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Abstract
In the paper, we prove results on existence and uniqueness of weak solutions for
closed Dirichlet problem for a transonic flow model, and interior regularity results are
also given in the important special case of the Tricomi equation. The method
employed consists in variants of the a-b-c integral method of Friedrichs in Sobolev
spaces with suitable weights. Particular attention is paid to the problem of attaining
results with a minimum of restrictions on the boundary geometry and the form of the
type change function.
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1 Introduction and results
In this paper, we consider the following initial boundary value problem:

⎧
⎨

⎩

Lu ≡ A(1 – e–2By)uxx(x, y) + uyy(x, y) = f (x, y) in Ω ,

u = 0 on ∂Ω
(1)

with f (x, y) is a known function, and A, B are constants, A > 0, B > 0, u(x, y) is an unknown
function. Let K(y) = A(1 – e–2By), Ω is a bounded, open, and connected subset of R2 with
piecewise C1 boundary. We assume throughout that

Ω± := Ω ∩ R2
± = Ø (2)

so that (1) is of mixed elliptic-hyperbolic type. Such an equation is of Tricomi type and it
is important in the problem of transonic fluid flow (see [18]).

Such a boundary value problem will be called closed in the sense that the boundary
condition (2) is imposed on the entire boundary as opposed to an open problem, in which
(2) is imposed on a proper subset Γ ⊂ ∂Ω . Both kinds of problems are interesting for
transonic flow. Much more is known about open problems, beginning with the work of
Tricomi [19].

On the other hand, much less is known about closed problems. Under mild assumptions
on the function K and the geometry of the boundary, one has a uniqueness theorem for
regular solutions to the Tricomi problem. Such uniqueness theorems have been proven
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by a variety of methods, including energy integrals as in [16] and maximum principles as
in [2, 10]. In order to prove well-posedness, one must choose some reasonable function
space that admits a singularity strong enough to allow for existence.

For the interest in closed problems for mixed-type equations, the literature essentially
contains only two results on well-posedness. The first, due to Morawetz [11], concerns
the Dirichlet problem for the Tricomi equation, and the second due to Pilant [15] con-
cerns the natural analogue of the Neumann problem (conormal boundary conditions) for
the Lavrentiev–Bitsadze equation. Inspired by [5–8, 13, 17, 20], we consider the closed
Dirichlet problem in the Tomotika–Tamada model (1).

The existence and uniqueness results of Sect. 2 for the Dirichlet problem do not require
some smoothness assumptions on the boundary, no geometric assumptions on the ge-
ometry of the elliptic boundary an arbitrarily small distance away from the parabolic line
need to be made. Similar considerations have been exploited for the Tricomi problem and
will hold for other problems with an open boundary condition, such as the Frankl prob-
lem. We also note that the arguments used in obtaining the interior regularity results also
apply for problems with open boundary conditions as well. The paper is organized as fol-
lows. In Sect. 1, we investigate the introduction, notions, and results. In Sect. 2, we show
the existence and uniqueness of a weak solution to a problem with Dirichlet conditions.
In Sect. 3, we show the regularity of the weak solution.

We define L2(Ω ; |K |–1) for the given C1(R2) function K(x, y) in the same way as (see [5])

L2(Ω ; |K |–1) :=
{

f ∈ L2(Ω) : |K |–1/2f ∈ L2(Ω)
}

equipped with its norm

‖f ‖L2(Ω ;|K |–1) =
(∫

Ω

|K |–1f 2 dx dy
)1/2

(3)

which is the dual space to the weighted space L2(Ω ; |K |) defined as the equivalence classes
of square-integrable functions with respect to the measure |K |dx dy; that is, with finite
norm

‖f ‖L2(Ω ;|K |) =
(∫

Ω

|K |f 2 dx dy
)1/2

. (4)

