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Abstract
In this paper, we present a reduced high-order compact finite difference scheme for
numerical solution of the parabolic equations. CFDS4 is applied to attain high
accuracy for numerical solution of parabolic equations, but its computational
efficiency still needs to be improved. Our approach combines CFDS4 with proper
orthogonal decomposition (POD) technique to improve the computational efficiency
of the CFDS4. The validation of the proposed method is demonstrated by four test
problems. The numerical solutions are compared with the exact solutions and the
solutions obtained by the CFDS4. Compared with CFDS4, it is shown that our method
has greatly improved the computational efficiency without a significant loss in
accuracy for solving parabolic equations.

Keywords: Proper orthogonal decomposition; Parabolic equations; Compact finite
difference scheme

1 Introduction
Many problems in physical phenomena, engineering equipment, and living organisms,
such as the proliferation of gas, the infiltration of liquid, the conduction of heat, and the
spread of impurities in semiconductor materials, can be described with parabolic equa-
tions [1–3]. In addition, the system related to parabolic equation can be used to describe
the phase separation in material sciences [4] and a class of abstract control systems con-
cerned with parabolic equation has been developed [5]. Especially, there exists analysis
about linear and nonlinear boundary value problems [6]. Thus, it is of great value to study
their exact solutions. In practical engineering calculations, their exact solutions are not
easy to obtain directly. We have to find their numerical solutions by various numerical
methods. Therefore, the study of numerical solutions of parabolic equations is of great
theoretical and practical value. Until now, several types of numerical methods have been
developed for numerical simulation of the parabolic problems. For example, the authors
in [7] used two-level finite difference schemes to solve one-dimensional parabolic equa-
tion [7]. Zhou et al. proposed finite element methods to solve parabolic equation [8]. In
[9], a new finite volume method for parabolic equation is presented. Zhang et al. provided
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the Crank–Nicolson-type difference scheme to solve the equations with spatial variable
coefficient [10].

In the methods mentioned above, the finite difference scheme is always regarded as one
of the effective methods to solve partial differential equations due to its simple form and
easiness to be understood and programmed. In the last decade, the high-order compact
finite difference scheme (CFDS) has been implemented for numerical solution of various
types of partial differential equations. Such as the Rosenau-regularized long wave (RLW)
equation [11], integro-differential equations [12], Burgers’ equation [13], Helmholtz equa-
tion [14], Navier–Stokes equations [15], Schrödinger equations [16], Poisson equation
[17], sine-Gordon equation [18]. Although the high-order CFDS can get high accurate
solution, it usually either needs small spatial discretization or extended finite difference
stencils and a small time step, which results in computationally expensive calculations. In
general, the computational accuracy and computational efficiency are often seen as the
two important factors to evaluate a numerical algorithm. Though the CFDS can achieve
a satisfying numerical solution and possesses fast rate of convergence, it also brings many
difficulties to practical application such as heavily computational load. Therefore, it is nec-
essary for us to develop the high-order CFDS that not only simplifies the computational
load and saves computational time of calculation in the actual engineering problems, but
also holds sufficiently accurate solution. In recent years, some reduced models based on
proper orthogonal decomposition (POD) have attracted more and more attention in the
field of computational mechanics [19, 20]. POD, also known as Karhunen–Loève decom-
position (KLD), principal component analysis (PCA), or singular value decomposition
(SVD), provides a powerful technique to reduce a large number of interdependent vari-
ables to a much smaller number of uncorrelated variables while retaining as much as pos-
sible of the variation in the original variables [21–24]. Thus, we can use the POD technique
to greatly reduce the computational cost.

In the past decades, POD has been widely applied to numerical solutions to construct
some reduced models. For example, Luo and Sun combined POD with finite difference
method, finite element method, and finite volume method to solve the parabolic equa-
tions [25–28], Navier–Stokes equations [29, 30], Sobolev equations [31], viscoelastic wave
equation [32], hyperbolic equations [33], and Burgers’ equation [34]. Dehghan and Ab-
baszadeh proposed POD with upwind local radial basis functions-differential quadrature
method to solve compressible Euler equation [35], applied POD into Galerkin method to
simulate two-dimensional solute transport problems [36], and combined POD with em-
pirical interpolation method [37]. Zhang proposed a fast and efficient meshless method
based on POD for transient heat conduction problem [38] and convection-diffusion prob-
lems [19]. Especially, the authors in [39] gave the Carleman estimates for singular parabolic
equation. However, to our best knowledge, there are no published results when POD is
used to reduce the CFDS4 for parabolic equations. The main goal of this paper is to con-
struct a numerical algorithm which has high computational accuracy and efficiency for
solving parabolic equations. Thus, the focus of this paper is on combining the CFDS4 and
the POD method, namely the R-CFDS4, to solve parabolic equations.

The paper is organized as follows. The CFDS4 for 1D parabolic equations is derived
in Sect. 2. In Sect. 3, R-CFDS4 based on POD for 1D parabolic equations is developed.
In Sect. 4, the error estimates between the exact solutions are given. In Sect. 5, a re-
duced alternating direction implicit fourth-order compact finite difference scheme (R-
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ADI-CFDS4) based on POD for 2D parabolic equations is developed. In Sect. 6, some
numerical examples are presented to demonstrate the efficiency and reliability of the al-
gorithm. Section 7 provides main conclusions.

2 The fourth-order compact FDS for 1D parabolic equation
Firstly, we consider the following 1D initial-boundary value problem P1:

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – a ∂2u

∂x2 = f (x, t), 0 < x < L,

u(0, t) = u(L, t) = 0, 0 ≤ t ≤ T ,

u(x, 0) = ϕ(x), 0 ≤ x ≤ L,

(1)

where a is a positive constant, f (x, t) and ϕ(x) are two given enough smooth functions. Let
h be the spatial step increment on x-direction and τ be the time step increment, and then
write xj = jh (j = 0, 1, 2, . . . , J), tn = nτ (n = 0, 1, 2, . . . , N ), un

j ≈ u(xj, jn).
Next, we derive the CFDS4 for problem P1, noting the following Taylor formulas:

u(xj–1, t) = u(xj, t) – h
∂u
∂x

∣
∣
∣
∣
(xj ,t)

+
h2

2
∂2u
∂x2

∣
∣
∣
∣
(xj ,t)

–
h3

6
∂3u
∂x3

∣
∣
∣
∣
(xj ,t)

