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Abstract
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1 Introduction
The initial boundary value problem of an electrorheological fluids equation with orien-
tated convection term

ut = div
(
a(x, t)|∇u|p(x,t)–2∇u

)
+ �f (x, t) · ∇uq, (x, t) ∈ QT = Ω × (0, T), (1.1)

u(x, 0) = u0(x), x ∈ Ω , (1.2)

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (1.3)

is studied in this paper, where 1 < p(x, t) ∈ C(QT ), q > 0, a(x, t) ∈ C1(QT ), �f = {f i(x, t)},
f i(x, t) ∈ C1(QT ), and Ω ⊂R

N is a bounded domain with a smooth boundary ∂Ω .
When p(x, t) > 1 is a measurable function on QT , equation (1.1) arises in electrorheologi-

cal fluids theory [1]. If �f (x, t) = 0, a(x, t) = 1 for all (x, t) ∈ QT , the existence and uniqueness
results of equation (1.1) have been obtained in [2–6] etc. If p(x, t) = p > 1 is a constant,
a(x, t) = 1 and �f (x, t) = 0, equation (1.1) is well known as non-Newtonian fluid equation
and has been studied by many mathematicians, one can refer to [7–15] and the references
therein. From these papers, we know that the uniqueness and the stability of weak solu-
tions can be proved if the Dirichlet boundary value condition (1.3) is imposed. In recent
years, the equations with the type

ut = div
(
a(x, t)|∇u|p(x,t)–2∇u

)
+ f (x, t, u,∇u), (x, t) ∈ QT (1.4)
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have drawn wide public attention [16–23] etc. When p(x, t) = p > 1 is a constant,
f (x, t, u,∇u) is a linear function, the well-posedness problem of equation (1.4) was studied
in [24–26]. In addition, the non-Newtonian polytropic filtration equation with orientated
convection

ut = div
(∣∣∇um∣∣p–2∇um)

+ �b(x) · ∇uq, x ∈R
N , t > 0,

was studied in [27], where m > 0, p > 2 and �b = {bi(x)}, bi(x) ∈ C1(R)N . The author has
been interested in the stability of weak solutions to equation (1.4) for a long time. When
a(x, t) = a(x), a(x) > 0 in Ω and

a(x) = 0, x ∈ ∂Ω , (1.5)

some progresses have been made in [22, 23]. If a(x, t) = a(x), p(x, t) = p, the stability of
weak solutions to equation (1.1) has been studied in [28, 29]. We have found that condi-
tion (1.5) may replace the usual Dirichlet boundary value condition (1.3) for some special
f (x, t, u,∇u), the stability of solutions can be established without any boundary value con-
dition (1.3), provided that there are some other restrictions on f (x, t, u,∇u).

In this paper, we first generalize the results contained in [15, 28, 29] to equation (1.1),
since there is time variable t in the exponents, there are some essential difficulties that
should be overcome. Secondly, we will used some ideas [3, 4, 30] to prove the uniqueness
of weak solution. Thirdly, the large time behavior of weak solutions is studied free from
the limitations of the boundary value condition.

We denote that

p+ = max
(x,t)∈QT

p(x, t), p– = min
(x,t)∈QT

p(x, t),

assume that p– > 1, and the constants c appearing in different places represent different
constants, a(x, t) is a nonnegative function in C1(QT ), and for every t ∈ [0, T],

a(x, t) = 0, x ∈ ∂Ω and a(x, t) > 0, x ∈ Ω . (1.6)

We give the basic definitions and the main results now.

Definition 1.1 If a nonnegative function u(x, t) satisfies

u ∈ L∞(QT ), ut ∈ Lp+ ′(
0, T ; W –1,p+ ′

(Ω)
)
, a(x, t)|∇u|p(x,t) ∈ L∞(

0, T ; L1(Ω)
)
,

and for any ϕ(x, t) ∈ C1
0(QT ),

∫∫

QT

[
∂u
∂t

ϕ + a(x, t)|∇u|p(x,t)–2∇u · ∇ϕ

]
dx dt

+
N∑

i=1

∫∫

QT

uq[f i
xi

(x, t)ϕ + f i(x, t)ϕxi

]
dx dt

= 0,
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then we say u(x, t) is a solution of equation (1.1) with the initial value (1.2) which is satisfied
in the sense

lim
t→0

∫

Ω

u(x, t)φ(x) dx =
∫

Ω

u0(x)φ(x) dx (1.7)

for any φ(x) ∈ C∞
0 (Ω).

Here, p′
+ = p+

p+–1 , bi
xi

= ∂bi(x)
∂xi

, gxi = ∂g
∂xi

as usual, i = 1, 2, . . . , N . In this paper, the existence
of the nonnegative solution is proved.

