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Abstract
This paper is concerned with the inverse problem of determining geometric shape of
a part γ of the boundary of a perturbed strip Ω from a pair of Cauchy data of a
harmonic function u in Ω . This leads to the study of the direct problem. Using the
variational method, we show that is well posed, and by the integral equation method
we seek the solution in the form of combined double- and single-layer potential. For
the identification of γ we prove a uniqueness result, that is, a pair of Cauchy data on
the accessible part Γ0 uniquely determines the missing part γ of the boundary, and
we derive a system of nonlinear integral equations equivalent to our inverse problem.
We present numerical examples for both the direct and inverse problems.
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1 Introduction
We consider the perturbed strip Ω ⊂ R2 as follows:

Ω =
{

(x, y) ∈ R2 : 0 < y < 1 – h(x)
}

, (1)

where h : R → [0, 1] is a continuous function which is a parametrization of a local pertur-
bation of a strip Ω0 = {(x, y) ∈ R2 : 0 < y < 1}. We assume that there exist a > 0 and 0 < b < 1
such that h ∈ C2[–a, a] and it satisfies

(1) h(x) = 0 if |x| ≥ a; (2) 0 ≤ h(x) ≤ b if |x| ≤ a.

The boundary Γ of Ω is decomposed as Γ = Γ0 ∪Γ1 with Γ0 ∩Γ1 = ∅ and Γ1 = Γ –
1 ∪γ ∪Γ +

1

(see Fig. 1) where γ is the arc

γ =
{

(x, y) ∈ R2 : y = 1 – h(x), |x| ≤ a
}

.

For a given function f ∈ H3/2(R) consider the Dirichlet problem for the Laplace equation:


u = 0 in Ω (2)
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Figure 1 Domain Ω

subject to the boundary condition

u = f on Γ0, u = 0 on Γ1. (3)

The inverse problem we are concerned with consists in recovering the shape of γ : y =
1 – h(x), –a ≤ x ≤ a, from the Cauchy data f := u|Γ0 and g := ∂u

∂y |Γ0 .
This problem arises in electrostatic or thermal imaging methods, detecting a corrosion

surface in nondestructive testing. This could be the case for an electrically conducting
specimen, which is subject to wear by corrosion, causing material loss or cracks. In prac-
tice, it often happens that the unknown part of the boundary that has suffered corrosion
is not accessible to direct inspection. The aim is to detect the presence of such defects
by nondestructive methods from the knowledge of the imposed voltage f := u|Γ0 and the
measured resulting current g := ∂u

∂y |Γ0 on the accessible part Γ0 of the boundary Γ . Various
application related to the above model problem are described, for example, in [1, 11] (see
also the references therein). Let us mention the articles [2, 5, 10, 15, 17] on the inverse
boundary value problems for the Laplace equation in a bounded domain. Our problem
presents additional difficulties related to the unbounded nature of the domain and, to our
knowledge, it was not considered in the literature. In this work we generalize the potential
method used in the precursor works of Kress and Rundel [9, 10].

The paper is organized as follows. In Sect. 2 we will be concerned with the direct prob-
lem, we proceed by showing the existence and uniqueness of the solution. Using Green’s
function, we obtain a representation of the solution in the form of potentials and we
give a numerical test. Section 3 is devoted to the study of the inverse problem, a unique-
ness theorem is obtained, we derive the two-by-two system of integral equations and de-
scribe the proposed iteration scheme. The paper concludes with some numerical exam-
ples.

2 The direct problem
2.1 Existence and uniqueness
The following notations are used throughout this text. For s ≥ 0, we say that f ∈ Hs(R) if
the norm

‖f ‖Hs(R) :=
(∫ +∞

–∞

(
1 + |ξ |2)s∣∣̂f (ξ )

∣∣2 dξ

) 1
2
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is finite. For s = 0, we denote ‖f ‖L2(R) := ‖f ‖0. Here the Fourier transform pair of f is defined
by the formulae

f̂ (ξ ) ≡F (f )(ξ ) :=
1√
2π

∫ +∞

–∞
e–ixξ f (x) dx,

f (x) =
1√
2π

∫ +∞

–∞
eixξ f̂ (ξ ) dξ .

(4)

We will show that the direct problem (2)–(3) is well posed.

Theorem 1 Suppose that f ∈ H3/2(R). Then
1. There exists a recovery function uf ∈ H2(Ω) such that uf (x, 0) = f (x).
2. The problem (2)–(3) has a unique solution u ∈ H1(Ω).
3. The solution u ∈ H2

loc(Ω).

