
Zheng and Fang Boundary Value Problems        (2019) 2019:134 
https://doi.org/10.1186/s13661-019-1246-5

R E S E A R C H Open Access

Qualitative properties for a
pseudo-parabolic equation with nonlocal
reaction term
Yadong Zheng1 and Zhong Bo Fang1*

*Correspondence:
fangzb7777@hotmail.com
1School of Mathematical Sciences,
Ocean University of China, Qingdao,
P.R. China

Abstract
This paper deals with the qualitative properties of solutions for null Neumann initial
boundary value problem to a nonlocal pseudo-parabolic equation in the sense of
H1(Ω )-norm. We establish sufficient conditions to guarantee that the solution with
initial energy exists globally or blows up at finite time under an appropriate range of
parameters. Moreover, life span of the blow-up solution, decay rate of the global
solution, and growth estimate are derived.

MSC: 35S11; 35B40; 35B44

Keywords: Pseudo-parabolic equation; Nonlocal reaction term; Blow-up; Life span;
Asymptotic behavior

1 Introduction
We consider a pseudo-parabolic equation with nonlocal reaction term

ut – k�ut – �u = |u|p –
1

|Ω|
∫

Ω

|u|p dx, (x, t) ∈ Ω × (
0, t∗), (1.1)

subject to null Neumann boundary and initial conditions

∂u
∂n

= 0, (x, t) ∈ ∂Ω × (
0, t∗), (1.2)

u(x, 0) = u0(x), x ∈ Ω , (1.3)

where Ω ⊂ R
N (N ≥ 1) is a bounded domain with smooth boundary ∂Ω , p > 0, t∗ is

the maximal existence time of solutions, the initial data u0(x) ∈ H1(Ω) ∩ Lp+1(Ω) satis-
fies u0(x) �≡ 0 and

∫
Ω

u0(x) dx = 0.
Nonlocal pseudo-parabolic equation like (1.1) describes a variety of physical phenom-

ena, such as the seepage of homogeneous fluids through a fissured rock, the unidirectional
propagation of nonlinear, dispersive, long waves, heat conduction problems with ther-
modynamic temperature and conduction temperature, and the analysis of nonstationary
processes in semiconductors in the presence of sources (see [1–5]). In particular, equa-
tion (1.1) is a possible model for populations with the tendency to form groups, where
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u(x, t) represents the density of the species at position x and time t, and the reaction term
|u|p – 1

|Ω|
∫
Ω

|u|p dx is considered as the rate of reproduction. Nonlocal term
∫
Ω

up dx is a
way to express that the evolution of the species in a point of space depends not only on
nearby density but also on the mean value of the total amount of species due to the effects
of spatial inhomogeneity (see [6–9]). Nonlocal reaction term can also describe Darwinian
evolution of a structured population density or the behaviors of cancer cells with therapy
(see [10–12]).

In this paper, we are interested in studying the qualitative properties of solutions for a
pseudo-parabolic equation (1.1) with nonlocal reaction term |u|p – 1

|Ω|
∫
Ω

|u|p dx under
the null Neumann boundary condition, which has a typical structure of mass conserva-
tion. Let us recall some backgrounds firstly. When k = 0, (1.1) reduces to a classical heat
equation, and there have been many good results (see [13–21] and the references therein).
For instance, Budd et al. [13] considered the following semilinear heat equation with non-
local reaction term:

ut – uxx = u2 –
∫ 1

0
u2 dx, (x, t) ∈ (0, 1) × (

0, t∗),

they derived the existence of a trivial steady solution. Moreover, the finite time blow-up
phenomena for sufficiently large initial data were proved by using a comparison principle
in a Fourier space. The above equation is also related to the Navier–Stokes equation on an
infinite slab (see [14]). Hu and Yin [15] studied the nonlocal semilinear parabolic equation
in a higher dimensional space

ut – �u = |u|p–1u –
1

|Ω|
∫

Ω

|u|p–1u dx, (x, t) ∈ Ω × (
0, t∗),

for the superlinear case (p > 1), they established a result of blow-up with negative initial
energy by using a convexity argument. Later, Gao and Han [16] extended the result to the
case of positive initial energy. Soufi et al. [17] investigated a similar problem and estab-
lished a relation between the finite time blow-up of solutions and the negativity of initial
energy for 1 < p ≤ 2 by using gamma-convergence argument. They also conjectured that
the relation might hold for all p > 1, a positive answer to which was given by Jazar in [18].
In addition, Niculescu and Roventa [19] considered a more general initial boundary value
problem of nonlocal semilinear parabolic equation given by