+
h4

24
∂4u
∂x4

∣
∣
∣
∣
(xj ,t)

– · · · , (2)

u(xj+1, t) = u(xj, t) + h
∂u
∂x

∣
∣
∣
∣
(xj ,t)

+
h2

2
∂2u
∂x2

∣
∣
∣
∣
(xj ,t)

+
h3

6
∂3u
∂x3

∣
∣
∣
∣
(xj ,t)

+
h4

24
∂4u
∂x4

∣
∣
∣
∣
(xj ,t)

+ · · · . (3)

Adding Eq. (2) to Eq. (3), we get

u(xj–1, t) – 2u(xj, t) + u(xj+1, t)
h2 =

∂2u
∂x2 |(xj ,t) +

h2

12
∂4u
∂x4

∣
∣
∣
∣
(xj ,t)

+ O
(
h4). (4)

Let v(x, t) = ∂2u
∂x2 , then Eq. (4) can be rewritten as follows:

u(xj–1, t) – 2u(xj, t) + u(xj+1, t)
h2

= v(xj, t) +
h2

12
∂2v
∂x2

∣
∣
∣
∣
(xj ,t)

+ O
(
h4)

= v(xj, t) +
h2

12
v(xj–1, t) – 2v(xj, t) + v(xj+1, t)

h2 + O
(
h4)

=
1

12
v(xj–1, t) +

10
12

v(xj, t) +
1

12
v(xj+1, t) + O

(
h4). (5)

In Eq. (5), if we choose t = tn+ 1
2

, then we obtain

u(xi–1, tn+ 1
2

) – 2u(xi, tn+ 1
2

) + u(xi+1, tn+ 1
2

)

h2

=
1

12
(
v(xi–1, tn+ 1

2
) + 10v(xi, tn+ 1

2
) + v(xi+1, tn+ 1

2
)
)

+ O
(
h4). (6)
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Noting that Eq. (1) and v(x, t) = ∂2u
∂x2 , we get

v(x, t) =
1
a

(
∂u
∂t

– f
)

. (7)

For the first-order derivative of time, using the center difference quotient formula, we
get

∂u
∂t

∣
∣
∣
∣
(xj ,tn+ 1

2
)

=
u(xj, tn+1) – u(xj, tn)

τ
+ O

(
τ 2). (8)

Thus, substituting Eq. (8) to Eq. (7), we obtain

v(xj, tn+ 1
2

) =
1
a

(
∂u
∂t

∣
∣
∣
∣
(xj ,tn+ 1

2
)

– f (xj, tn+ 1
2

)
)

=
1
a

(
u(xj, tn+1) – u(xj, tn)

τ
– f (xj, tn+ 1

2
)
)

+ O
(
τ 2). (9)

Similar with Eq. (2) and Eq. (3), we have the following formulas:

u(x, tn+1) = u(x, tn+0.5) +
τ

2
∂u
∂t

∣
∣
∣
∣
(x,tn+0.5)

+ O
(
τ 2) (10)

and

u(x, tn) = u(x, tn+0.5) –
τ

2
∂u
∂t

∣
∣
∣
∣
(x,tn+0.5)

+ O
(
τ 2). (11)

By adding Eq. (10) to Eq. (11), we can get the following formula:

u(x, tn+0.5) =
u(x, tn) + u(x, tn+1)

2
+ O

(
τ 2). (12)

Substituting Eq. (9) and Eq. (12) into Eq. (6), we get the formula

u(xj–1, tn) + u(xj–1, tn+1) – 2u(xj, tn) – 2u(xj, tn+1) + u(xj+1, tn) + u(xj+1, tn+1)
2h2

=
1

12a

(
u(xj–1, tn+1) – u(xj–1, tn)

τ
– f (xj–1, tn+ 1

2
) + 10

u(xj, tn+1) – u(xj, tn)
τ

– 10f (xj, tn+ 1
2

)+
u(xj+1, tn+1) – u(xj+1, tn)

τ
– f (xj+1, tn+ 1

2
)
)

+ O
(
τ 2 + h4). (13)

Let r = aτ

h2 , and using numerical solution un
j to replace exact solution u(xj, tn) and ignor-

ing higher-order items, we get

r
2
(
un

j–1 + un+1
j–1 – 2un

j – 2un+1
j + un

j+1 + un+1
j+1

)

=
1

12
(
un+1

j–1 – un
j–1 + 10un+1

j – 10un
j + un+1

j+1 – un
j+1

)

–
τ

12
(
f (xj–1, tn+ 1

2
) + 10f (xj, tn+ 1

2
) + f (xj+1, tn+ 1

2
)
)
. (14)
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Finally, considering the initial and boundary conditions Eq. (1), we obtain the compact
difference formula for problem P1:

(
1

12
–

r
2

)

un+1
j–1 +

(
5
6

+ r
)

un+1
j +

(
1

12
–

r
2

)

un+1
j+1

=
(

1
12

+
r
2

)

un
j–1 +

(
5
6

– r
)

un
j +

(
1

12
+

r
2

)

un
j+1

+
τ

12
(
f (xj–1, tn+ 1

2
) + 10f (xj, tn+ 1

2
) + f (xj+1, tn+ 1

2
)
)
,

1 ≤ j ≤ J – 1, 0 ≤ n ≤ N – 1,

u0
j = ϕ(xj), 0 ≤ j ≤ J , un

0 = 0 = un
J = 0, 1 ≤ n ≤ N , J ,

un
0 = 0 = un

J = 0, 1 ≤ n ≤ N . (15)

The stability of Eq. (15) is unconditionally stable [40], and the error of the above compact
difference scheme is as follows:

∣
∣u(xj, tn) – un

j
∣
∣ = O

(
τ 2, h4). (16)

3 A reduced fourth-order compact FDS for 1D parabolic equation
In the scheme mentioned above, we only use three points to achieve high accuracy. How-
ever, the CFDS4 can get high accuracy by the scheme in Eq. (15), which usually needs
extended finite difference stencils or small temporal step. Nevertheless, it will bring over-
long computational time in the large real-life engineering problems. Hence, a key issue for
engineering problems is how to build a reduced model with the high efficiency and hold
sufficiently high accuracy compared with the scheme in Eq. (15).