Proof 1. Using Fourier transform of function f , we define uf by

uf (x, y) = w0(x, y)ϕ0(y),

where

w0(x, y) = F–1(e–y|ξ | f̂ (ξ )
)

and ϕ0 is a truncation function of class C2[0, 1] such that

ϕ0(y) =

⎧
⎨

⎩
1 if 0 < y < b/2,

0 if b < y < 1.
(5)

It is easy to see that uf ∈ H2(Ω) and uf (x, 0) = f (x).
2. We put v = u – uf and F = –	uf ∈ L2(Ω). Then v solves the homogeneous Dirichlet

problem:

⎧
⎨

⎩

v = F in Ω ;

v = 0 on Γ .
(6)

The bilinear form a(v, w) =
∫
Ω

∇v∇w dx dy, v, w ∈ H1
0 (Ω), is coercive since Ω is bounded in

the y direction (see [3]). By the Lax–Milgram theorem, there exists a unique weak solution
v ∈ H1

0 (Ω).
3. Now we show that v ∈ H2

loc(Ω). The corners A and B of Γ1 have an angle less that π ,
then from the regularity theory it follows that v ∈ H2(ΩR), ΩR = {(x, y) ∈ Ω ; |x| ≤ R}, for
any R ≥ a (see [6]).

This completes the proof. �

Theorem 2 The Dirichlet-to-Neumann map f �→ g = ∂u
∂y (x, 0) where u is the solution of the

Dirichlet problem (2)–(3) is continuous from H3/2(R) to L2(R).
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Proof From the previous theorem, g ∈ L2
loc(R). It suffices to prove that g is in L2(R0, +∞)

for R0 ≥ a + 1. Let v ∈ H1
0 (Ω) be the solution of (6). We put w = θ (x)v where θ ∈ C2(R) is

a truncation function such that θ (x) = 0 for x ≤ a and θ (x) = 1 for x ≥ R0. Then w satisfies
the equation

⎧
⎨

⎩

w = F1 in Ω+

a = ]a, +∞[ × ]0, 1[;

w = 0 on Γ +
a = ∂Ω+

a ,
(7)

with F1 = θF + vθ ′′ + 2 ∂v
∂xθ ′ ∈ L2(Ω+

a ). We can assume in (7) that a = 0 (after a translation
in the direction of x) and use sine-Fourier transform

ŵ(ξ , y) =
√

2
π

∫ ∞

0
w(x, y) sin (ξx) dx, F̂1(ξ , y) =

√
2
π

∫ ∞

0
F1(x, y) sin (ξx) dx,

to obtain the second order differential equation in y:

⎧
⎨

⎩
ŵyy – ξ 2ŵ = F̂1(ξ , y), y ∈ ]0, 1[,

ŵ(ξ , 0) = 0, ŵ(ξ , 1) = 0,
(8)

with the solution

ŵ(ξ , y) =
∫ 1

0
G(ξ , y, z)̂F1(ξ , z) dz

and G(ξ , y, z) being the Green’s function

G(ξ , y, z) =
1

ξ cosh ξ

⎧
⎨

⎩
sinh(ξz) sinh(ξ (1 – y)), z ≤ y;

sinh(ξy) sinh(ξ (1 – z)), z ≥ y.
(9)

Then

∂ŵ
∂y

(ξ , 0) =
–1

cosh ξ

∫ 1

0
sinh

(
ξ (1 – z)

)
F̂1(ξ , z) dz,

which leads to

∀ξ ≥ 0,
∣∣∣∣
∂ŵ
∂y

(ξ , 0)
∣∣∣∣

2

≤
∫ 1

0

∣∣̂F1(ξ , z)
∣∣2 dz

and then
∥∥∥∥
∂w
∂y

(·, 0)
∥∥∥∥

L2(0,+∞)
≤ ‖F1‖L2((0,+∞)×]0,1[).

On the other hand, we have

‖F1‖L2((R0,+∞)×]0,1[) ≤ 2‖θ‖C2
(‖F‖L2(Ω) + ‖v‖H1(Ω)

)

≤ C1‖F‖L2(Ω) ≤ C2‖f ‖H3/2(R),
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since w = v, for x ≥ R0, and v = u – uf , so we get

g(x) =
∂w
∂y

(x, 0) +
∂uf

∂y
(x, 0), x ≥ R0,

and deduce that

‖g‖L2 ≤ C2‖f ‖3/2 +
∥∥f ′∥∥

0 ≤ C3‖f ‖3/2,

ending the proof. �

Theorem 3 (Uniqueness) Suppose that u ∈ H1
loc(Ω) satisfies

⎧
⎪⎪⎨

⎪⎪⎩


u = 0 in Ω ,

γ0(u) = 0 on Γ ,
∫ 1

0 |u(x, y)|2 dy → 0 as |x| → +∞.

(10)

Then u = 0.