Theorem 1.2 If p– > 1, 1 ≤ q < p+, a(x, t) ≥ 0 satisfies (1.6),

0 ≤ u0 ∈ L∞(Ω), a(x, 0)|∇u0|p(x,0) ∈ L1(Ω), i = 1, 2, . . . , N , (1.8)

then equation (1.1) with initial value (1.2) has a nonnegative weak solution u.

If
∫
Ω

a(x, t)– 1
p(x,t)–1 dx < ∞ for any t ∈ [0, T], similar as the proof of Theorem 1.1 in [12],

the weak solution u in Theorem 1.2 satisfies
∫

Ω

|∇u|dx

=
∫

{x∈Ω :a(x,t)
1

p(x,t)–1 |∇u|≤1}
|∇u|dx +

∫

{x∈Ω :a(x,t)
1

p(x,t)–1 |∇u|>1}
|∇u|dx

≤
∫

Ω

a(x, t)– 1
p(x,t)–1 dx +

∫

Ω

a(x, t)|∇u|p(x,t) dx

≤ c. (1.9)

Then the boundary value condition (1.3) is valid in the sense of the trace. However, in gen-
eral, u(x, t) is in W 1,p(x,t)

loc (Ω) and cannot be defined the trace on the boundary. Accordingly,
instead of considering the boundary value condition itself, we would pay a close attention
to finding some other conditions to replace the boundary value condition and prove the
corresponding stability of weak solutions (or uniqueness of weak solution).

Theorem 1.3 Let q ≥ 1, a(x, t) ≥ 0 satisfy (1.6), p(x, t) ≥ p– > 1, u(x, t) and v(x, t) be two
nonnegative weak solutions of equation (1.1) with the initial values u0(x) and v0(x). If

∣
∣f i(x, t)

∣
∣ ≥ ca(x, t), i = 1, 2, . . . , N , t ∈ [0, T], (1.10)

∫

Ω

a(x, t)–(p(x,t)–1) dx < ∞, t ∈ [0, T], (1.11)

then
∫

Ω

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx, a.e. t ∈ [0, T). (1.12)

Theorem 1.4 If q ≥ 1, a(x, t) ≥ 0 satisfies (1.6), p(x, t) ≥ p– > 1, u(x, t) and v(x, t) are two
nonnegative weak solutions of equation (1.1) with the initial values u0(x) = v0(x),

∫

Ω

a(x, t)– 1
p(x)–1 dx < ∞, t ∈ [0, T], (1.13)
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div �f (x, t) ≥ 0, (1.14)

then

u(x, t) = v(x, t), (x, t) ∈ QT . (1.15)

One can see that condition (1.11) in Theorem 1.3 and condition (1.13) in Theorem 1.4
are complementary to each other. In this paper, ∇u represents the gradient of u on the
spatial variable x, div �f (x, t) represents the divergence of �f on the spatial variable x.

By the uniqueness of weak solutions, we will study the large time behavior of weak so-
lutions without the boundary value condition in the last section.

2 The existence of weak solutions
In this section, we use the parabolically regularized method to prove Theorem 1.2. Con-
sider the initial boundary value problem

uεt – ε div
(|∇uε|p+–2∇uε

)
– div

(
a(x, t)|∇uε|p(x,t)–2∇uε

)
– �f (x, t) · ∇uq

ε

= 0, (x, t) ∈ QT , (2.1)

uε(x, t) = 0, (x, t) ∈ ∂Ω × (0, T), (2.2)

uε(x, 0) = uε,0(x), x ∈ Ω , (2.3)

where 0 ≤ uε,0 ∈ C∞
0 (Ω), ‖uε,0‖L∞(Ω) ≤ ‖u0‖L∞(Ω), uε,0 → u0(x) in W 1,p+

0 (Ω). Then there
is a unique nonnegative solution uε ∈ Lp+ (0, T ; W 1,p+

0 (Ω)) [5], which satisfies

‖uε‖L∞(QT ) ≤ c. (2.4)

By multiplying (2.1) with uε , integrating it over Qt = Ω × [0, t], we achieve

1
2

∫

Ω

u2
ε(x, t) dx +

ε

2

∫∫

Qt

|∇uε|p+ dx dt

+
∫∫

Qt

a(x, t)|∇uε|p(x,t) dx dt ≤ c, ∀t ∈ [0, T). (2.5)

Here, we have used the following fact:
∫∫

QT

∣∣uε
�f (x, t) · ∇uq

ε

∣∣dx dt = q
∫∫

QT

∣∣uq
ε
�f (x, t) · ∇uε

∣∣

≤ ε

2

∫∫

QT

|∇uε|p+ dx dt + c(ε).