The POD is an effective approach which can not only reduce the computational time sig-
nificantly, but also guarantee the high accuracy of algorithm. The main idea of POD is to
generate a group of optimal bases of the assemble of snapshots. Then, the reduced CFDS4
is constructed by the optimal basis. The snapshots, in this paper, are collected from some
numerical solutions of CFDS4. As a matter of fact, when we compute the actual prob-
lem, since the development and change of a large number of future nature phenomena are
closely related to previous results, one may choose the numerical experiments or observa-
tion data as the snapshots. Therefore, in this section, we first obtain the optimal basis from
the snapshot and then use the optimal basis to derive a R-CFDS4 for parabolic equations.

The set of snapshots {uni
j }d

i=1 (j = 1, 2, . . . , J – 1, 1 ≤ n1 ≤ n2 < · · · < nd ≤ N ) can be written
as an (J – 1) × d matrix A as follows:

A(J–1)×d =

⎛

⎜
⎜
⎜
⎜
⎝

un1
1 un2

1 · · · und
1

un1
2 un2

2 · · · und
2

...
...

...
...

un1
J–1 un2

J–1 · · · und
J–1

⎞

⎟
⎟
⎟
⎟
⎠

. (17)

Applying the singular value decomposition (SVD) on matrix A, we obtain

A(J–1)×d = U

(
Dr 0
0 0

)

VT, (18)
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where U = U(J–1)×(J–1) and V = Vd×d are all orthogonal matrices, Dr = diag(λ1,λ2, . . . ,λr).
The matrix U = (θ1, θ2, . . . , θ J–1) contains the orthogonal eigenvectors to AAT. The singular
values λi (i = 1, 2, . . . , r) satisfy the relation of λ1 ≥ λ2 ≥ · · · ≥ λr > 0. Denote d columns of
A(J–1)×d by αi = (uni

1 , uni
2 , . . . , uni

J–1)T (i = 1, 2, . . . , d), and define a projection PM by

PM
(
αi) =

M∑

j=1

(
θ j,αi)θ j, (19)

where 0 < M ≤ d and (·, ·) is the inner product of vectors. Then there exists the following
result[41, 42]:

∥
∥αi – PM

(
αi)∥∥

2 ≤ λM+1, (20)

where ‖ · ‖2 is the standard normal of vector. Thus {θ l}M
l=1 is a group of optimal bases

and θ = (θ1, θ2, . . . , θM) is a matrix constructed by the orthogonal eigenvectors such that
θTθ = I (I is a unit matrix of order M)

In the following, we construct a reduced CFDS4 for problem P1. Equation (15) can be
rewritten as follows:

un+1
j – un

j

=
(

3
5

r –
1

10

)

un+1
j–1 –

6
5

run+1
j +

(
3
5

r –
1

10

)

un+1
j+1 +

(
3
5

r +
1

10

)

un
j–1

–
6
5

run
j +

(
3
5

r +
1

10

)

un
j+1 +

τ

10
(
f (xj–1, tn+ 1

2
) + 10f (xj, tn+ 1

2
) + f (xj+1, tn+ 1

2
)
)
. (21)

Let un = (un
1, un

2, . . . , un
J–1)T, then we can rewrite Eq. (21) as the following matrix form:

un+1 = un + K1un+1 + K2un +
τ

10
Fn, n = 0, 1, . . . , N – 1, (22)

where

K1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

– 6
5 r 3

5 r – 1
10 0

3
5 r – 1

10 – 6
5 r 3

5 r – 1
10

. . . . . . . . .
3
5 r – 1

10 – 6
5 r 3

5 r – 1
10

0 3
5 r – 1

10 – 6
5 r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

K2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

– 6
5 r 3

5 r + 1
10 0

3
5 r + 1

10 – 6
5 r 3

5 r + 1
10

. . . . . . . . .
3
5 r + 1

10 – 6
5 r 3

5 r + 1
10

0 3
5 r + 1

10 – 6
5 r

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠
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and

Fn =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f n
1 + ( 3

5 r + 1
10 )un

0 – ( 3
5 r – 1

10 )un+1
J

f n
2
...

f n
J–2

f n
J–1 + ( 3

5 r + 1
10 )un

0 – ( 3
5 r – 1

10 )un+1
J

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

f n
j = f (xj–1, tn+ 1

2
) + 10f (xj, tn+ 1

2
) + f (xj+1, tn+ 1

2
) (j = 1, 2, . . . , J – 1).

Substituting

u∗n = θβn = θ (J–1)×M
(
βn)

M×1, n = 0, 1, . . . , N , (23)

to un of Eq. (22) and noting that θTθ = I , we obtain the R-CFDS4 as follows:

βn+1 = βn + θTK1β
n+1 + θTK2β

n +
τ

10
θTFn, n = 0, 1, . . . , N – 1, (24)

where

β0 = θT u0 = θT(
u0

1, u0
2, . . . , u0

J–1
)T . (25)

After βn is obtained from Eq. (24), one gets the POD optimal solution u∗n = θβn. From
the above derivation process, it can be seen that CFDS needs to solve the (J – 1) × (J – 1)
equations in each time step, while R-CFDS4 Eq. (24) only needs M ×M equations, usually
J � M, which means R-CFDS4 requires much less computational time than CFDS4 within
each time step. Thus, R-CFDS4 can save a lot of computational time during the whole
process of solving parabolic equations.

4 The error analysis of a reduced fourth-order FDS for 1D parabolic problem
Theorem 1 Let un be the solution vector of Eq. (15) and u∗n be the solution vectors of
Eq. (24). If {ul

i}d
l=1 are uniformly chosen from {un

i }N
n=1 and ‖K1‖2 ≤ 1

2 , ‖K2‖2 ≤ 1
2 , then

∥
∥u∗n – un

∥
∥

2 ≤ λM+1 exp(N/d), n = 1, 2, . . . , N , (26)

where ‖K1‖2 and ‖K2‖2 are the normal of matrix K1 and K2, respectively.