Proof 1. In the semi-strip Ω+
a = ]a, +∞[ × ]0, 1[, u has the representation

u(x, y) =
∞∑

n=1

sin(nπy)
(
Ane–nπ (x–a) + Bnenπ (x–a)),

and then, for R > a,

∫ 1

0

∣∣u(R, y)
∣∣2 dy =

2
π

∞∑

n=1

(
Ane–nπ (R–a) + Bnenπ (R–a))2.

If R → +∞, we deduce that for all n ∈ N∗,

lim
R→+∞

[
Ane–nπ (R–a) + Bnenπ (R–a)] = 0,

thus ∀n ≥ 1, Bn = 0 and An = 2
π

∫ 1
0 u(a, y) sin(nπy) dy.

Then we deduce the following estimate, for all |x| ≥ R and y ∈ [0, 1]:

∣∣u(x, y)
∣∣ +

∣∣∣∣
∂u
∂x

(x, y)
∣∣∣∣ ≤ C(a)‖u‖H1(Ωa)e–πR. (11)

2. Suppose (10) holds. Applying the first Green’s identity in the set ΩR = {(x, y) ∈ Ω ; |x| <
R}, for R ≥ a, we have

∫

ΩR

|∇u|2 dx dy =
∫ 1

0

(
u

∂u
∂x

∣∣∣∣
x=R

+ u
∂u
∂x

∣∣∣∣
x=–R

)
dy.

Inequality (11) implies that

∫

ΩR

|∇u|2 dx dy = O
(
e–2πR)

.
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Letting R → +∞, we deduce that ∇u = 0 in Ω , and thus u is constant in Ω . Since γ0(u) = 0,
it follows that u = 0 in Ω . �

2.2 Unperturbed problem
By an unperturbed problem we mean the problem on the strip Ω0 = R × ]0, 1[:

(P0)

⎧
⎨

⎩

u0 = 0 in Ω0,

u0(x, 0) = f (x), u0(x, 1) = 0, ∀x ∈ R.

Using the partial Fourier transform with respect to x, we obtain the solution

u0(x, y) =
1√
2π

∫ +∞

–∞
a(ξ , y)f̂ (ξ )eixξ dξ , (12)

where

a(ξ , y) =
sinh(ξ (1 – y))

sinh ξ
. (13)

Proposition 1 Assume that f ∈ H3/2(R). Then u0 ∈ H2(Ω0) and it satisfies

(i) ‖u0‖H2(Ω0) ≤ C‖f ‖H3/2(R), (ii)
∥∥∥∥
∂u0

∂y
(x, 0)

∥∥∥∥
L2(R)

≤ C‖f ‖L2(R).

Proof (i) We use the asymptotic behavior of a(ξ , y), that is,

a(ξ , y) � 1 – y if ξ → 0 and a(ξ , y) � e–y|ξ | if |ξ | → +∞.

Indeed, for example, we have

∫

Ω0

∣∣∣∣
∂2u0

∂x2

∣∣∣∣

2

dx dy =
∫

R
ξ 4∣∣f̂ (ξ )

∣∣2
(∫ 1

0

∣∣a(ξ , y)
∣∣2 dy

)
dξ

and

∫ 1

0

∣∣a(ξ , y)
∣∣2 dy ≤ C

∫ 1

0
e–2y|ξ | dy ≤ 1

2|ξ | .

Then

∫

Ω0

∣∣∣∣
∂2u0

∂x2

∣∣∣∣

2

dx dy ≤
∫

R
|ξ |3∣∣f̂ (ξ )

∣∣2 dξ ≤ ‖f ‖H3/2(R).

(ii) We have ∂̂u0
∂y (ξ , 0) = –(ξ coth ξ )̂f (ξ ). Since the function ξ �→ ξ coth ξ is bounded on R,

∥
∥∥∥
∂u0

∂y
(x, 0)

∥∥∥∥
L2(R)

≤ C‖f ‖0. �
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2.3 Green’s function of the strip Ω0

The Green’s function of the Dirichlet problem for the Laplace equation in the strip Ω0 is
defined by (see [13]) by

G
(
(x, y), (ξ ,η)

)
=

1
4π

log

[
coshπ (x – ξ ) – cosπ (y + η)
coshπ (x – ξ ) – cosπ (y – η)

]
,

which satisfies in the sense of the distribution

⎧
⎪⎪⎨

⎪⎪⎩

	G = δ(x – ξ , y – η) in Ω0,

G|y=0 = 0,

G|y=1 = 0.