One has the obvious chain of inclusions

L2(Ω ; |K |–1) ⊂ L2(Ω) ⊂ L2(Ω ; |K |), (5)

where the inclusion maps are continuous and injective.
We define H1

0 (Ω ; K) as the closure of C∞
0 (Ω) (smooth functions with compact support

in Ω with respect to the weighted Sobolev norm):

‖u‖H1(Ω ;|K |) :=
(∫

Ω

(|K |u2
x + u2

y + u2)dx dy
)1/2

. (6)
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Since u ∈ H1(Ω ; |K |) vanishes weakly on the entire boundary, one has a Poincaré inequal-
ity: there exists CP = CP(Ω , K)

‖u‖2
L2(Ω) ≤ CP

∫

Ω

(|K |u2
x + u2

y
)

dx dy; u ∈ H1(Ω ; |K |). (7)

An equivalent norm on H1
0 (Ω ; K) is thus given by

‖u‖H1
0 (Ω ;K ) :=

(∫

Ω

(|K |u2
x + u2

y
)

dx dy
)1/2

. (8)

We denote by H–1(Ω ; K) the dual space to H1
0 (Ω ; K) equipped with its norm [1]

‖u‖H–1(Ω ;K ) := sup
0 	=φ∈C∞

0 (Ω)

|〈u,φ〉|
‖φ‖H1

0 (Ω ;K )
, (9)

where 〈·, ·〉 is the duality bracket and one has the generalized Schwarz inequality

∣
∣〈u,φ〉∣∣ ≤ ‖u‖H–1(Ω ;K )‖φ‖H1

0 (Ω ;K ); u ∈ H–1(Ω ; K),φ ∈ H1
0 (Ω ; K). (10)

One clearly has a rigged triple of Hilbert spaces

H1
0 (Ω ; K) ⊂ L2(Ω) ⊂ H–1(Ω ; K), (11)

where the scalar product (on L2, for example) will be denoted by (·, ·)L2(Ω).
It is routine to check that the second-order operator L in (1) is formally self-adjoint

when acting on distributions D(Ω) and gives rise to a unique continuous and self-adjoint
extension

L : H1
0 (Ω ; K) −→ H–1(Ω ; K). (12)

Now, we give the definition and the main theorem in the paper.

Definition 1 We say Ω is star-shaped with respect to the vector field of a given (Lipschitz)
continuous vector field V = (V1(x, y), V2(x, y)); that is, for every (x0, y0) ∈ Ω , (the closure
of Ω) one has Ft(x0, y0) ∈ Ω for each t ∈ [0, +∞] where Ft(x0, y0) represents the time-t
flow of (x0, y0) in the direction of V .

If Ω is star-shaped with respect to the flow of V , then Ω is simply connected and will
have a V -starlike boundary in the sense that V (x, y) · ν ≥ 0, where ν is the unit exterior
normal (see Lemma 2.2 of [6]).

Definition 2 We say that u ∈ H1
0 (Ω ; K) is a weak solution of the Dirichlet problem (1)

with K(y) = A(1 – e–2By) if there exists a sequence un ∈ C∞
0 (Ω) such that

‖un – u‖H1
0 (Ω ;K ) → 0 and ‖Lun – f ‖H–1(Ω ;K ) → 0 for n → +∞ (13)



Haixia and Wei Boundary Value Problems        (2019) 2019:127 Page 4 of 10

or, equivalently,

〈Lu,ϕ〉 = –
∫

Ω

(Kuxϕx + uyϕy) dx dy = 〈f ,ϕ〉, ϕ ∈ H1
0 (Ω , K), (14)

where 〈·, ·〉 is the duality pairing between H–1(Ω ; K) and H1
0 (Ω ; K), L is the continuous

extension defined in (12), and the relevant norms are defined in (8) and (9).