By (2.5), we achieve
∫∫

QT

a(x, t)|∇uε|p(x,t) dx dt ≤ c (2.6)

and

ε

∫∫

QT

|∇uε|p+ dx dt ≤ c. (2.7)
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Let v ∈ Lp+ (0, T ; W 1,p+
0 (Ω)), ‖v‖Lp+ (0,T ;W 1,p+

0 (Ω)) = 1. Since uε ∈ Lp+ (0, T ; W 1,p+
0 (Ω)) ∩

L∞(QT ), we have

〈uεt , v〉 + ε

∫∫

QT

|∇uε|p+–2∇uε∇v dx dt

+
∫∫

QT

a(x, t)|∇uε|p(x,t)–2∇uε∇v dx dt

+
N∑

i=1

∫∫

QT

uq[f i
xi

(x, t)v + f i(x, t)vxi

]
dx dt

= 0. (2.8)

By Young’s inequality, we extrapolate that

‖uεt‖Lp′+ (0,T ;W –1,p′+ (Ω)) ≤ c, (2.9)

where p′
+ = p+

p+–1 as before.
For any φ ∈ C1

0(Ω), 0 ≤ φ ≤ 1, it is not difficult to show that

∥
∥(φuε)t

∥
∥

Lp′+ (0,T ;W –1,p′+ (Ω)) ≤ c (2.10)

by (2.9).
Since Hs

0(Ω) ↪→ W 1,p+ (Ω) when s > N
2 + 1, we have W –1,p′

+ (Ω) ↪→ H–s(Ω). Then

∥
∥(φuε)t

∥
∥

Lp′+ (0,T ;H–s(Ω)) ≤ c. (2.11)

In addition, we have

∫∫

QT

∣
∣∇(φuε)

∣
∣p– dx dt ≤ c(φ)

(
1 +

∫ T

0

∫

Ωφ

|∇uε|p– dx dt
)

≤ c(φ),

where Ωφ = suppφ. Thus,

‖φuε‖Lp′+ (0,T ;W 1,p–
0 (Ω)) ≤ c. (2.12)

Since W 1,p–
0 (Ω) ↪→ Lp– (Ω) ↪→ H–s(Ω), Aubin’s compactness theorem in [33] yields

φuε → φu strongly in Lp′
+ (0, T ; Lp– (Ω)). Then φuε → φu a.e. in QT , and so uε → u a.e. in

QT .
Combining (2.4), (2.5), (2.6), and (2.7), there exist a function u and an n-dimensional

vector function
−→
ζ = (ζ1, . . . , ζn) such that

ε|∇uε|p+–2∇uε ⇀ 0, in L
p+

p+–1 (QT ),

u ∈ L∞(QT ), |ζi| ∈ L1(0T ; L
p(x,t)

p(x,t)–1 (Ω)
)
,

and

uε ⇀ u, weakly star in L∞(QT ), uε → u, a.e. in QT ,
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uq
ε → uq, a.e. in QT ,

uεxi ⇀ uxi in L1(0, T ; Lp(x,t)
loc (Ω)

)
,

a(x, t)|∇uε|p(x,t)–2∇uε ⇀
−→
ζ , in

{
L1(0, T ; L

p(x,t)
p(x,t)–1 (Ω)

)}N .

Meanwhile, similar as the proof of Lemma 2.6 in [4], we can prove that

∫∫

QT

a(x, t)|∇u|p(x,t)–2∇u · ∇ϕ dx dt =
∫∫

QT

−→
ζ · ∇ϕ dx dt

for any given function ϕ ∈ C1
0(QT ). Then, for any ϕ ∈ C1

0(QT ),

〈ut ,ϕ〉 +
∫∫

QT

[

a(x, t)|∇u|p(x,t)–2∇u∇ϕ +
N∑

i=1

uq(f i(x, t)ϕxi + f i
xi

(x, t)ϕ
)
]

dx dt

= 0.

Moreover, one can prove the initial value condition in the sense of (1.7) as in [2], thus u
is a solution of equation (1.1) with the initial value (1.2) in the sense of Definition 1.1. The
proof is complete.

3 The proof of Theorem 1.3
The following lemma can be found in [30, 31].

Lemma 3.1 The variable exponent spaces Lp(x)(Ω), W 1,p(x)(Ω), and W 1,p(x)
0 (Ω) are reflex-

ive Banach spaces. The following hold:
(i) Let p1(x) and p2(x) be real functions with 1

p1(x) + 1
p2(x) = 1. Then the conjugate space

of Lp1(x)(Ω) is Lp2(x)(Ω). For any u ∈ Lp1(x)(Ω) and v ∈ Lp2(x)(Ω), there holds

∣
∣∣∣

∫

Ω

uv dx
∣
∣∣∣ ≤ 2‖u‖Lp1(x)(Ω)‖v‖Lp2(x)(Ω).

(ii) Let p1+ = maxx∈Ω p1(x), p1– = minx∈Ω p1(x).

If ‖u‖Lp1(x)(Ω) = 1, then
∫

Ω

|u|p1(x) dx = 1.

If ‖u‖Lp1(x) (Ω) > 1, then |u|p1–
Lp1(x) ≤

∫

Ω

|u|p1(x) dx ≤ |u|p1+
Lp1(x) .