(14)

For a fixed point source (ξ ,η) ∈ Ω , G exhibits the following asymptotic behavior:

G
(
(x, y), (ξ ,η)

)
= –

1
2π

log r +
1

4π
log

(
4 sinπη

π

)
+ O(r) (15)

as r =
√

(x – ξ )2 + (y – η)2 → 0. Also

G
(
(x, y), (ξ ,η)

)
= O

(
1
|x|

)
as |x| → +∞ (

uniformly in y ∈ [0, 1]
)

(16)

and

∂G
∂x

(
(x, y), (ξ ,η)

)
= O

(
e–π |x|) as |x| → +∞ (

uniformly in y ∈ [0, 1]
)
. (17)

2.4 Integral equation method
Let u be the solution of problem (2)–(3), and u0 the solution of (P0). We put v0 = u – u0,
and then v0 ∈ H1(Ω) ∩ H2

loc(Ω) is a solution of the following problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩


v0 = 0 in Ω ,

v0 = 0 on Γ0,

v0 = –u0 on γ ,

v0 = 0 on Γ1 \ γ .

(18)

We introduce the boundary integral equation formulation for (18) as follows. For this we
apply Green’s second theorem to the harmonic functions v0 and G(·, (ξ ,η)) in the domain
ΩR,ε = ΩR \ B((ξ ,η), ε), ΩR = {(x, y) ∈ Ω : |x| < R} to obtain

∫

∂ΩR,ε

(
v0

∂G
∂n

– G
∂v0

∂n

)
ds = 0.

The function v0 ∈ H1(Ω) satisfies the decay property in (10). Then from the proof of The-
orem 3 (part 1, estimate (11)), we deduce that

lim
R→+∞

∫ 1

0

(∣∣v0(±R, y)
∣∣2 +

∣∣∣∣
∂v0

∂x
(±R, y)

∣∣∣∣

2)
dy = 0,
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and (16)–(17) lead to the limit

lim
R→+∞

∫ 1

0

(
v0

∂G
∂x

– G
∂v0

∂x

)∣∣∣∣
x=±R

dy = 0. (19)

Then, as R → +∞ and ε → 0, we obtain the integral representation formula

v0(ξ ,η) =
∫

γ

(
v0

∂G
∂n

– G
∂v0

∂n

)
ds, (ξ ,η) ∈ Ω . (20)

We put ψ = ∂v0
∂n |γ , which is unknown, and q = –v0|γ = u0|γ , which is known through (12).

When (ξ ,η) tends to a point M = (x, 1 – h(x)) of γ , and utilizing the properties of single
and double layer potentials (see [9]), we obtain the integral equation of the first kind

Sψ =
1
2

q + Dq on γ , (21)

where S and D are respectively the single- and double-layer potentials defined for M =
(x, y) ∈ γ by

Sψ(M) =
∫

γ

G
(
M, M′)ψ

(
M′)ds

(
M′), Dq(M) =

∫

γ

∂G
∂n

(
M, M′)q

(
M′)ds

(
M′).

The solvability of (21) follows from the potential theory developed in the framework of
Sobolev spaces H̃s(γ ), s > 1/2 (see [9, 10, 12, 14]). Once equation (21) is solved, we have
the solution

v0(M) =
∫

γ

(
q
(
M′)∂G

∂n
(
M, M′) – G

(
M, M′)ψ

(
M′)

)
ds

(
M′), M ∈ Ω . (22)

For the numerical solution of the integral equation (21), a parametrization of γ is required.

2.5 Parametrization of the integral equation
In order to use the results of integral equation on a contour, we consider the extension
γ̃ of γ defined by γ̃ = γ ∪ γ +, where γ + = {(x, 1 + h(x)), –a < x < a}. Extending the data
q on γ + by symmetry q(x, 1 + h(x)) = –q(x, 1 – h(x)) and using the parametrization of γ̃ ,
z(t) = (x(t), y(t)), 0 ≤ t ≤ 2π , we transform (21) as follows:

1
2π

∫ 2π

0
L(t, s)ϕ(s) ds =

1
2

q(t) +
∫ 2π

0
M(t, s)q(s) ds, 0 ≤ t ≤ 2π , (23)

where

ϕ(t) = ψ
(
z(t)

)∣∣z′(t)
∣∣, q(t) = q

(
z(t)

)
, (24)

and

L(t, s) = log

[
cosh(x(t) – x(s)) – cos(y(t) – y(s))
cosh(x(t) – x(s)) – cos(y(t) + y(s))

]
, (25)
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M(t, s) =
sinh(x(t) – x(s))y′(s) + sin(y(t) + y(s))x′(s)

cosh(x(t) – x(s)) – cos(y(t) + y(s))

+
– sinh(x(t) – x(s))y′(s) + sin(y(t) – y(s))x′(s)

cosh(x(t) – x(s)) – cos(y(t) – y(s))
. (26)