Theorem 1 Let Ω be a bounded mixed domain with piecewise C1 boundary and parabolic
segment CO with O = 0 and 2 supΩ+ e2By < 3 + 2 infΩ+ e2By. Assume that Ω is star-shaped
with respect to the vector field V = (b0x, – e2By–1

B ) with

b0 =

⎧
⎨

⎩

– 1
2 + ε + 2 supΩ+ e2By Ω+,

5
2 + ε + 2 supΩ– e2By Ω–

(15)

for some ε. Then, for each f ∈ L2(Ω ; |K |–1), there exists a unique weak solution u ∈
H1

0 (Ω ; K) in the sense of Definition 1 to the Dirichlet problem (1).

Theorem 2 Let Ω be a mixed domain and f ∈ L2(Ω). If u ∈ H1(Ω , K) is a weak solution
to the equation Lu = f , then u ∈ H1

loc(Ω).

In the following sections, we will prove the results on existence, uniqueness, and interior
regularity by the a-b-c integral method in Sobolev spaces with suitable weights.

2 Existence and uniqueness of weak solution
Lemma 1 Under the hypotheses of Theorem 1, one has the a priori estimate. Then Ω is
admissible, that is, there exists a positive constant C1 = C1(Ω , K) such that

‖u‖L2(Ω ;|K |) ≤ C1‖Lu‖H–1(Ω ;K ); u ∈ C∞
0 (Ω). (16)

Proof Define Mv = av + bvx + cvy, where (a, b, c) = (– 1
4 , b0x, e2By–1

B ). We claim that for every
u ∈ C∞

0 (Ω), there exists v ∈ C∞(Ω) ∩ C0(Ω̄\{0, 0}) solving

⎧
⎨

⎩

Mv = u in Ω ,

v = 0 on ∂Ω\{0, 0};
(17)

furthermore,
∫

Ω
(|K |v2

x + v2
y) dx dy < +∞. In fact, parameterizing the integral curve of (b, c)

by γ (t) = (x(t), y(t)) = (x0eb0t , – ln[1–e2t (1–e–2By0 )]
2B ) for (x0, y0) ∈ ∂Ω and t ∈ (–∞, 0] and by the

assumption that Ω is star-shaped, the method of characteristic gives the unique C∞(Ω) ∩
C0(Ω̄\{0, 0}) solution of (17)

v
(
x(t), y(t)

)
= e–at

∫ t

0
easu

(
x(s), y(s)

)
ds (18)

along each flow line. The unique singularity point is (0, 0). Since u is with compact support,
there is a constant ε > 0 such that the infimum distance from the points of supp u to the
boundary of Ω is denoted by dist(supp u, ∂Ω) > ε. Denote by Bε(O) the disk with radius ε
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with center O, then Bε(O) ∩ supp u = ∅. For each (x, y) ∈ Bε(O) ∩Ω , we can re-initialize the
Cauchy problem at time t = T < 0 by starting from points (xT , yT ) on ∂Bε ∩Ω , then v(x, y) =
v(xT , yT )e 1

4 (t–T). Since v ∈ C1 on Ω , the variation in v(xT , yT ) is bounded for (xT , yT ) on the
initial data surface, v satisfies (18).

We proceed to estimate the expression (v, Lu)L2(Ω).

(v, Lu)L2(Ω) =
∫

Ω

div
(
v(Kux, uy)

)
– ∇v · (Kux, uy) dx dy

= –
∫

Ω

vxK(av + bvx + cvy)x + vy(av + bvx + cvy)y +
∫

∇Ω

v(Kux, uy) · �n ds

=
1
2

∫

Ω

[(
–2aK – bxK + bKx + (Kc)y

)
v2

x + 2(–Kcx – by)vxvy

+ (–2a + bx – cy)v2
y + v2La

]
dx dy

+
1
2

∫

∂Ω

[
2v(Kux, uy) –

(
Kv2

x + v2
y
)
(b, c) – v2(Kax, ay)

]�n ds, (19)

where �n is the unit exterior normal vector while ds is the arc length element.
Using the smoothness and compact support of u, the continuity of v, Ω is star-shaped

with V , the boundary integrals vanish. Notice the value of (a, b, c).