Proof There are two cases in Eq. (26). The first case is n = nl (l = 1, 2, . . . , d). Using the
definition (Eq. (19))

PM
(

unl
)

=
M∑

j=1

(
θ j, unl

)
θ j (27)

and Eq. (23) and Eq. (24), we have that u∗nl = PM(unl ). Applying Eq. (20), we have the
following conclusion:

∥
∥unl – u∗nl

∥
∥

2 =
∥
∥unl – PM

(
unl

)∥
∥

2 ≤ λM+1 (l = 1, 2, . . . , d). (28)
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The second case is n �= nl . We let tn ∈ (tnl , tnl+1), comparing Eq. (22) with Eq. (24), Eq. (24)
can be written as similar forms of Eq. (22) as follows:

u∗n+1 = u∗n + K1u∗n+1 + K2u∗n +
τ

10
Fn, n = 0, 1, . . . , N – 1. (29)

Subtracting Eq. (29) from Eq. (22), we obtain that

∥
∥un+1 – u∗n+1

∥
∥

2 ≤ ∥
∥un – u∗n

∥
∥

2 + ‖K1‖2
∥
∥un+1 – u∗n+1

∥
∥

2 + ‖K2‖2
∥
∥un – u∗n

∥
∥

2. (30)

We let c
2 = max{‖K1‖2,‖K2‖2}, then

∥
∥un+1 – u∗n+1

∥
∥

2 ≤ ∥
∥un – u∗n

∥
∥

2 +
c
2
[∥
∥un+1 – u∗n+1

∥
∥

2 +
∥
∥un – u∗n

∥
∥

2

]
. (31)

Summing Eq. (31) from nl , nl + 1, . . . , n – 1, we get

∥
∥un+1 – u∗n+1

∥
∥

2 ≤ ∥
∥unl – u∗nl

∥
∥

2 + c
n–1∑

j=nl

∥
∥uj – u∗j

∥
∥

2. (32)

By the discrete Gronwall lemma, we get

∥
∥un+1 – u∗n+1

∥
∥

2 ≤ ∥
∥unl – u∗nl

∥
∥

2 exp
(
c(n – nl)

)
. (33)

If ‖K1‖2 ≤ 1
2 and ‖K2‖2 ≤ 1

2 , {unl
i }d

l=1 are uniformly chosen from {un
i }N

n=1, which implies
n – nl ≤ N/d, then we obtain from the above inequality that

∥
∥un+1 – u∗n+1

∥
∥

2 ≤ ∥
∥unl – u∗nl

∥
∥

2 exp(N/d) ≤ λM+1 exp(N/d).

In the synthesis, the above two cases obtain Eq. (26), which completes Theorem 1. �

Theorem 2 Under the assumption of Theorem 1, let u∗n
j be the solution of the R-CFDS4 and

u(xj, tn) be the exact solution of problem (P1). Then there are the following error estimates:

∣
∣u∗n

j – u(xj, tn)
∣
∣ = O

(
λM+1 exp(N/d), τ 2, h4), n = 1, 2, . . . , N . (34)

Proof Let un
j be the solution of the CFDS4, then

∣
∣u∗n

j – u(xj, tn)
∣
∣ =

∣
∣
(
u∗n

j – un
j
)

+ un
j – u(xj, tn)

∣
∣ ≤ ∣

∣u∗n
j – un

j
∣
∣ +

∣
∣un

j – u(xj, tn)
∣
∣,

j = 1, 2, . . . , J – 1, (35)

since

∣
∣un

j – u(xj, tn)
∣
∣ = O

(
τ 2, h4). (36)

Meanwhile, according to Theorem 1 and vector norm, we get

∣
∣un

j – u(xj, tn)
∣
∣ ≤ ∥

∥u∗n – un
∥
∥

2 ≤ λM+1 exp(N/d). (37)

Thus, we can obtain Eq. (34). �
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5 A reduced fourth-order compact FDS for 2D parabolic problem and its error
analysis

In this section, we firstly construct alternating direction implicit fourth-order compact
finite difference scheme (ADI-CFDS4) for the 2D parabolic equations, then develop R-
ADI-CFDS4 for the 2D parabolic equations and provide error estimates between solutions
of the R-ADI-CFDS4 and exact solutions, which is similar to 1D parabolic problems.

Let Ω ⊂ R2 be a bounded domain. Consider the following initial-boundary value prob-
lem (P2):

⎧
⎪⎪⎨

⎪⎪⎩

∂u(x,y,t)
∂t – ( ∂2u(x,y,t)

∂x2 + ∂2u(x,y,t)
∂y2 ) = f (x, y, t), (x, y, t) ∈ Ω × (0, T),

u(xi, yj, t0) = ϕ(xi, yj), (x, y) ∈ Ω ,

u(x0, yj, tk) = g(yj, tk), (x, y, t) ∈ ∂Ω × (0, T)

(38)

Partition the domain Ω × (0, T) with xi = ihx (i = 0, 1, 2, . . . , L), yj = jhy (j = 0, 1, 2, . . . , J),
and tn = nτ (n = 0, 1, 2, . . . , N ), where τ is temporal step increment, hx and hy are the spatial
step increments on x-direction and y-direction, respectively.

Let un
i,j ≈ u(xi, yj, tn); r1 = τ

h2
x

, r2 = τ

h2
y

⎧
⎨

⎩

ε2
xun

i,j = 1
12 (un

i–1,j + 10un
i,j + un

i+1,j),

ε2
y un

i,j = 1
12 (un

i,j–1 + 10un
i,j + un

i,j+1)
(39)

and
⎧
⎨

⎩

δ2
x un

i,j = un
i–1,j – 2un

i,j + un
i+1,j,

δ2
y un

i,j = un
i,j–1 – 2un

i,j + un
i,j+1.

(40)

Then the ADI-CFDS4 of problem can be described as follows:

⎧
⎨

⎩

(ε2
x – r1

2 δ2
x )ūn+1

i,j = (r1ε
2
yδ

2
x + r2ε

2
xδ

2
y )un

i,j + τε2
xε

2
y f n+ 1

2
i,j ,

(ε2
y – r2

2 δ2
y )un+1

i,j = ūn+1
i,j + (ε2

y – r2
2 δ2

y )un
i,j.