For the discretization of the integral operators, we note that kernel L(t, s) can be decom-
posed in the form

L(t, s) = log

(
4 sin2

(
t – s

2

))
+ k(t, s), (27)

where k and M are smooth with diagonal values

k(t, t) = log

(
16 sin2 y(t)

|z′(t)|2
)

(28)

and

M(t, t) =
–y′′(t)
|z′(t)|2 + π cot

(
πy(t)

)
. (29)

Using the decomposition (27), we write equation (23) in operational form

(A + K)ϕ =
1
2

q + Bq, (30)

where

Aϕ(t) =
1

2π

∫ 2π

0

[
log

(
4 sin2

(
t – s

2

))
– 2

]
ϕ(s) ds, 0 ≤ t ≤ 2π (31)

and

Kϕ(t) =
1

2π

∫ 2π

0

[
k(t, s)+2

]
ϕ(s) ds, Bq(t) =

∫ 2π

0
M(t, s)q(s) ds, 0 ≤ t ≤ 2π . (32)

The properties of the operators A, K and B are given in the following lemma [9].

Lemma 1 For r ≥ 0, we have:
– The operator A : Hr[0, 2π ] → Hr+1[0, 2π ] is bounded and bijective.
– The operator K is compact from Hr[0, 2π ] to Hr+1[0, 2π ].
– B is bounded in Hr+1[0, 2π ].

The potentials S and D defined in (22) have the following properties (see [9]).

Lemma 2 The single-layer potential defines a bounded linear operator from H̃–1/2(γ ) into
H1

loc(Ω). The double-layer potential defines a bounded linear operator from H̃1/2(γ ) into
H1

loc(Ω).

Theorem 4 The integral equation (30) has a unique solution, i.e., N(A + K) = {0}.
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Proof Assume that (A + K)ϕ = 0. We associate to ϕ the potential v0(M) defined by the
integral (22) (with q = 0). Using Lemma 2 and the asymptotic behavior of G(M, M′) when
|x| → +∞ (see (16)–(17)), we can prove that v0 satisfies the uniqueness Theorem 3. Then
v0 = 0 in Ω , it follows that ψ = ∂v0

∂n |γ = 0. Therefore ϕ(t) = ψ(z(t))|z′(t)| = 0. �

2.6 Nyström’s method
In this section we use Nyström’s method for the numerical approximation of the integral
equation (30) of the first kind with weakly singular kernels.

Following Kress [9], we construct numerical quadratures for the improper integral

(Qϕ)(t) =
1

2π

∫ 2π

0
log

[
4 sin2

(
t – s

2

)]
ϕ(s) ds (33)

by replacing the continuous periodic function ϕ by its trigonometric interpolation poly-
nomial described in [9, Sect. 11.3]. Using the Lagrange basis (Lj), we obtain

(Qnϕ)(t) �
2n–1∑

j=0

Rn
j (t)ϕ(tj), tj =

jπ
n

, (34)

with the quadrature weights

Rn
j (t) =

1
2π

∫ 2π

0
log

[
4 sin2

(
t – s

2

)]
Lj(s) ds, j = 0, . . . , 2n – 1. (35)

More precisely, we have Rn
j (tk) = Rn

|j–k| such that

Rn
j = –

1
n

{ n–1∑

m=1

1
m

cos

(
mj
π

)
+

(–1)j

2n
, j = 0, . . . , 2n – 1

}

. (36)

Thus, we have the algebraic system

2n–1∑

j=0

(
Rn

|i–j| +
1
n

k(ti, tj)
)

ϕ(tj) =
1
2

g(ti) +
1
n

2n–1∑

j=0

M(ti, tj)g(tj), i = 0, . . . , 2n – 1. (37)

Remark 1 In the numerical computation, we approach the Fourier integral (12) by the
trigonometric polynomial

u0n(x, y) = π

n∑

j=–n

a(ξj, y)f̂ (ξj)eixξj , ξj = jπ . (38)

In particular, if f (x) = qa(x – x0), where qa is an even function (wavelet), then f̂ (ξ ) =
eiξx0 q̂a(ξ ), and we have

u0n(x, y) = π

n+1∑

j=1

Hj(y) cos
(
π j(x – x0)

)
, (39)
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Figure 2 (left) Solution ψ of the integral equation (30); (right) Solution v0 given by (22) in the domain ΩR ,
R = 4

where

Hj(y) = a(ξj, y)q̂a(ξj). (40)

2.7 Numerical implementation and examples
To illustrate our method, we show a numerical test with the boundary condition f (t) and
the parametrization of the arc h(t) such that

f (t) = a1 exp
(
–c1(t – t1)2) + a2 exp

(
–c2(t – t2)2),

with a1 = 3, c1 = 2, a2 = 1, c2 = 1, t1 = –1, t2 = 1, and

h(t) = H
(
a2 – t2) × [

(t – t0)2 + b
]
,

with a = 2, b = 1, H = 0.03, t0 = 1.
In the discretization we use the parameters a = 2, n = 120, which is the number of points

in [0,π ], and xj = a cos( jπ
n ), j = 1, . . . , n, the points of [–a, a].