–2aK – bxK + bKx + (Kc)y =
K
2

– b0K + 2K + 2e2ByK =
(

5
2

– b0 + 2e2By
)

K , (20)

–Kcx – by = 0, (21)

–2a + bx – cy =
1
2

+ b0 – 2e2By. (22)

On the elliptic region Ω+, K > 0, and

5
2

– b0 + 2e2By =
5
2

–
(

–
1
2

+ ε + 2 sup
Ω+

e2By
)

+ 2e2By = 3 – ε – 2 sup
Ω+

e2By + 2e2By

= 3 – ε –
(

3 + 2 inf
Ω+

e2By – ε̄
)

+ 2e2By > ε̄ – ε + 2e2By – 2 inf
Ω+

e2By, (23)

where ε̄ = 3 + 2 infΩ+ e2By – 2 supΩ+ e2By

1
2

+ b0 – 2e2By =
1
2

–
1
2

+ ε + 2 sup
Ω+

e2By – 2e2By > ε. (24)

On the hyperbolic region Ω–, K < 0 and

–
5
2

+ b0 – 2e2By = –
5
2

+
5
2

+ ε + 2 sup
Ω–

e2By – 2e2By > ε, (25)

1
2

+ b0 – 2e2By =
1
2

+
5
2

+ ε + 2 sup
Ω–

e2By – 2e2By > 3 + ε. (26)

Choose ε0 > 0 such that ε̄ – ε + 2e2By – 2 infΩ+ e2By > ε0. So that

(v, Lu)L2(Ω) ≥ ε0

∫

Ω

(|K |v2
x + v2

y
)

dx dy = ε0‖v‖H1
0 (Ω ;K ). (27)



Haixia and Wei Boundary Value Problems        (2019) 2019:127 Page 6 of 10

On the other hand, by the generalized Schwarz inequality,

(v, Lu)L2(Ω) ≤ ‖v‖H1
0 (Ω ;K )‖Lu‖H–1(Ω ;K ). (28)

Using the Cauchy–Schwarz inequality and Poincaré inequality, we have

‖u‖2
L2(Ω ;|K |) = ‖Mv‖2

L2(Ω ;|K |) =
∫

Ω

|K |(av + bvx + cvy)2 dx dy

≤
∫

Ω

(|K |v2
x + v2

y
)

dx dy = C‖v‖H1
0 (Ω ;K ). (29)

Combining (27)–(29) gives the desired estimate

‖u‖L2(Ω ;|K |) ≤ C‖Lu‖H–1(Ω ;K ). (30)

This competes the proof of this lemma. �

Proof of Theorem 1 Define a linear functional Jf for ϕ ∈ C∞
0 (Ω) by the formula Jf (Lϕ) =

(f ,ϕ)L2(Ω), and the estimate together with the Cauchy–Schwarz inequality yields

∣
∣Jf (Lϕ)

∣
∣ ≤ ‖f ‖L2(Ω ;|K |–1)‖ϕ‖L2(Ω ;|K |) ≤ C1‖f ‖L2(Ω ;|K |–1)‖Lϕ‖H–1(Ω ;K ). (31)

Hence Jf is bounded on the subspace V of H–1(Ω ; K) of elements of the form Lϕ with
ϕ ∈ C∞

0 (Ω). By the Hahn–Banach theorem, Jf extends to the closure of V in H–1(Ω ; K) in
a bounded way. Extension by zero on the orthogonal complement of V̄ gives a bounded
linear functional on all of H–1(Ω ; K), and so, by the Riesz representation theorem, there
exists u ∈ H1

0 (Ω ; K) such that

〈u, Lϕ〉 = (f ,ϕ)L2(Ω), ϕ ∈ H1
0 (Ω ; K); Lϕ ∈ H–1(Ω ; K), (32)

where L is the self-adjoint extension defined in (12). This distributional solution is a weak
solution in the sense of Definition 2. In fact, given a sequence un ∈ C∞

0 (Ω) that un → u in

H1
0 (Ω ; K), the continuity property (12) shows that fn := Lun

H–1(Ω ,K )−→ f̃ . One also has

〈un, Lϕ〉 = (fn,ϕ)L2(Ω). (33)

Taking the difference between (32) and (33) and passing to the limit shows that f̃ = f ,
and hence (13) holds.