(41)

In Eq. (41), 1 ≤ i ≤ L – 1, 1 ≤ j ≤ J – 1, 0 ≤ n ≤ N – 1.
The difference scheme is unconditionally stable [40], and the error is as follows:

∣
∣un

i,j – u(xi, yj, tn)
∣
∣ = O

(
τ 2, h4

x, h4
y
)
. (42)

Let un
l = un

i,j, f n
l = f n

i,j (l = (i – 1) · L + j, m = L · J , 1 ≤ l ≤ m, 1 ≤ j ≤ J , 1 ≤ i ≤ L, 1 ≤ n ≤ N ).
Using the similar methods as in Sect. 3, we obtain the POD base θ = θm×M such that θTθ =
IM×M . Then the corresponding vector formulation of Eq. (41) can be written as follows:

⎧
⎨

⎩

(K1 – r1
2 K2)ūn = (r1K2K1 + r2K2K1)un + τK1K1Fn,

(K2 – r2
2 K1)un+1 = ūn + (K1 – r2

2 K2)un,
(43)

where un = (un
1, un

2, un
3, . . . , un

m)T , Fn = (f n
1 , f n

2 , f n
3 , . . . , f n

m)T , and ūn = (ūn
1, ūn

2, ūn
3, . . . , ūn

m)T . The
form of K1 and K2 is the same as Eq. (21) except its order number. If un and ūn of
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Eq. (38) are substituted for u∗n = θm×M(αn)M×1, ūn = θm×M(ᾱn)M×1, Fn = θm×M(F̄n)M×1

(n = 0, 1, 2, . . . , N ), respectively, then we obtain the R-ADI-CFDS4 as follows:

⎧
⎨

⎩

θT (K1 – r1
2 K2)θᾱn = θT (r1K2K1 + r2K2K1)θαn + τθT K1K1θ F̄n,

θT (K2 – r2
2 K1)θαn+1 = ᾱn + θT (K2 – r2

2 K1)θαn,
(44)

where n = 0, 1, 2, 3, . . . , N , α0 = θT u0 = θT (u0
1, u0

2, . . . , u0
m)T .

After solving αn from Eq. (44), one gets the POD optimal solutions u∗n = θαn (n =
0, 1, 2, . . . , N ) of problem (P2).

Theorem 3 Let u∗n
i,j be the POD solutions u∗n = θαn (n = 0, 1, 2, . . . , N ) of Eq. (44). un

i,j be
the solutions of Eq. (43). u(xi, yj, tn) be the exact solutions of problem (P2). If ‖K1‖2 ≤ 1

2 and
‖K2‖2 ≤ 1

2 are uniformly chosen from {un
i,j}N

n=1, we conclude that

∣
∣u∗n

i,j – u(xi, yj, tn)
∣
∣ = O

(
λM+1 exp(N/d), τ 2, h4

x, h4
y
)
. (45)

6 Numerical examples
In this section, we use the four test problems to demonstrate the advantages of the R-
CFDS4 for 1D parabolic equations and the R-ADI-CFDS4 for 2D parabolic equations.
Our algorithm is implemented with MATLAB R2017a running on a desktop with Intel
Core i7 4790 CPU at 2.93 GHz and 7.98 GB memory.

Example 1 Consider 1D parabolic equation (SP1)

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – ∂2u

∂x2 = 0, 0 < t < 2, 0 < x < π ,

u(0, t) = u(π , t) = 0, 0 ≤ t ≤ 2,

u(x, 0) = sin(x), 0 ≤ x ≤ π .

The exact solution is u(x, t) = exp(–t) sin(x). We take the numerical solutions of CFDS4
with h = 0.02π , τ = 0.01 at t = 0.1, 0.2, 0.3, . . . , 2 as snapshots. It can be obtained by com-
puting that eigenvalue λ6 ≤ 6 × 10–16. The number of optimal bases is referred to the
paper [31]. By computation in Theorem 1, we know that as long as the initial five or more
eigenvectors of matrix AAT are chosen as the optimal basis, the R-CFDS4 can satisfy the
desirable accuracy requirement. Numerical solutions of R-CFDS4 and the difference be-
tween CFDS4 and R-CFDS4 at t = 0.4, 0.8, 1.2, 1.6, 2.0 have been drawn in Fig. 1, which
shows that the results of CFDS4 are in very good agreement with those of R-CFDS4. The
errors of CFDS4 and R-CFDS4 at several points and the computational time are also re-
ported in Table 1 and Table 2. This implies that the R-CFDS4 is more efficient than the
CFDS4 under guaranteeing with the sufficient accuracy of numerical solutions for solving
the 1D parabolic equation. In Fig. 2, the errors of CFDS4 and R-CFDS4 are almost similar.
Besides, the difference between the CFDS4 and R-CFDS4 is drawn, which means that R-
CFDS4 can achieve almost the same accuracy as CFDS4 under the same nodes and step.
The differences between the CFDS4 and R-CFDS4 with five optimal bases are no more
than 3 × 10–15 in Fig. 1. In Fig. 3 and Table 3, the R-CFDS4 solution based five POD bases
at different moments and details for consuming time at t = 6 have been given, which shows
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Figure 1 The figures of solutions of R-CFDS4(left) and difference(right) between R-CFDS4 and CFDS4 with
h = 0.02π and τ = 0.01 for SP1

Table 1 Numerical results of SP1 at t = 2, with h = 0.02π , τ = 0.01

x Exact R-CFDS4 Error (R-CFDS4) CFDS4 Error(CFDS4)

0.2π 0.079548 0.079547 1.3155e–06 0.079547 1.3155e–06
0.4π 0.128712 0.128709 2.1285e–06 0.128709 2.1285e–06
0.6π 0.128712 0.128709 2.1285e–06 0.128709 2.1285e–06
0.8π 0.079548 0.079547 1.3155e–06 0.079547 1.3155e–06
Time 0.025744 s 2.695269 s

Table 2 Numerical results of SP1 at t = 2, with h = 0.01π , τ = 0.0025

x Exact R-CFDS4 Error (R-CFDS4) CFDS4 Error (CFDS4)

0.2π 0.079548 0.079548 8.2217e–08 0.079548 8.2217e–08
0.4π 0.128712 0.128711 1.3303e–07 0.128711 1.3303e–07
0.6π 0.128712 0.128711 1.3303e–07 0.128711 1.3303e–07
0.8π 0.079548 0.079548 8.2217e–08 0.079548 8.2217e–08
Time 0.126824 s 49.099276 s

Figure 2 The errors of solutions of R-CFDS4(left) and CFDS4(right) with h = 0.02π and τ = 0.01 for SP1

that the R-CFDS4 can be extended to a time interval that is longer than the time interval
on which the snapshots were collected.