If ‖u‖Lp1(x) (Ω) < 1, then |u|p1+
Lp1(x) ≤

∫

Ω

|u|p1(x) dx ≤ |u|p1–
Lp1(x) .

Lemma 3.2 (see [2]) Let v ∈ Lp+ (0, T ; W 1,p+
0 (Ω)), vt ∈ Lp′

+ (0, T ; W –1,p+ ′ (Ω)). For any con-
tinuous function h(s), H(s) =

∫ s
0 h(s) ds, a.e. t1, t2 ∈ [0, T),

∫ t2

t1

〈
vt , h(v)

〉
dt =

∫

Ω

(
H(v)(x, t2) – H(v)(x, t1)

)
dx. (3.1)
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For small r > 0, let

Sσ (s) =
∫ s

0
hσ (τ ) dτ , hσ (s) =

2
σ

(
1 –

| s |
σ

)

+
.

Then

lim
σ→0

Sσ (s) = sgn s, lim
σ→0

Hσ (s) =
∫ s

0
Sσ (τ ) dτ = |s| (3.2)

and

lim
σ→0

shσ (s) = 0. (3.3)

Let ϕ(x, t) be a nonnegative function in C1(QT ), and for every t ∈ [0, T],

ϕ(x, t) = 0, x ∈ ∂Ω and ϕ(x, t) > 0, x ∈ Ω . (3.4)

Theorem 3.3 If q ≥ 1, a(x, t) ≥ 0 satisfies (1.6), p(x, t) ≥ p– > 1, u(x, t) and v(x, t) are two
nonnegative weak solutions of equation (1.1) with the initial values u0(x) and v0(x) respec-
tively, and there is a nonnegative function ϕ ∈ C1(QT ) satisfying (3.4) such that

∫

Ω

a(x, t)
∣
∣∣
∣
∇ϕ

ϕ

∣
∣∣
∣

p(x,t)

dx < ∞,
∫

Ω

|∑N
i=1 f i(x, t)ϕxi |

ϕ
dx < ∞, t ∈ [0, T], (3.5)

∫

Ω

a(x, t)– 1
p(x,t)–1

∣∣
∣∣
∣

N∑

i=1

f i(x, t)

∣∣
∣∣
∣

p(x,t)
p(x,t)–1

dx < ∞, t ∈ [0, T], i = 1, 2, . . . , N , (3.6)

then

∫

Ω

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx, a.e. t ∈ [0, T). (3.7)

Proof For two solutions u(x, t), v(x, t), the test function can be chosen as Sσ (ϕ(u – v)),
where ϕ(x, t) satisfies (3.4). Then

∫ t

0

∫

Ω

Sσ

(
ϕ(u – v)

)∂(u – v)
∂t

dx dt

+
∫ t

0

∫

Ω

a(x, t)
(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v

) · ∇(u – v)S′
σ

(
ϕ(u – v)

)
dx dt

+
∫ t

0

∫

Ω

a(x, t)
(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v

) · ∇ϕ(u – v)S′
σ

(
ϕ(u – v)

)
dx dt

+
N∑

i=1

∫ t

0

∫

Ω

f i
xi

(x, t)
(
uq – vq)Sσ

(
ϕ(u – v)

)
dx dt

+
N∑

i=1

∫ t

0

∫

Ω

ϕf i(x, t)
(
uq – vq) · (u – v)xi S

′
σ

(
ϕ(u – v)

)
dx dt
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+
N∑

i=1

∫ t

0

∫

Ω

f i(x, t)
(
uq – vq) · ϕxi (u – v)S′

σ

(
ϕ(u – v)

)
dx dt

= 0. (3.8)

Since a(x, t) ≥ 0, S′
σ (s) ≥ 0, obviously,

∫

Ω

a(x, t)
(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v

) · ∇(u – v)S′
σ

(
ϕ(u – v)

)
dx ≥ 0. (3.9)

Since
∫
Ω

a(x, t)| ∇ϕ

ϕ
|p(x,t) dx < ∞,

∣
∣∣
∣

∫

Ω

a(x, t)(u – v)S′
σ

(
ϕ(u – v)

)(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v
)∇ϕ dx

∣
∣∣
∣

=
∣∣
∣∣

∫

Ω

a(x, t)– p(x,t)–1
p(x,t) a(x, t)(u – v)S′

σ

(
ϕ(u – v)

)

· a(x, t)
p(x,t)–1

p(x,t)
(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v

)∇ϕ dx
∣∣
∣∣

≤
(∫

Ω

∣
∣∣
∣a(x, t)

1
p(x,t)

∇ϕ

ϕ
ϕ(u – v)S′

σ

(
ϕ(u – v)

)
∣
∣∣
∣

p(x,t)

dx
) 1

p1(t)

·
(∫

Ω

a(x, t)
(|∇u|p(x,t) + |∇v|p(x,t))dx

) 1
p′

1(t)