ut – �u = f
(|u|) –

1
|Ω|

∫
Ω

f
(|u|)dx, (x, t) ∈ Ω × (

0, t∗),

with the null Neumann boundary condition. They established a blow-up result when f (|u|)
belongs to a large class of nonlinearities and the initial energy was non-positive by using
the convexity method. Recently, concerning the research on the blow-up rate and conver-
gence results of solutions for the following reaction-diffusion model in one-dimensional
space

ut – uxx = |u|p –
1

2π

∫ 2π

0
|u|p dx, (x, t) ∈ (0, 2π ) × (

0, t∗),
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in the sense of suitable norm, one can refer to [20, 21]. Yan and Yang [22] studied the Neu-
mann initial boundary value problem of semilinear parabolic equation with logarithmic
nonlinearity

ut – �u = u log |u| –
1

|Ω|
∫

Ω

u log |u|dx, (x, t) ∈ Ω × (
0, t∗).

By using the logarithmic Sobolev inequality and energy estimate methods, they proved
that the solution with negative initial energy blows up at infinity and the solution with
positive initial energy is non-extinct. Besides, for the recent advances in thin-film equation
and quasilinear equation with nonlocal reaction term, we refer to [23–27].

When k �= 0, most of the research concentrated on studying qualitative properties to
the Cauchy problem and the Dirichlet initial boundary value problem, but much less ef-
fort has been devoted to the Neumann problem. For the equation with local source terms
ut – k�ut – �u = up, Cao et al. [28] studied its Cauchy problem and got the critical ex-
ponent of global existence and the critical Fujita exponent by the integral representation
and the contraction-mapping principle. They also proved that the appearance of the third
order term �ut has no effect on the critical Fujita exponent for the classical heat equa-
tion. Xu and Su [29] investigated the global existence, blow-up, and asymptotic behavior
of solutions to the Dirichlet initial boundary value problem with arbitrary initial energy
by using the potential well method. Later on, Luo [30] estimated the life span of solutions
with negative initial energy, and the decay estimate of the global solution was established.
Moreover, Xu and Zhou [31] extended the results in [30] to the case of nonnegative initial
energy. For pseudo-parabolic equations with nonlocal source terms, Yang and Liang [32]
discussed a nonlocal semilinear pseudo-parabolic equation

ut – �ut – �u = up(x, t)
∫

Ω

k(x, y)up+1(y, t) dy, (x, t) ∈ Ω × (
0, t∗),

under null Dirichlet boundary condition, they obtained the upper and lower bounds of the
blow-up time and the exponential decay estimates of the global solution. However, they
did not consider the nonlocal reaction terms of the same mass conservation structure as
our model (1.1).

Motivated by the above works, the study of qualitative properties of solutions for non-
local pseudo-parabolic model (1.1)–(1.3) in the H1(Ω)-norm has not been proceeded yet.
Our main difficulties lie in finding the influence of the third order term �ut and nonlocal
reaction term on the qualitative properties, and the solutions may be sign-changing. Us-
ing the method of energy functional and the convexity technique, we establish sufficient
conditions to guarantee the solution with initial energy exists globally or blows up in finite
time under appropriate norms. Moreover, life span of the blow-up solution, decay rate of
the global solution, and growth estimate are derived.

The rest of our paper is organized as follows. In Sect. 2, we introduce some preliminaries
and main results. Then we give the proofs of the main results in Sect. 3.

For simplicity, we take k = 1. All the discussions and results obtained in this paper are
valid for any positive number k.
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2 Preliminaries and main results
In this section, we introduce some notations, functionals, sets, and main results. For con-
venience, we denote by ‖ · ‖r and ‖ · ‖H1 = (‖ · ‖2

2 + ‖∇ · ‖2
2) 1

2 the norms of Lr(Ω) for
1 ≤ r ≤ +∞ and H1(Ω), respectively. Meanwhile, we introduce the following space:

X := L∞(Ω) or C(Ω̄),

H :=
{

u ∈ H1(Ω) :
∂u
∂n

∣∣∣∣
∂Ω

= 0,
∫

Ω

u dx = 0
}

,

and the weak continuous function spaces C0
w(0, T ; L2(Ω)) on (0, T).

Note that our model satisfies the conservation of mass, and the initial condition implies
that

∫
Ω

u(x, t) dx =
∫

Ω

u0(x) dx = 0,

and hence, there holds Poincaré’s inequality in H1(Ω)

‖u‖2
2 ≤ Cp‖∇u‖2

2, (2.1)

where Cp = Cp(Ω , 2) is the Poincaré’s inequality constant in H1(Ω).
The local existence of the solutions for sublinear and linear cases (0 < p ≤ 1) can be ob-

tained via the Galerkin approximation method [24] when u0(x) ∈ H , then problem (1.1)–
(1.3) has solutions satisfying

u ∈ L∞(0, T ; H) ∩ C0
w
(
0, T ; L2(Ω)

)
, ut ∈ L2(0, T ; H).