To show that Eq. (34) is fourth-order accurate in space and second-order in time, we first
let τ = 0.0002, then reduce h by factor of 2 each time. The data in Table 4 clearly show that
Eq. (34) is fourth-order accurate in space since the maximal error is reduced by a factor
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Figure 3 The figures of solutions of R-CFDS4(left) and difference(right) between R-CFDS4 and CFDS4 with
h = 0.02π , τ = 0.01 for SP1

Table 3 The consuming time of two schemes for SP1 at t = 6, with h = 0.02π , τ = 0.01

Seconds

CFDS4 Preparation 0.006603
Computational time 5.135296

R-CFDS4 Preparation 0.006708
SVD 0.001014
Computational time 0.048574

Table 4 The convergence order for R-CFDS4 at τ = 0.0002

Spatial step size Maximum error Convergence order

h = 0.1π 1.1028e–05
h = 0.05π 6.8638e–07 4.0060
h = 0.025π 4.2021e–08 4.0298
h = 0.0125π 1.7803e–09 4.5609

Table 5 The convergence order for R-CFDS4 at h = 0.0025π

Temporal step size Maximum error Convergence order

τ = 0.025 1.4098e–05
τ = 0.0125 3.5244e–06 2.0003
τ = 0.00625 8.8109e–07 2.0001
τ = 0.003125 2.2027e–07 2.0001

about 24 each time. In a similar way, the second-order accurate in time of Eq. (34) has
been confirmed because the maximal error is reduced by a factor about 22 each time at
h = 0.0025π in Table 5.

Example 2 Consider 1D parabolic equation (SP2)

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – ∂2u

∂x2 = xet – 6x, 0 < t ≤ 1, 0 < x < 1,

u(0, t) = 0, u(1, t) = 1 + et , 0 ≤ t ≤ 1,

u(x, 0) = x3 + x, 0 ≤ x ≤ 1.

The exact solution is u(x, t) = x(x2 + et). We take the numerical solutions of CFDS4 with
h = 0.02, τ = 0.01 at t = 0.05, 0.1, 0.15, . . . , 1 as snapshots. We choose the initial ten vectors
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Figure 4 The figures of solutions of R-CFDS4(left) and difference(right) between R-CFDS4 and CFDS4 with
h = 0.02 and τ = 0.01 for SP2

Table 6 Numerical results of SP2 at t = 1, with h = 0.02, τ = 0.01

x Exact R-CFDS4 Error (R-CFDS4) CFDS4 Error (CFDS4)

0.2 0.552561 0.552561 2.2473e–07 0.552561 2.2473e–07
0.4 0.660730 0.660730 3.0933e–07 0.660730 3.0933e–07
0.6 0.792848 0.792847 3.8266e–07 0.792847 3.8266e–07
0.8 0.954216 0.954216 4.6805e–07 0.954216 4.6805e–07
Time 0.013232 s 4.530407 s

Figure 5 The errors of solutions of R-CFDS4(left) and CFDS4(right) with h = 0.02 and τ = 0.01 for SP2

in the U as the optimal basis to ensure desirable accuracy requirement. It is shown that
eigenvalue λ11 ≤ 2 × 10–13 by computing. Similar to Example 1, numerical solutions of R-
CFDS4 and difference between R-CFDS4 and CFDS4 at t = 0.2, 0.4, 0.6, 0.8, 1.0 have been
drawn in Fig. 4. It is not difficult to see that the results of CFDS4 are in excellent agreement
with those of R-CFDS4. The errors of CFDS4 and R-CFDS4 are shown in Table 6 and
exhibited in Fig. 5. It is not difficult to see that the CFDS4 and R-CFDS4 are basically
identical. Furthermore, by comparing the expended CPU time of the R-CFDS4 with that
of the CFDS4 in Table 6 and Table 7, the obvious advantages of R-CFDS4 in computational
efficiency can be clearly found. The differences between the CFDS4 and R-CFDS4 with
ten optimal bases are no more than 8 × 10–10 in Fig. 4. In Fig. 6 and Table 8, the R-CFDS4
solution based ten POD bases at different moments and details for consuming time at t = 5
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Table 7 Numerical results of SP2 at t = 1, with h = 0.01, τ = 0.0025

x Exact R-CFDS4 Error (R-CFDS4) CFDS4 Error (CFDS4)

0.2 0.552561 0.552561 1.4043e–08 0.552561 1.4043e–08
0.4 0.660730 0.660730 1.9333e–08 0.660730 1.9333e–08
0.6 0.792848 0.792847 2.3916e–08 0.792847 2.3916e–08
0.8 0.954216 0.954216 2.9253e–08 0.954216 2.9253e–08
Time 0.153751 s 63.113938 s

Figure 6 The figures of solutions of R-CFDS4(left) and difference(right) between R-CFDS4 and CFDS4 with
h = 0.02 and τ = 0.01 for SP2

Table 8 The consuming time of two schemes for SP2 at t = 5, with h = 0.02, τ = 0.01

Seconds

CFDS4 Preparation 0.005328
Computational time 6.029794

R-CFDS4 Preparation 0.005478
SVD 0.002758
Computational time 0.128595

Table 9 The convergence order for R-CFDS4 at τ = 0.0025

Spatial step size Maximum error Convergence order

h = 0.05 0.017367
h = 0.025 0.001197 3.8588
h = 0.0125 0.000076 3.9772
h = 0.00625 4.841e–06 3.9726

have been given, which shows that the R-CFDS4 can be extended to a time interval that is
longer than the time interval on which the snapshots were collected.

In order to explore whether the convergence order is consistent with the theoretical
results, τ is fixed as 0.0025, then h is reduced by a factor of 2 each time. The maximal
error in Table 9 is reduced by a factor about 24 each time and has confirmed the fourth-
order accurate in space of Eq. (34). In a similar way, we fix h as 0.0025, the maximal error
is reduced by a factor about 22 each time in Table 10, which indicates that the R-CFDS4 is
second-order accurate in time.
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Table 10 The convergence order for R-CFDS4 at h = 0.0025

Temporal step size Maximum error Convergence order

τ = 0.05 1.6572e–05
τ = 0.025 4.1433e–06 1.9998
τ = 0.0125 1.0359e–06 1.9997
τ = 0.00625 2.7897e–07 1.8927

Figure 7 The figures of solutions of R-ADI-CFDS4(left) and difference(right) between R-ADI-CFDS4 and
ADI-CFDS4 at t = 4, with hx = hy = 0.02π and τ = 0.02 for SP3