In the approximation of the Fourier integral (38), we use the interval ξ ∈ [0, ξmax] with
ξmax = Mπ , M = n/2 and the points ξj = jπ

2 , j = 1, . . . , n. Figures 2 and 3 show the results of
the simulation.

3 The inverse problem
It is shown (in Sect. 2) that, for f ∈ H3/2(R), there exists a unique solution u ∈ H1(Ω) ∩
H2

loc(Ω) of (2)–(3). Recall that our inverse problem can be formulated as follows: given
f := u|Γ0 and g := ∂u

∂y |Γ0 , g ∈ L2(R), determine h(x) the parametrization of γ , i.e.,

γ : y = 1 – h(x), –a ≤ x ≤ a.

We proceed with giving a uniqueness theorem.

3.1 Uniqueness for the inverse problem
Theorem 5 Let Ω1 and Ω2 be two perturbed strips with two boundary arcs γ1 and γ2

of class C2, respectively. Denote by u1 and u2 the solutions to the problem (2)–(3) for the
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Figure 3 (left) Solution u0 of the unperturbed problem; (right) Solution u = v0 + u0 of the direct problem
(2)–(3)

Figure 4 Domain W

domains Ω1 and Ω2, respectively, and assume that

u1 = u2 and
∂u1

∂y
=

∂u2

∂y
on Γ0. (41)

Then γ1 = γ2.

Proof (1) Suppose that Ω1 �= Ω2 and put u = u1 – u2, then 	u = 0 in Ω12 = Ω1 ∩ Ω2 and
u|y=0 = ∂u

∂y |y=0 = 0. Holmgren’s uniqueness theorem (see [16]) implies that u = 0 in a neigh-
bourhood of the axis y = 0, and by analyticity u1 = u2 in Ω12.

(2) Without loss of generality, we may assume that the open set W = Ω2 \ Ω̄1 is con-
nected and not empty (see Fig. 4). Then from the boundary conditions we can deduce
that u2 = 0 on the boundary of W . Now by the maximum–minimum principle for har-
monic functions, we can conclude that u2 = 0 in W , and consequently, by analyticity it
follows that u2 = 0 in Ω2. However, this contradicts the fact that f is not identically zero,
and the proof is complete. �

3.2 Nonlinear integral equations
Our approach for solving the inverse problem is based on a system of nonlinear and ill-
posed integral equations. We shall use identity (22) to derive two nonlinear integral equa-
tions for the unknowns (ψ , h), hence we obtain

H′q – Hψ = g, (42)



Khélifa and Chorfi Boundary Value Problems        (2019) 2019:132 Page 13 of 19

where

Hψ(x) =
∫ a

–a
ψ

(
x′)H

(
x, x′, 1 – h

(
x′))ω

(
x′)dx′, ω

(
x′) =

√
1 + h′2(x′), (43)

with

H
(
x, x′, y′) =

∂G
∂y

(
(x, y),

(
x′, y′))

∣∣∣∣
y=0

(44)

and

H′q(x) =
∫ a

–a
q
(
x′)H ′(x, x′, h

(
x′))dx′, (45)

with

H ′(x, x′, h
(
x′)) =

∂H
∂x′

(
x, x′, 1 – h

(
x′))h′(x′) +

∂H
∂y′

(
x, x′, 1 – h

(
x′)). (46)

Then we obtain the system:

S(h)ψ =
1
2

q + D(h)q, q(x) = u0
(
x, 1 – h(x)

)
, (47)

H′(h)q – H(h)ψ = g. (48)

The kernels of the integral operators are given in Appendix 2.
System (47)–(48) is linear in ψ and nonlinear in h. We remark that H and H ′ are C∞

in x and decay faster than e–π |x| (we assume that h ∈ C1[–a, a]). Hence g ∈ C∞(R) and
|g(x)| = O(e–π |x|).

3.3 The iterative procedure
We suggested the following iterative method (Newton-type method) for approximately
solving system (47)–(48). It involves partial linearization of the system with respect to the
variable h, the boundary parametrization. Given an approximation h0, we first solve the
linear equation

S(h0)ψ =
1
2

q0 + D(h0)q0, q0(x) = u0
(
x, 1 – h0(x)

)
(49)

for ψ . Then, keeping ψ fixed, we replace (48) by the linearized equation

DH′(h0; wq0) – DH(h0, wψ)= H(h0)ψ – H′(h0)q0 + g, (50)

which we have to solve for w in order to improve an approximate boundary given by the
parametrization h into the new approximation given by h = h0 + w. The method consists in
iterating this procedure. For a theoretical foundation of such a regularized Newton-type
method for nonlinear ill-posed problems, in general, we refer to [4].