For superlinear cases (p > 1), we can obtain the existence and uniqueness of solutions
for problem (1.1)–(1.3) directly according to [8, Theorem 1 and Proposition 3] when
u0(x) ∈ X.

Next, we define two functionals J(u) and I(u) by

J(u) :=
1
2

∫
Ω

|∇u|2 dx –
1

p + 1

∫
Ω

|u|pu dx,

I(u) :=
∫

Ω

|∇u|2 dx –
∫

Ω

|u|pu dx.

Furthermore, it is not difficult to obtain the following equality:

∫ t

0
‖uτ‖2

H1 dτ + J
(
u(t)

)
= J(u0), (2.2)

and then J(u(t)) is nonincreasing with respect to t.
Now we state our main results.

Theorem 1 (Superlinear case) Assume that p > 1 and u0(x) ∈ H1(Ω) ∩ Lp+1(Ω). If one of
the following two conditions holds:
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(i) J(u0) < 0,
(ii) 0 ≤ J(u0) < p–1

2(p+1)(Cp+1)‖u0‖2
H1 ,

then the solution u(x, t) to problem (1.1)–(1.3) blows up at finite time t∗ in the sense of
H1(Ω)-norm. Moreover, t∗ can be estimated by (3.8) and (3.22), respectively, i.e.,

t∗ <
‖u0‖2

H1

(1 – p2)J(u0)

and

t∗ ≤ 8(p + 1)(Cp + 1)‖u0‖2
H1

(p – 1)2[(p – 1)‖u0‖2
H1 – 2(p + 1)(Cp + 1)J(u0)]

.

Furthermore, if p satisfies

1 < p < +∞, N = 1, 2; 1 < p ≤ N + 2
N – 2

, N ≥ 3,

then the lower bound of t∗ can be estimated by (3.24), i.e.,

t∗ ≥ 1
Cp+1

s (p – 1)‖u0‖p–1
H1

,

where Cs = Cs(Ω , p) is the Sobolev embedding constant from H1(Ω) to Lp+1(Ω).

Remark 1 The upper bound of the blow-up time obtained from (3.8) and (3.22) is larger
than the lower bound from (3.24). In fact, due to p > 1, we can easily get the following two
inequalities by Poincaré’s inequality and Sobolev’s inequality:

1
2

∫
Ω

|∇u0|2 dx +
1

p + 1
Cp+1

s ‖u0‖p+1
H1 ≥ 1

p + 1

∫
Ω

|u0|pu0 dx,

1
2

∫
Ω

|∇u0|2 dx –
(p – 1)‖u0‖2

H1

2(p + 1)(Cp + 1)
+

4Cp+1
s ‖u0‖p+1

H1

p – 1
≥ 1

p + 1

∫
Ω

|u0|pu0 dx.

Therefore, the life spans of the blow-up solution are given by

1
Cp+1

s (p – 1)‖u0‖p–1
H1

≤ t∗ <
‖u0‖2

H1

(1 – p2)J(u0)

and

1
Cp+1

s (p – 1)‖u0‖p–1
H1

≤ t∗ ≤ 8(p + 1)(Cp + 1)‖u0‖2
H1

(p – 1)2[(p – 1)‖u0‖2
H1 – 2(p + 1)(Cp + 1)J(u0)]

,

respectively.

Corollary 1 Assume that p > 1 and u0(x) ∈ H1(Ω) ∩ Lp+1(Ω). Then the solution u(x, t) to
problem (1.1)–(1.3) blows up at finite time t∗ in the sense of H1(Ω)-norm with arbitrary
initial energy.
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Theorem 2 (Sublinear case) Assume that 0 < p < 1 and u0(x) ∈ H1(Ω) ∩ Lp+1(Ω). Then
the solution u(x, t) to problem (1.1)–(1.3) is global. Moreover, if J(u0) < 0 and ‖u0‖2

H1 >
(Cp+1)χ (ε)|Ω|

2–Cpε
, then u(x, t) decays and is positive in the sense of H1(Ω)-norm and W 1,s(Ω)-

norm (∀s > 1), respectively, and we have the following estimates:

∥∥u(t)
∥∥2

H1 ≤
(

‖u0‖2
H1 –

(Cp + 1)χ (ε)|Ω|
2 – Cpε

)
exp

{
–

2 – Cpε

Cp + 1
t
}

+
(Cp + 1)χ (ε)|Ω|

2 – Cpε
,

where 0 < ε < 2
Cp

, χ (ε) = 1–p
2 ( p+1

ε
)

1
1–p .