Figure 8 The error of ADI-CFDS4 at t = 2, with hx = hy
= 0.02π and τ = 0.02 for SP3

Example 3 Consider the 2D parabolic equation (SP3)

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t = ∂2u

∂x2 + ∂2u
∂y2 , (x, y) ∈ Ω , 0 < t ≤ 2,

u(x, y, 0) = sin x sin y, (x, y) ∈ Ω ,

u(x, y, t) = 0, (x, y) ∈ ∂Ω , 0 < t ≤ 2,

where Ω = {(x, y); 0 ≤ x ≤ π , 0 ≤ y ≤ π}, ∂Ω denotes the boundary of Ω .
In this example, the exact solution is u(x, y, t) = e–2t sin x sin y. We take the numerical so-

lutions of ADI-CFDS4 with hx = hy = 0.02π , τ = 0.02 at t = 0.1, 0.2, 0.3, . . . , 2 as snapshots.
It is shown that eigenvalue λ6 ≤ 2 × 10–15 by computing. Similar with Example 1, we also
choose five POD bases for our computation of 2D parabolic equations. Numerical solu-
tions of R-ADI-CFDS4 and the difference between R-ADI-CFDS4 and ADI-CFDS4 have
been drawn in Fig. 7 and Fig. 8. We can clearly find that the numerical solutions of R-
ADI-CFDS4 are in very excellent agreement with ADI-CFDS4. In Table 13 and Table 14,
Error 1 is the error of R-ADI-CFDS4, Error 2 is the error of ADI-CFDS4. The errors of
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Table 11 The convergence order for R-ADI-CFDS4 at τ = 0.0001

Spatial step size Maximum error Convergence order

hx = hy = 0.1π 2.9853e–06
hx = hy = 0.05π 1.8597e–07 4.0047
hx = hy = 0.025π 1.1557e–08 4.0082
hx = hy = 0.0125π 6.6468e–10 4.1199

Table 12 The convergence order for R-ADI-CFDS4 at hx = hy = 0.02π

Temporal step size Maximum error Convergence order

τ = 0.05 6.1037e–05
τ = 0.025 1.5258e–05 2.0001
τ = 0.0125 3.8110e–06 2.0013
τ = 0.00625 9.4918e–07 2.0054

Figure 9 The figures of solutions of R-ADI-CFDS4(left) and difference(right) between R-ADI-CFDS4 and
ADI-CFDS4 at t = 2, with hx = hy = 0.02π and τ = 0.02 for SP3

Table 13 Numerical results of SP3 at time t = 2, with hx = hy = 0.02π , τ = 0.02

(x, y) Exact R-ADI-CFDS4 Error 1 ADI-CFDS4 Error 2

(0.2π , 0.2π ) 0.006328 0.006327 8.4207e–07 0.006327 8.4207e–07
(0.4π , 0.4π ) 0.016567 0.016564 2.2046e–06 0.016564 2.2046e–06
(0.6π , 0.6π ) 0.016567 0.016564 2.2046e–06 0.016564 2.2046e–06
(0.8π , 0.8π ) 0.006328 0.006327 8.4207e–07 0.006327 8.4207e–07
Time 0.371496 s 86.610579 s

ADI-CFDS4 and R-ADI-CFDS4 at several points and the computational time are shown
and compared in Table 13 and Table 14, which indicates that R-ADI-CFDS4 could save
more computational time than ADI-CFDS4 under guaranteeing the sufficient accuracy of
ADI-CFDS4. In Fig. 9 and Fig. 7, it can be found that the numerical solution of R-ADI-
CFDS4 is almost similar with the numerical solution of ADI-CFDS4. In Fig. 8, the error
of ADI-CFDS4 is depicted, which shows the sufficient accuracy of ADI-CFDS4. The dif-
ferences between the ADI-CFDS4 and R-ADI-CFDS4 with five optimal bases are no more
than 3 × 10–14 in Fig. 9 and Fig. 7. In Table 15, the details for consuming time at t = 4 have
been given, which shows the advantages of R-ADI-CFDS4.

In order to verify the convergence order of Eq. (42), we fix τ as 0.0001 in Table 11. The
maximal error is reduced by a factor about 24 each time, which shows the R-ADI-CFDS4 is
fourth-order accurate in space. Similarly, the data in Table 12 have confirmed the second-
order accurate in time of R-ADI-CFDS4.
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Table 14 Numerical results of SP3 at t = 2, with hx = hy = 0.01π , τ = 0.005

(x, y) Exact R-ADI-CFDS4 Error 1 ADI-CFDS4 Error 2

(0.2π , 0.2π ) 0.006328 0.006328 5.2630e–08 0.006328 5.2630e–08
(0.4π , 0.4π ) 0.016567 0.016567 1.3779e–07 0.016567 1.3779e–07
(0.6π , 0.6π ) 0.016567 0.016567 1.3779e–07 0.016567 1.3779e–07
(0.8π , 0.8π ) 0.006328 0.006328 5.2630e–08 0.006328 5.2630e–08
Time 5.321289 s 1004.683564 s

Table 15 The consuming time of two schemes for SP3 at t = 4, with hx = hy = 0.02π , τ = 0.02

Seconds

ADI-CFDS4 Preparation 0.792100
Computational time 173.644678

R-ADI-CFDS4 Preparation 0.798521
SVD 0.056670
Computational time 0.874024

Table 16 Numerical results of SP4 at t = 2, with h = 0.02π , τ = 0.02

(x, y) Exact R-ADI-CFDS4 Error 1 ADI-CFDS4 Error 2

(0.2π , 0.2π ) 0.046757 0.046758 6.7914e–07 0.046758 6.7914e–07
(0.4π , 0.4π ) 0.122412 0.122414 1.7780e–06 0.122414 1.7780e–06
(0.6π , 0.6π ) 0.122412 0.122414 1.7780e–06 0.122414 1.7780e–06
(0.8π , 0.8π ) 0.046757 0.046758 6.7914e–07 0.046758 6.7914e–07
Time 0.361219 s 80.801341 s

Table 17 Numerical results of SP4 at t = 2, with h = 0.01π , τ = 0.005

(x, y) Exact R-ADI-CFDS4 Error 1 ADI-CFDS4 Error 2

(0.2π , 0.2π ) 0.046757 0.046757 4.2442e–08 9.246652 4.2442e–08
(0.4π , 0.4π ) 0.122412 0.122412 1.1112e–07 24.208049 1.1112e–07
(0.6π , 0.6π ) 0.122412 0.122412 1.1112e–07 24.208049 1.1112e–07
(0.8π , 0.8π ) 0.046757 0.046757 4.2442e–08 9.246652 4.2442e–08
Time 5.349663 s 1049.7368756 s

Example 4 Consider the 2D parabolic equation (SP4)

⎧
⎪⎪⎨

⎪⎪⎩

∂u
∂t – ( ∂2u

∂x2 + ∂2u
∂y2 ) = e–t sin(x) sin(y), (x, y) ∈ Ω , 0 < t ≤ 2,

u(x, y, 0) = sin(x) sin(y), (x, y) ∈ Ω ,

u(x, y, t) = 0, (x, y) ∈ ∂Ω , 0 < t ≤ 2.