For the uniqueness, we use estimate (16). In fact, for fixed f , let u, v ∈ H1
0 (Ω ; K) be two

weak solutions which approximate sequences {un} and {vn} satisfying (13). From the lin-

earity of L and (16), one has that un – vn
L2(Ω ,K )−→ 0 by the injectivity of the first inclusion in

(5) and the Poincaré inequality (7). Thus u = v in H1
0 (Ω ; K). �

3 Regularity of the weak solution
Lemma 2 Assume that u is a weak solution to (1). Define E :=

∫

Ω
(|K |u2

x + u2
y) dx dy < +∞,

F :=
∫

Ω
f 2 dx dy < +∞. If u is smooth enough, then for each compact subdomain G ⊂ Ω ,
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there exists a constant C = C(K , G) such that

∫

G
u2

x dx dy ≤ C(E + F). (34)

Proof Pick a smooth cutoff function ζ ∈ C∞
0 (Ω) such that 0 ≤ ζ ≤ 1 and ζ ≡ 1 on G. One

merely computes by a sequence of integrations by parts, which will need to be justified
later. Starting from

AB
∫

Ω

e–2Byζu2
x dx dy =

∫

Ω

K ′(y)ζu2
x dx dy =

∫

Ω

(Kζ )yu2
x dx dy –

∫

Ω

Kζyu2
x dx dy, (35)

we find there exists a positive number ε0 such that

2AB
∫

Ω

e–2Byζu2
x dx dy ≥ ε0

∫

G
u2

x dx dy. (36)

On the other hand,

∫

Ω

(Kζ )yu2
x dx dy –

∫

Ω

Kζyu2
x dx dy

= –
∫

Ω

Kζyu2
x dx dy –

∫

Ω

2Kζuxuxy dx dy

≤ C1E + 2
∫

Ω

(Kζux)xuy dx dy ≤ C2E + 2
∫

Ω

Kζuxxuy dx dy

= C2E + 2
∫

Ω

ζ (f – uyy)uy dx dy ≤ C3(E + F) – 2
∫

Ω

ζuyyuy dx dy

= C3(E + F) –
∫

Ω

ζ
(
u2

y
)

y dx dy

≤ C4(E + F). (37)

Thus
∫

G
u2

x dx dy ≤ C(E + F). (38)

Mollification η ∈ C∞
0 (R) such that 0 ≤ η ≤ 1,

∫

R η(t) dt = 1 for ε > 0, define ηε(t) =
ε–1η( t

ε
) so that ηε ∈ C∞

0 (B(0; ε)) and
∫

R ηε(t) dt = 1. Given any u ∈ L1
loc(Ω), measurable

and locally integrable with respect to Lebesgue measure, define

uε(x, y) :=
∫

R
ηε(x – t)u(t, y) dt =

∫

B(0;ε)
ηε(t)u(x – t, y) dt, (39)

where we extend u by 0 outside of Ω . �

Define I(y) = {x ∈ R | (x, y) ∈ Ω}, Iε(y) = {x ∈ I(y) | x ± ε ∈ I(y)}.

Lemma 3 (see [4]) Let u ∈ L1
loc(Ω), then one has, for almost every y ∈ π2(Ω) := {y : ∃x ∈

R, (x, y) ∈ Ω},
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(i) uε(·, y) ∈ C∞(Iε(y)) and for each k ∈ N , Dk
xuε(x, y) =

∫

I(y) Dkηε(x – t)u(x, t) dt for
∀x ∈ Iε(y);

(ii) uε(·, y) −→ u(·, y) almost everywhere on I(y) as ε −→ 0;
(iii) If u(·, y) ∈ C0(I(y)), then uε(·, y) −→ u(·, y) uniformly on compact subsets of I(y);
(iv) If 1 ≤ p < ∞ and u ∈ Lp

loc(I(y)), then uε(·, y) −→ u(·, y) in Lp
loc(I(y)).