Theorem 3 (Linear case) Assume that 0 < p < 1 and u0(x) ∈ H1(Ω) ∩ Lp+1(Ω). If J(u0) < 0,
then the solution u(x, t) to problem (1.1)–(1.3) grows within (0, t∗) in the sense of H1(Ω)-
norm, and we have

∥∥u(t)
∥∥2

H1 ≥ ‖u0‖2
H1 exp

{
–4J(u0)
‖u0‖2

H1
t
}

.

3 Proofs of main results
In this section, we prove our main results in detail.

Proof of Theorem 1 (i) For the case of J(u0) < 0, we define the functions

ϕ(t) := ‖u‖2
H1 , ψ(t) := –2(p + 1)J(u).

Firstly, multiplying both sides of equation (1.1) by u(x, t) and using Green’s formula, we
derive

ϕ′(t) = –2I(u) = –2
∫

Ω

|∇u|2 dx + 2
∫

Ω

|u|pu dx. (3.1)

Since p > 1, we have

ψ(t) = –(p + 1)
∫

Ω

|∇u|2 dx + 2
∫

Ω

|u|pu dx < ϕ′(t). (3.2)

Secondly, multiplying both sides of equation (1.1) by ut(x, t) and using Green’s formula,
we obtain

∫
Ω

|ut|2 dx +
∫

Ω

|∇ut|2 dx = –
∫

Ω

∇u · ∇ut dx +
∫

Ω

|u|put dx. (3.3)

Differentiating ψ(t) and utilizing (3.3), it yields

ψ ′(t) = 2(p + 1)
∫

Ω

(|ut|2 + |∇ut|2
)

dx > 0. (3.4)

By (3.4), the fact J(u0) < 0, and the definition of ψ(t), it follows that ψ(t) > 0 for any t ∈
[0, t∗).
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Afterwards, combining (3.2), (3.4), ψ(t) > 0, and the Cauchy–Schwarz inequality, we
conclude

ϕ(t)ψ ′(t) = 2(p + 1)
[∫

Ω

(|u|2 + |∇u|2)dx
][∫

Ω

(|ut|2 + |∇ut|2
)

dx
]

≥ 2(p + 1)
[∫

Ω

(uut + ∇u · ∇ut) dx
]2

=
p + 1

2
[
ϕ′(t)

]2 >
p + 1

2
ϕ′(t)ψ(t), (3.5)

which implies

ψ ′(t)
ψ(t)

>
p + 1

2
ϕ′(t)
ϕ(t)

. (3.6)

Integrating (3.6) from 0 to t, one can see that

ψ(t) >
ψ(0)

(ϕ(0))
p+1

2

(
ϕ(t)

) p+1
2 ,

then by (3.2) we get

ϕ′(t)

(ϕ(t))
p+1

2
>

ψ(0)

(ϕ(0))
p+1

2
. (3.7)

Integrating (3.7) from 0 to t, we deduce

ϕ(t) >
[(

ϕ(0)
)– p–1

2 –
p – 1

2
ψ(0)

(ϕ(0))
p+1

2
t
]– 2

p–1
,

which implies that ϕ(t) blows up at some finite time t∗; what is more, we have

t∗ <
‖u0‖2

H1

(1 – p2)J(u0)
. (3.8)

(ii) For the case of 0 ≤ J(u0) < p–1
2(p+1)(Cp+1)‖u0‖2

H1 , we may also assume J(u(t)) ≥ 0 for all
t ∈ [0, t∗). In fact, if there exists t0 such that J(u(t0)) < 0, then the solution of problem
(1.1)–(1.3) will blow up at finite time according to (i) with t0 as the initial time.

Now, we suppose that the solution u(x, t) is global. Then we have

∫ t

0
‖uτ‖H1 dτ ≥

∥∥∥∥
∫ t

0
uτ dτ

∥∥∥∥
H1

=
∥∥u(t) – u0

∥∥
H1 ≥ ∥∥u(t)

∥∥
H1 – ‖u0‖H1 . (3.9)

Combining (2.2), (3.9), and Hölder’s inequality, we obtain

∥∥u(t)
∥∥

H1 ≤ ‖u0‖H1 +
∫ t

0
‖uτ‖H1 dτ ≤ ‖u0‖H1 + t

1
2

(∫ t

0
‖uτ‖2

H1 dτ

) 1
2

= ‖u0‖H1 + t
1
2
(
J(u0) – J

(
u(t)