Ω = {(x, y); 0 ≤ x ≤ π , 0 ≤ y ≤ π}, ∂Ω denotes the boundary of Ω . The exact so-
lution is u(x, y, t) = e–t sin x sin y. We take the numerical solutions of ADI-CFDS4 with
hx = hy = 0.02π , τ = 0.02 at t = 0.1, 0.2, 0.3, . . . , 2 as snapshots. It is shown that eigenvalue
λ6 ≤ 7 × 10–15 by computing. Numerical solutions of R-ADI-CFDS4 and difference be-
tween R-ADI-CFDS4 and ADI-CFDS4 have been drawn in Fig. 10. We can clearly find
that the approximate solutions of R-ADI-CFDS4 are in very excellent agreement with ADI-
CFDS4. Error 1 and Error 2 are the same as in Example 3. The errors of several points and
computational time are written in Table 16 and Table 17, which shows the high efficiency
and reliability of R-ADI-CFDS4 compared with ADI-CFDS4. The differences between the
ADI-CFDS4 and R-ADI-CFDS4 with five optimal bases are no more than 4 × 10–14 in
Fig. 10 and Fig. 11. R-ADI-CFDS4 solution based five POD bases at t = 4 are given in
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Figure 10 The figures of solutions of R-ADI-CFDS4(left) and difference(right) between R-ADI-CFDS4 and
ADI-CFDS4 at t = 2, with hx = hy = 0.02π and τ = 0.02 for SP4

Table 18 The consuming time of two schemes for SP4 at t = 4, with hx = hy = 0.02π , τ = 0.02

Seconds

ADI-CFDS4 Preparation 0.759387
Computational time 152.172127

R-ADI-CFDS4 Preparation 0.759521
SVD 0.369322
Computational time 0.887663

Figure 11 The figures of solutions of R-ADI-CFDS4(left) and difference(right) between R-ADI-CFDS4 and
ADI-CFDS4 at t = 4, with hx = hy = 0.02π and τ = 0.02 for SP4

Table 19 The convergence order for R-ADI-CFDS4 at τ = 0.0001

Spatial step size Maximum error Convergence order

hx = hy = 0.2π 1.3969e–04
hx = hy = 0.1π 9.5413e–06 3.8719
hx = hy = 0.05π 5.9914e–07 3.9932
hx = hy = 0.025π 4.1990e–08 3.8348

Fig. 11, while the details for consuming time at t = 4 are listed in Table 18. Meanwile, we
also list the error of ADI-CFDS4 at t = 2 in Fig. 12.

The convergence order of R-ADI-CFDS4 is also verified. In Table 19, we first fix τ as
0.0001. Next, hx and hy are reduced a factor of 2 each time, the R-ADI-CFDS4 is fourth-
order accurate in space since the maximal error is reduced by a factor about 24 each time.
Then, in Table 20, we take hx = hy as 0.02π . The τ is reduced a factor of 2 each time,
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Table 20 The convergence order for R-ADI-CFDS4 at hx = hy = 0.02π

Temporal step size Maximum error Convergence order

τ = 0.2 1.9686e–04
τ = 0.1 4.8886e–05 2.0097
τ = 0.05 1.2212e–05 2.0011
τ = 0.025 3.0630e–06 1.9953

Figure 12 The error of ADI-CFDS4 at t = 2, with
hx = hy = 0.02π and τ = 0.02 for SP4

R-ADI-CFDS4 is second-order accurate in time since the maximal error is reduced by a
factor about 22 each time.

7 Conclusions
In this paper, we developed a reduced fourth-order compact difference scheme for solving
parabolic equations. The efficiency and accuracy of the proposed algorithm were exam-
ined by two 1D problems and two 2D problems. The numerical examples illustrated that
the fourth-order compact difference scheme coupled with POD technique not only keeps
high computational accuracy, but also brings significant computational time saving for
solving parabolic equation. In the future, we plan to improve our algorithm to solve more
complicated parabolic equations in three dimensions.

Appendix: Stability analysis
To study the stability of our scheme, we assume f = 0. Equation (22) can be written as
Auk+1 = Buk , where

A =
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By computing the formula of eigenvectors, the eigenvectors of A and B can be written as
follows:

λA,j =
5
6

+ r + 2
(

1
12

–
r
2

)

cos
jπ
J

, 1 ≤ j ≤ J – 1,

and

λB,j =
5
6

– r + 2
(

1
12

+
r
2

)

cos
jπ
J

, 1 ≤ j ≤ J – 1.

It is easy to conclude that the eigenvectors of A–1B are

λj =
λB,j

λA,j
=

5
6 – r + 2( 1

12 + r
2 ) cos jπ

J
5
6 + r + 2( 1

12 – r
2 ) cos jπ

J

, 1 ≤ j ≤ J – 1.

The |λj| ≤ 1 is equivalent to
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∣
∣
∣
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J
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∣
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12
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)

cos
jπ
J

∣
∣
∣
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It is easy to see that when r > 0, there is the following inequality:

∣
∣
∣
∣
5
6

+
1
6
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– r
(

1 – cos
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)∣
∣
∣
∣

2

≤
∣
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∣
5
6

+
1
6

cos
jπ
J

+ r
(

1 – cos
jπ
J

)∣
∣
∣
∣

2

, 1 ≤ j ≤ J – 1.

Because r = aτ

h2 > 0, we can conclude that |λj| ≤ 1 and ρ(A–1B) ≤ 1. From that, we can
deduce that Eq. (15) is unconditionally stable.
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