Moreover, let u ∈ L2(Ω). Then one has:
(v) uε ∈ L2(Ω) and uε −→ u in L2(Ω);

(vi) Dk
xJε : L2(I(y)) −→ L2(I(y)) is bounded for every k ∈ N , where Jεu := uε ;

(vii) Dk
xJε : L2(Ω) −→ L2(Ω) is bounded for every k ∈ N ;

(viii) For every g ∈ L2(Ω), ϕ ∈ C∞
0 (Ω), one has

(
e–2Byg

)

ε
= e–2Bygε , (40)

Dx(ϕε) = (Dxϕ)ε , Dy(ϕε) = (Dyϕ)ε , (41)
∫

Ω

gϕε dx dy =
∫

Ω

gεϕ dx dy. (42)

Lemma 4 Let u ∈ H1(Ω ; K) be a weak solution to (1) with f ∈ L2(Ω). Then uε ∈ H2(Ω) is
a weak solution to the equation

Luε = fε , (43)

where fε = Jε f is the mollification in x of f .

Proof If u ∈ H1(Ω ; K), then u, |K |1/2ux and uy ∈ L2(Ω), and by Lemma 3, we have uε ∈
L2(Ω) and Dk

xuε ∈ L2(Ω) for each k ≥ 1. As for Dyuε , since

∫

Ω

uεDyϕ dx dy = –
∫

Ω

(uε)yϕ dx dy = –
∫

Ω

(uy)εϕ dx dy ∀ϕ ∈ C∞
0 (Ω) (44)

and (uy)ε ∈ L2(Ω), therefore (uε)y = (uy)ε ∈ L2(Ω).
Next we claim that if u ∈ L2(Ω) solves (1) in the sense of distributions, then uε solves

(43) in the sense of distributions. Indeed, starting from

∫

Ω

u
(
(Kϕx)x + ϕyy

)
dx dy =

∫

Ω

f dx dy, ϕ ∈ C∞
0 (Ω), (45)

take ε > 0 small enough so that the support of ϕε inside Ω , apply (44) to ϕε , and use
Lemma 3 to find

∫

Ω

fεϕ dx dy =
∫

Ω

u(Kϕεx)x + (ϕε)yy dx dy =
∫

Ω

uε(Kϕxx + ϕyy) dx dy, (46)

which gives the claim.
Rewriting (46) in the form

∫

Ω

uεϕyy dx dy =
∫

Ω

(
fε – K(uε)xx

)
ϕ dx dy, ϕ ∈ C∞

0 (Ω) (47)
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and noticing fε – K(uε)x, we know that the weak derivative D2
yuε exists and belongs to

L2(Ω). Since DxDyuε = Dx(Dyuε) and Dyuε ∈ L2(Ω), then by Lemma 3, we know DxDyuε ∈
L2(Ω). Hence we have u ∈ H2(Ω), which completes the proof. �

Proof of Theorem 2 By Lemma 3, we have

∫

Ω

ζ (uε)2
x dx dy ≤ C

∫

Ω

(|K |(uε)2
x + (uε)2

y + f 2
ε

)
dx dy, (48)

where u ∈ L2(Ω), then Lemma 3 and applying Fatou’s lemma gives the needed estimate

∫

Ω

ζu2
x dx dy ≤ C

∫

Ω

(|K |u2
x + u2

y + f 2)dx dy, (49)

and the theorem follows. �

We conclude the results on existence, uniqueness, and regularity of weak solutions for
closed Dirichlet problem. One can generalize Theorems 1 and 2 to include more general
type change functions K(y) provided that K is sufficiently smooth.
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