim
n→∞‖vn‖4

α ≤ 2∗
μ

S
2N–μ
N–2α
α,μ

lim
n→∞‖vn‖22∗

μ
α . (5.2)

By (5.2) and Young’s inequality,

a lim
n→∞‖vn‖2

α + b lim
n→∞‖vn‖4

α ≤ a(b) lim
n→∞‖vn‖2

α + b lim
n→∞‖vn‖4

α . (5.3)

Then un → u in Hα
0 (Ω). �

Now we use Lemma 5.1 to prove Theorem 1.3.

Proof of Theorem 1.3 Let w0 ∈ Hα
0 (Ω) \ {0}. By (f2),

Iγ (tw0) ≤ at2

2
‖w0‖2

α +
bt4

4
‖w0‖4

α –
t22∗

μ

2

∫

RN

∫

RN

|w0(y)|2∗
μ |w0(x)|2∗

μ

|x – y|μ dx dy.
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Obviously, there exists large t0 > 0 such that

at2
0

2
‖w0‖2

α –
t

22∗
μ

0
2

∫

RN

∫

RN

|w0(y)|2∗
μ |w0(x)|2∗

μ

|x – y|μ dx dy < 0.

Choose b0 > 0 sufficiently small such that Iγ (t0w0) < 0 for b ∈ (0, b0). Let b ∈ (0, b0) and
a > a(b). Recall that (5.1) holds. Let

L2 = min

{

‖t0w0‖α ,
(

aλ
2N–μ

N
1

8C1

) N
2(N–μ)

,
(

aS
2∗
μ

α

8C1

) N–2α
2(N–μ+2α)

}

.

Let γ ∈ (0, aqS
q
2
q

8 ( L2
2 )2–q). Choose � ∈ ( L2

2 , L2). By (5.1), we get Iγ (u) ≥ a
8 ‖u‖2

α = a
8 �2 for

‖u‖α = �. Also, Iγ (0) = 0. By the mountain pass theorem in [2], there exists a sequence
{un} ⊂ Hα

0 (Ω) such that Iγ (un) → c′′
γ > 0 and I ′

γ (un) → 0. Then, by Lemma 5.1, there exists
w0,γ ∈ Hα

0 (Ω) such that un → w0,γ in Hα
0 (Ω), Iγ (w0,γ ) = c′′

γ > 0, and I ′
γ (w0,γ ) = 0. Similar

to the proof of Theorem 1.2, we can derive that w0,γ → w0 in Hα
0 (Ω) as γ → 0, where

w0 is a nontrivial solution of (1.1) with γ = 0 and I0(w0) > 0. Recall that Iγ (u) → +∞ as
‖u‖α → ∞. Then there exists R > 0 such that � < ‖t0w0‖α < R and Iγ (u) > 0 for ‖u‖α = R.
We note that Iγ (u) ≥ a

8 �2 for ‖u‖α = �, Iγ (t0w0) < 0, and Iγ (tw0) < 0 for t > 0 sufficiently
small. Similar to the proof of Theorem 1.2, we can derive that inf�≤‖u‖α≤R Iγ (u) is attained
by a function w1,γ . Moreover, Iγ (w1,γ ) < 0, I ′

γ (w1,γ ) = 0, and w1,γ → w1 in Hα
0 (Ω) as γ → 0,

where w1 is a nontrivial solution of (1.1) with γ = 0 and I0(w1) < 0. Also, inf‖u‖α≤� Iγ (u) is
attained by a function w2,γ . Moreover, Iγ (w2,γ ) < 0, I ′

γ (w2,γ ) = 0, and w2,γ → 0 in Hα
0 (Ω) as

γ → 0. �
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