→ 0 (3.10)

as σ → 0, where p′(x, t) = p(x,t)
p(x,t)–1 . p1(t) = maxx∈Ω p(x, t), or p1(t) = minx∈Ω p(x, t) according

to

∫

Ω

∣∣
∣∣a(x, t)

1
p(x,t)

∇ϕ

ϕ
ϕ(u – v)S′

σ

(
ϕ(u – v)

)
∣∣
∣∣

p(x,t)

dx ≥ 1

or

∫

Ω

∣
∣∣∣a(x, t)

1
p(x,t)

∇ϕ

ϕ
ϕ(u – v)S′

σ

(
ϕ(u – v)

)
∣
∣∣∣

p(x,t)

dx < 1

by Lemma 3.1. p′
1(t) has a similar meaning.

In addition, since u, v ∈ L∞(QT ) and
∫
Ω

|∑N
i=1 bi(x,t)ϕxi |

ϕ
dx < ∞, the dominated conver-

gence theorem yields

lim
σ→0

∣
∣∣
∣∣

∫

Ω

N∑

i=1

f i(x, t)
(
uq – vq) · ϕxi (u – v)S′

σ

(
ϕ(u – v)

)
dx

∣
∣∣
∣∣

≤ lim
σ→0

∫

Ω

∣
∣∣
∣∣

N∑

i=1

f i(x, t)
(
uq – vq)S′

σ

(
ϕ(u – v)

)
ϕ(u – v)

ϕxi

ϕ

∣
∣∣
∣∣
dx

≤ c lim
σ→0

∫

Ω

∣∣S′
σ

(
ϕ(u – v)

)
ϕ(u – v)

∣∣ |
∑N

i=1 f i(x, t)ϕxi |
ϕ

dx

= 0. (3.11)
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Since

∣
∣uq – vq∣∣ ≤ c|u – v|, q ≥ 1,

and by (3.6)

∫

Ω

a(x, t)– 1
p(x,t)–1

∣
∣∣∣
∣

N∑

i=1

f i(x, t)

∣
∣∣∣
∣

p(x,t)
p(x,t)–1

dx ≤ c,

we have

lim
σ→0

∣∣
∣∣
∣

∫

Ω

N∑

i=1

f i(x, t)ϕ
(
uq – vq)Sσ

′(ϕ(u – v)
)
(u – v)xi dx

∣∣
∣∣
∣

≤ c lim
σ→0

(∫

Ω

a(x, t)
(|∇u|p(x,t) + |∇v|p(x,t))dx

) 1
p1(t)

·
(∫

Ω

∣
∣∣
∣∣

N∑

i=1

a(x, t)– 1
p(x,t) f i(x, t)

∣
∣∣
∣∣

p(x,t)
p(x,t)–1 ∣∣ϕ(u – v)Sσ

′(ϕ(u – v)
)∣∣

p(x,t)
p(x,t)–1 dx

) 1
p′

1(t)

≤ c lim
σ→0

(∫

Ω

a(x, t)– 1
p(x,t)

∣
∣∣
∣∣

N∑

i=1

f i(x, t)

∣
∣∣
∣∣

p(x,t)
p(x,t)–1 ∣

∣ϕ(u – v)Sσ
′(ϕ(u – v)

)∣∣
p(x,t)

p(x,t)–1 dx

) 1
p′

1(t)

= 0. (3.12)

Here p1(t) = maxx∈Ω p(x, t) or p1(t) = minx∈Ω p(x, t) according to
∫

Ω

a(x, t)
(|∇u|p(x,t) + |∇v|p(x,t))dx ≥ 1

or
∫

Ω

a(x, t)
(|∇u|p(x,t) + |∇v|p(x,t))dx < 1

by Lemma 3.1 for any t ∈ [0, T), p′
1(t) has a similar meaning.

At the same time,

lim
σ→0

∣∣
∣∣
∣

∫

Ω

N∑

i=1

f i
xi

(x, t)
(
uq – vq)Sσ

(
ϕ(u – v)

)
dx

∣∣
∣∣
∣

≤ c
∫

Ω

|u – v|dx, i = 1, 2, . . . , N , (3.13)

is obvious by the assumption that f i(x, t) ∈ C1(QT ), i = 1, 2, . . . , N .
By the definition of the weak characteristic function ϕ(x, t), we can employ Lemma 3.2

to deduce that

lim
σ→0

∫ t

0

∫

Ω

Sσ

(
ϕ(u – v)

)∂(u – v)
∂t

dx dt

=
∫

Ω

∫ t

0
sign(u – v)

∂(u – v)
∂t

dx dt
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= lim
σ→0

∫ t

0

∫

Ω

Sσ (u – v)
∂(u – v)

∂t
dx dt

= lim
σ→0

∫ t

0
(Hσ (u – v)(t) – Hσ (u0 – v0) dt

=
∫

Ω

∣∣u(x, t) – v(x, t)
∣∣dx –

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx. (3.14)