The Fréchet derivatives DH(h; k) and DH′(h; k) can be found by differentiating their
kernels with respect to h, their representations are given in Appendix 2.
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Equation (47) is solved by Nyström’s method. Since the integral operators DH′ and DH
have kernels in L2(R × ]–a, a[), they are compact from L2(]–a, a[) to L2(R), and therefore
the integral equation (50) is ill-posed and requires a regularization. We use a regulariza-
tion based on the least squares method [8]. All the computational codes are written in
MATLAB.11 and in particular the MATLAB codes developed by Hansen [7] for solving
the discrete ill-posed equation (50) has been adopted in our computations.

Our algorithm consists in the following steps:
Step 1: Given exact h and f , we compute Cauchy data g by solving integral equation
(23) and using equation (42).
Step 2: Perturb the data gδ = g + δε(t), where ε(t) is a Gaussian noise.
Step 3: Initialize h = h0 and fix the parameters m, n of the discrete problem.
Step 4: For it = 1 to itermax do
– compute q0(x) = u0(x, 1 – h(x)) and solve equation (49) by Nyström’s method
– solve the linearized equation (50) for w using a least squares algorithm.
– put h = h0 + w
end do

3.4 Numerical examples and discussion
In this final section we present some numerical results to illustrate the accuracy and ef-
fectiveness of the reconstruction method as described in the previous section. We choose
three profiles of γ to test our recovery algorithm.

Example 1 h1(x) = 0.2(1 – x2

4 ), –2 ≤ x ≤ 2.

Example 2 h2(x) = 0.03(4 – x2)(1 + x2), –2 ≤ x ≤ 2.

Example 3 h3(x) = 0.01(4 – x2)(2 – 2x + x2), –2 ≤ x ≤ 2.

The initial guess was taken to be h0(x) = 0.1(1 – x2

4 ) for all examples.
The synthetic Cauchy data (f , g) were obtained by solving the Dirichlet problem in Ω

(see Fig. 5), with boundary condition u = f with

f (t) = 3e–2t2
.

In the examples we approximate function h for the unknown boundary curve γ (t) =
(a cos t, 1 – h(t)), t ∈ [0,π ], by a trigonometric polynomial

h(t) ≈ sin t

(

a0 +
m∑

k=1

ak cos kt + bk sin kt

)

.

In all the tests we used n = 50 grid points yj = a cos( jπ
n ), j = 0, . . . , n, for the arc γ (y) =

(y, 1 – h(y)) (n = 150 for the simulated data) and xi = –2a + i 2a
n , i = 0, . . . , 2n, points of

collocation. Linear equation (50) is reduced to a ((2n + 1) × (2m + 1)) system. Then the
problem becomes determining (2m + 1) coefficients (a0, ak , bk) of the approximation. In
view of the ill-posedness, this approximating linear system is solved via the least squares
algorithm lsqr_b.m from Hansen’s package “Regularization tools” [7].
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Figure 5 Cauchy data calculated by the direct algorithm, function f (left), function g for Example 1 (right)

Figure 6 Reconstruction of h1 after one iteration for exact data (left), and noisy data with δ = 0.05 (right)

To obtain data with noise, we add random noise of given level δ (relative to l2-discreet
norm ‖g‖2) to the simulated data g as

gδ(t) = g(t) + δ‖g‖2σ (t),

where σ (t) represents random numbers uniformly distributed on the interval (–1; 1).
In Figs. 6–9, we present the numerical results for Examples 1, 2 and 3, respectively, in-

volving both exact and noisy data. The reconstructions are obtained after one iteration for
all examples. The numerical experiments show rather satisfying reconstructions under the
restrictions:

– 0 ≤ h(x) ≤ 0.2,
– with adequate initial guess h0,
– m = p the degree of the polynomial which interpolates h (p = 2 for h1 and p = 4 for h2

and h3).
– 0 ≤ δ ≤ 0.1.