Let σ → 0 in (3.8). By (3.9), (3.11), (3.12), (3.13), and (3.14), we have

∫

Ω

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

Ω

∣∣u0(x) – v0(x)
∣∣dx, ∀t ∈ [0, T). �

Proof of Theorem 1.3 By conditions (1.10) and (1.11), only if we choose φ(x, t) = a(x, t), we
know conditions (4.1) (4.2) in Theorem 3.3 are true, the conclusion follows easily. �

4 The proof of Theorem 1.4
Theorem 4.1 If q ≥ 1, a(x, t) ≥ 0 satisfies (1.6), p(x, t) ≥ p– > 1, u(x, t) and v(x, t) are two
nonnegative weak solutions of equation (1.1) and with the same initial value u0(x) = v0(x),
and

∫

Ω

∣
∣∣
∣∣

N∑

i=1

f i(x, t)

∣
∣∣
∣∣

p(x,t)
p(x,t)–1

a(x, t)– 1
p(x,t)–1 dx < c, i = 1, 2, . . . , N , t ∈ [0, T], (4.1)

div �f (x, t) ≥ 0, (4.2)

then

u(x, t) = v(x, t), (x, t) ∈ QT . (4.3)

Proof For a small positive constant δ > 0, denoting Dδ = {x ∈ Ω : w = u–v > δ}, we suppose
that the measure μ(Dδ) > 0. Let

Fλ(ξ ) =

⎧
⎨

⎩

1
1–β

λβ–1 – 1
1–β

ξβ–1, if ξ > λ,

0, if ξ ≤ λ,
(4.4)

where δ > 2λ > 0, 1 > β > 0.
Now, by a process of limit, we can choose Fλ(w) = Fλ(u – v) and integrate it over Qt ,

0 ≤ t < T , accordingly,

0 =
∫ t

0

∫

Ω

[
wtFλ(w) + a(x, t)

(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v
)∇Fλ(w)

]
dx dt

+
N∑

i=1

∫ t

0

∫

Ω

(
uq – vq)[f i(x, t)

(
Fλ(u – v)

)
xi

]
dx dt

+
N∑

i=1

∫ t

0

∫

Ω

(
uq – vq)[f i

xi
(x, t)Fλ(u – v)

]
dx dt. (4.5)
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In the first place,

∫ t

0

∫

Ω

a(x, t)
(|∇u|p(x,t)–2∇u – |∇v|p(x,t)–2∇v

) · ∇(u – v)F ′
λ(u – v) dx dt

≥
∫ t

0

∫

Ω

a(x, t)(u – v)2–β2–p(x,t)|∇w|p(x,t) dx dt

≥ 2–p+

∫ t

0

∫

Ω

a(x, t)w2–β |∇w|p(x,t) dx dt

≥ 0. (4.6)

By that q > 0 and condition (4.1),

∫

Ω

N∑

i=1

f i(x, t)
p(x,t)

p(x,t)–1 a– 1
p(x,t)–1 (x) dx < c, i = 1, 2, . . . , N , t ∈ [0, T],

using the last formula of (3.3) and the dominated convergence theorem, we have

∣∣
∣∣
∣

N∑

i=1

∫ t

0

∫

Ω

f i(x, t)
(
uq – vq)F ′

λ(u – v)(u – v)xi dx dt

∣∣
∣∣
∣

=

∣∣
∣∣∣

∫ t

0

∫

Ω

N∑

i=1

f i(x, t)a(x, t)– 1
p(x,t)

(
uq – vq)F ′

λ(u – v)a
1

p(x,t) (u – v)xi dx dt

∣∣
∣∣∣

≤ c
∫ t

0

∫

Ω

w2–β

(∣∣∣
∣∣

N∑

i=1

f i(x, t)

∣∣∣
∣∣
a(x, t)– 1

p(x,t)
(
uq – vq)

) p(x,t)
p(x,t)–1

+ 2–p+–1
∫ t

0

∫

Ω

a(x, t)w2–β |∇w|p(x,t) dx dt

≤ c +
2–p+

2

∫ T

0

∫

Ω

a(x, t)w2–β |∇w|p(x,t) dx dt. (4.7)

Since div �f (x) ≥ 0,

∫ t

0

∫

Ω

N∑

i=1

f i
xi

(x, t)
(
uq – vq)Fλ(u – v) dx dt

=
∫ t

0

∫

Ω

div �f (x, t)
(
uq – vq) 1

β – 1
(u – v)β–1 dx dt

–
∫ t

0

∫

Ω

div �f (x, t)
(
uq – vq) 1

β – 1
λβ–1 dx dt

≥ –
∫ t

0

∫

Dλ

div �f (x, t)
(
uq – vq) 1

β – 1
λβ–1 dx dt

≥ –c1, (4.8)

where c1 is independent of λ.
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Moreover, let t0 = inf{τ ∈ (0, t] : w > λ}. Then

∫ t

0

∫

Dλ

wtFλ(w) dx dt =
∫

Dλ

(∫ t0

0
wtFλ(w) dt +

∫ t

t0

wtFλ(w) dt
)

dx

≥
∫

Dλ

∫ w(x,t)

λ

Fλ(s) ds dx

≥
∫

Dλ

(w – 2λ)Fλ(2λ) dx ≥ (δ – 2λ)Fλ(2λ)μ(Dλ). (4.9)

Thus, we have

(δ – 2λ)
1 – 2β–1

1 – β
≤ c2,

where c1 is independent of λ. Letting λ → 0, we get the contradiction. �

Proof of Theorem 1.4 By conditions (1.13) and (1.14), only if we choose φ(x, t) = a(x, t), we
know conditions (3.5) (3.6) in Theorem 3.3 are true, the conclusion follows easily. �

5 Asymptotic behavior of weak solutions
In what follows, p(x, t) = p(x), p+ = maxx∈Ω p(x), p– = minx∈Ω p(x), q(x) = p(x)

p(x)–1 .

Lemma 5.1 Let p, s ∈ C+(Ω) and a(x) satisfy
(w1) a ∈ L1

loc(Ω) and a– 1
p(x)–1 ∈ L1

loc(Ω);
(w2) a–s(x) ∈ L1(Ω) with s(x) ∈ ( N

p(x) ,∞)∩ [ 1
p(x)–1 ,∞). Then we have the following compact

embedding:

W 1,p(x)(a,Ω) ↪→↪→ Lr(x)(Ω)

provided that r ∈ C+(Ω) and 1 ≤ r(x) < p∗
s (x) for all x ∈ Ω . Here,

ps(x) =
p(x)s(x)
1 + s(x)

,

and

p∗
s (x) =

⎧
⎨

⎩

p(x)s(x)N
(s(x)+1)N–p(x)s(x) , if ps(x) < N ,

+∞, if ps(x) ≥ N .

Lemma 5.2 Let p ∈ C+(Ω). If (w1) and (w2) hold, then the estimate

‖u‖Lp(x)(Ω) ≤ C‖∇u‖Lp(x)(a,Ω)

holds for every u ∈ C∞
0 (Ω) with a positive constant C independent of u.

These two lemmas and the definitions about the weighted variable exponent Sobolev
space W 1,p(x)(a,Ω) can be found in [32].
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Theorem 5.3 Suppose that a(x, t) = a(x) satisfying (1.6), (w1) and (w2), p(x, t) = p(x) ≥
p– > 1 and fi(x, t) = fi(x) satisfies (4.1) and (4.2), 2 < Np+

N–p+
. If there is 0 < α < p–

p+(p+–p–) such
that

∫

Ω

a(x)|∇u|p(x) dx ≥ M(u0) ≥ 1,
∫

Ω

a(x)|∇u|p(x) dx ≤ ctα , t > 1, (5.1)

lim
T→∞

∫ T

0

1
1 + tαβ

dx = ∞, (5.2)

(∫

Ω

∣
∣∣
∣∣

N∑

i=1

f i(x)a(x)– 1
p(x) uq

∣
∣∣
∣∣

p(x)
p(x)–1

dx

) 1
q+

< 1, (5.3)

where β–1 = p–
p+(p+–p–) , then

lim
T→∞

∥
∥u(x, T)

∥
∥

L2(Ω) = 0. (5.4)

Proof Let G(u) = 1
2
∫
Ω

|u|2 dx. Then it is well known that G is a convex functional on L2(Ω).
For any t ∈ (0, T) and h > 0, δ represents Găteaux differential, i.e.,

δG(u)
δu

= u.

By the convexity of G, we have

G
(
u(t + h)

)
– G

(
u(t)

) ≥
∫

Ω

[
u(x, t + h) – u(x, t)

]
u(x, t) dx. (5.5)

For any t1, t2 ∈ [0, T], t1 < t2,

∫ t2

t1

G
(
u(t + h)

)
dt –

∫ t2

t1

G
(
u(t)

)
dt

=
∫ t2+h

t1+h
G

(
u(t)

)
dt –

∫ t2

t1

G
(
u(t)

)
dt

=
∫ t2+h

t2

G
(
u(t + h)

)
dt –

∫ t+h

t1

G
(
u(t)

)
dt

≥
∫ t2

t1

∫

Ω

[
u(x, t + h) – u(x, t)

]
u(x, t) dx. (5.6)

Dividing both sides of (5.6) by h, we let h → 0. Then

G
(
u(t2)

)
– G

(
u(t1)

) ≥
∫ t2

t1

∫

Ω

∂u
∂t

u(x, t) dx dt.