We remark that with arbitrary initial guess (in particular, for h0 = 0) the algorithm fails to
recover the boundary. In general, the quality of the reconstruction is affected by the shape
of γ (see Figs. 8–9). As expected, the first iteration is stable with respect to the addition
of random noise.
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Figure 7 Reconstruction of h2 after one iteration for exact data (left), and noisy data with δ = 0.01 (right)

Figure 8 Reconstruction of h2 for δ = 0.05 (left), for δ = 0.1 (right)

Figure 9 Reconstruction of h3 after one iteration for exact data (left), and noisy data with δ = 0.01 (right)

4 Conclusion
In this paper, direct and inverse boundary value problems associated with the two-
dimensional harmonic equation have been investigated. We obtained the following re-
sults:

– The direct problem was studied systematically by employing the boundary integral
method.
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– The inverse problem was reduced to a nonlinear system which was approximated by
a Gauss–Newton method (partially).

– The unknown arc of the boundary was approximated by a trigonometric polynomial.
The resulting ill-conditioned system of linear algebraic equations has been regularized
by using a least squares method.

– The numerical results obtained showed satisfying reconstructions for exact and noisy
data with suitable initial guess.

Further research is required in order to improve the performance of the algorithm for
the reconstruction of the boundary. It is necessary to introduce additional regularization
treatments such as the choice of the parametrization of h, initial guess h0 and a stopping
rule for terminating the iterations.

Appendix 1: Derivative of nonlinear integral operator
In the following we state a useful formula. Let f (x, y, z) be a real function defined and of
class C1(D) in an open set D of R3. To a function g ∈ C1([a, b]) we associated a function F
defined by an integral

F(x) =
∫ b

a
f
(
x, y, g(y)

)
dy, x ∈ [c, d].

We consider the nonlinear operator

F : V → W

defined by the mapping g → F between the Banach spaces V = C1
0[a, b] and W = C[c, d].

We can prove the theorem.

Theorem 6 F is Fréchet differentiable. The derivative, in the direction w, Aw = DF (g; w)
is given by

(Aw)(x) =
∫ b

a

∂f
∂z

(
x, y, g(y)

)
w(y) dy, x ∈ [c, d]. (51)

Now we consider the case of the function F1 defined by

F1(x) =
∫ b

a
f1

(
x, y, g(y)

)
g ′(y) dy, x ∈ [c, d],

then A1w = DF1(g; w) is given by

(A1w)(x) =
∫ b

a

[
∂f1

∂z
(
x, y, g(y)

)(
1 – g ′(y)

)
–

∂f1

∂y
(
x, y, g(y)

)]
w(y) dy, x ∈ [c, d]. (52)

Appendix 2: Kernels of integral operators
We proceed with giving the expressions of the kernels of the nonlinear integral opera-
tors H and H′ and their derivatives. Following the definitions (44)–(46), we deduce the
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formulas

H
(
x, x′, y′) =

1
2

[
sinπy′

coshπ (x – x′) – cosπy′

]
, (53)

(
∂H
∂x′ ,

∂H
∂y′

)(
x, x′, y′)

=
π

2

(
sinπy′ sinhπ (x – x′)

(coshπ (x – x′) – cosπy′)2 ,
cosπy′ coshπ (x – x′) – 1
(coshπ (x – x′) – cosπy′)2

)
, (54)

and

H ′(x, x′, h
(
x′)) =

∂H
∂x′

(
x, x′, 1 – h

(
x′))h′(x′) +

∂H
∂y′

(
x, x′, 1 – h

(
x′)). (55)

The Fréchet derivatives of the integral operators H and H′ with respect to h can be ob-
tained by differentiating their kernels with respect to h (see (51)–(52)). More precisely, we
have

DH(h; k)(x) =
π

2

∫ a

–a

[
cosπh(x′) coshπ (x – x′) – 1
(coshπ (x – x′) + cosπh(x′))2

]
k
(
x′)ω

(
x′)dx′,

ω
(
x′) =

√
1 + h′2(x′),

(56)

and

DH′(h; k)(x) =
∫ a

–a

[(
∂2H
∂y′2

(
x, x′, 1 – h

(
x′)) –

∂2H
∂x′2

(
x, x′, 1 – h

(
x′))

)
q
(
x′)

–
∂H
∂x′

(
x, x′, 1 – h

(
x′))q′(x′)

]
k
(
x′)dx′

=
∫ a

–a

[
K1

(
x, x′)q

(
x′) – K2

(
x, x′)q′(x′)]k

(
x′)dx′, (57)

with

K1
(
x, x′) = –2π2 × sinπh(x′) sinh2 π (x – x′)

(coshπ (x – x′) + cosπh(x′))3 (58)

and

K2
(
x, x′) =

π

2
× sinπh(x′) sinhπ (x – x′)

(coshπ (x – x′) + cosπh(x′))2 . (59)

In the previous equations we assume that h ∈ C1[–a, a] and h(±a) = 0, hence q ∈ C1[–a, a].
For simplicity, we suppose in the differentiation that ω(x′) is independent of h, i.e., depends
on h0 of the previous step.
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