In a similar way, we have

G
(
u(t)

)
– G

(
u(t – h)

) ≤
∫

Ω

[
u(x, t) – u(x, t – h)

]
u(x, t) dx, (5.7)
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accordingly,

G
(
u(t2)

)
– G

(
u(t1)

) ≤
∫ t2

t1

∫

Ω

∂u
∂t

u(x, t) dx dt.

Then

G
(
u(t2)

)
– G

(
u(t1)

)
=

∫ t2

t1

∫

Ω

∂u
∂t

u(x, t) dx dt. (5.8)

In particular, by the definition of weak solution, we have

G
(
u(t)

)
– G

(
u(0)

)
= –

∫ t

0

∫

Ω

a(x)|∇u|p(x) dx dt +
∫ t

0

∫

Ω

�f (x) · ∇uq dx dt. (5.9)

By Theorem 4.1, the solution of equation (1.1) with initial (1.2) is unique, then we can
regard it as the limit

u(x, t) = lim
ε→0

uε(x, t),

where uε is the solution of the initial boundary value problem (2.1)–(2.3). Thus,

uε ∈ Lp+
(
0, T ; W 1,p+

0 (Ω)
)
, uεt ∈ Lp′

+
(
0, T ; W –1,p′

+ (Ω)
)

(5.10)

by that 2 < Np+
N–p+

, we have

W 1,p+
0 (Ω) ↪→ (compact) L2(Ω) ↪→ W –1,p′

+ (Ω). (5.11)

Thus, u(x, t) ∈ C(0, T ; L2(Ω)).
Let G(t) = 1

2
∫
Ω

|u(x, t)|2 dx. Then G(t) is continuous in [0, T), and by (5.1)(5.3), we have

G′(t) = –
∫

Ω

a(x)|∇u|p(x) dx –
N∑

i=1

∫

Ω

[
f i(x)uquxi + f i

xi
(x, t)uq+1]dx

≤ –
∫

Ω

a(x)|∇u|p(x) dx –
N∑

i=1

∫

Ω

f i(x)uquxi dx

≤ –
∫

Ω

a(x)|∇u|p(x) dx

+

(∫

Ω

∣
∣∣
∣∣

N∑

i=1

f i(x)a(x)– 1
p(x) uq

∣
∣∣
∣∣

p(x)
p(x)–1

dx

) 1
q1 (∫

Ω

a(x)|∇u|p(x) dx
) 1

p1

≤ 0. (5.12)

Here, p1 = p+ or p– according to
∫
Ω

a(x)|∇u|p(x) dx ≥ 1 or
∫
Ω

a(x)|∇u|p(x) dx < 1, q1 has a
similar meaning.

We choose s(x) = 2 in Lemma 5.1, ps(x) = 2p(x)
3 . If ps(x) < N and 3N – 2p(x) < Np(x), then

2 < p∗
s (x) = 2Np(x)

3N–2p(x) . If ps(x) ≥ N , p∗
s = ∞, 2 < p∗

s is naturally. By Lemma 5.1,

W 1,p(x)(a,Ω) ↪→↪→ L2(Ω).
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Accordingly, by Lemma 5.2 and assumption (5.1), we are able to show that

∫

Ω

|u|2 dx ≤ c‖u‖W 1,p(x)(a,Ω) ≤ c‖∇u‖Lp(x)(w,Ω)

≤ ct
2α(p+–p–)

p–
∣
∣G′(t)

∣
∣

2
p+ , t ≥ 1. (5.13)

By (5.13), we can extrapolate that

∫

Ω

∣∣u(x, T)
∣∣2 dx ≤ 1

(c1
∫ T

0 (1 + tαβ )–1 + c2)δ
, δ =

2
p+ – 2

, c1 > 0, c2 > 0.

This accomplishes the proof of the theorem. �

6 Conclusion
The initial boundary value problem of an electrorheological fluid equation with orien-
tated convection term is considered. The diffusion coefficient a(x, t), the variable exponent
p(x, t), and the oriented convection coefficient bi(x, t) are all dependent on time variable t.
If, for any t, a(x, t) = 0, x ∈ ∂Ω , then the stability of weak solutions may be true without
boundary value condition. This conclusion generalizes our previous works [28, 29]. The
essential improvement lies in that only if a(x, t)|x∈∂Ω = 0 for any t, the uniqueness of weak
solution is always true, no other conditions are required. Just by this important result, we
can study the large time behavior of weak solutions without the boundary value condition.
To the best knowledge, this is the first paper to study the large time behavior for an initial
boundary value problem but independent of the boundary value condition.
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17. Giacomoni, J., Rădulescu, V.D., Warnault, G.: Quasilinear parabolic problem with variable exponent: qualitative analysis

and stabilization. Commun. Contemp. Math. 20(8), 1750065 (2018)
18. Ho, K., Sim, I.: A priori bounds and existence for solutions of weighted elliptic equations with a convection term. Adv.

Nonlinear Anal. 6(4), 427–445 (2017)
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