)) 1
2 ≤ ‖u0‖H1 + t

1
2
(
J(u0)

) 1
2 . (3.10)
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On the other hand, by direct calculation and Poincaré’s inequality (2.1), one can see that

d
dt

(
1
2
∥∥u(t)

∥∥2
H1

)
= –I

(
u(t)

)
= –(p + 1)J

(
u(t)

)
+

p – 1
2

∥∥∇u(t)
∥∥2

2

= –(p + 1)J
(
u(t)

)
+

(p – 1)Cp

2(Cp + 1)
∥∥∇u(t)

∥∥2
2 +

p – 1
2(Cp + 1)

∥∥∇u(t)
∥∥2

2

≥ –(p + 1)J
(
u(t)

)
+

(p – 1)Cp

2(Cp + 1)
∥∥u(t)

∥∥2
2 +

p – 1
2(Cp + 1)

∥∥∇u(t)
∥∥2

2

=
p – 1

Cp + 1

[
–

(Cp + 1)(p + 1)
p – 1

J
(
u(t)

)
+

1
2
∥∥u(t)

∥∥2
H1

]
. (3.11)

Since d
dt J(u(t)) ≤ 0, then by (3.11) we easily get

d
dt

[
–

(Cp + 1)(p + 1)
p – 1

J
(
u(t)

)
+

1
2
∥∥u(t)

∥∥2
H1

]

≥ p – 1
Cp + 1

[
–

(Cp + 1)(p + 1)
p – 1

J
(
u(t)

)
+

1
2
∥∥u(t)

∥∥2
H1

]
. (3.12)

Let

y(t) := –
(Cp + 1)(p + 1)

p – 1
J
(
u(t)

)
+

1
2
∥∥u(t)

∥∥2
H1 ,

then (3.12) implies

y′(t) ≥ p – 1
Cp + 1

y(t).

Calculating the above inequalities directly, we have

∥∥u(t)
∥∥2

H1 ≥ 2(Cp + 1)(p + 1)
p – 1

J
(
u(t)

)
+ 2y(0)e

p–1
Cp+1 t . (3.13)

By condition (ii), we see

y(0) = –
(Cp + 1)(p + 1)

p – 1
J(u0) +

1
2
‖u0‖2

H1 > 0.

Recall that J(u(t)) ≥ 0 and from (3.13), we deduce the inequality

∥∥u(t)
∥∥

H1 ≥ (
2y(0)

) 1
2 e

p–1
2(Cp+1) t ,

which contradicts with (3.10) for t sufficiently large. Thus u(x, t) blows up at some finite
time t∗.

Next, we give an upper bound estimate of t∗. For this, we firstly claim that

I
(
u(t)

)
=

∫
Ω

|∇u|2 dx –
∫

Ω

|u|pu dx < 0, ∀t ∈ [0, t∗). (3.14)
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In fact, employing condition (ii) and Poincaré’s inequality (2.1), we obtain

I(u0) = (p + 1)J(u0) –
p – 1

2
‖∇u0‖2

2

<
p – 1

2(Cp + 1)
‖u0‖2

H1 –
p – 1

2
‖∇u0‖2

2

=
p – 1

2(Cp + 1)
‖u0‖2

H1 –
Cp(p – 1)
2(Cp + 1)

‖∇u0‖2
2 ≤ 0.

So, if (3.14) does not hold, there must exist t1 ∈ (0, t∗) such that

I
(
u(t1)

)
= 0, I

(
u(t)

)
< 0, ∀t ∈ [0, t1).

Then, by d
dt ( 1

2‖u(t)‖2
H1 ) = –I(u(t)), we get ‖u(t)‖2

H1 is strictly increasing on [0, t1), so it
follows from condition (ii) that

J(u0) <
p – 1

2(p + 1)(Cp + 1)
‖u0‖2

H1 <
p – 1

2(p + 1)(Cp + 1)
∥∥u(t1)

∥∥2
H1 . (3.15)

On the other hand, since J(u(t)) is nonincreasing with respect to t, we derive

J(u0) ≥ J
(
u(t1)

)
=

1
p + 1

I
(
u(t1)

)
+

p – 1
2(p + 1)

∥∥∇u(t1)
∥∥2

2

=
p – 1

2(p + 1)
∥∥∇u(t1)

∥∥2
2

=
Cp(p – 1)

2(p + 1)(Cp + 1)
∥∥∇u(t1)

∥∥2
2 +

p – 1
2(p + 1)(Cp + 1)

∥∥∇u(t1)
∥∥2

2

≥ p – 1
2(p + 1)(Cp + 1)

∥∥∇u(t1)
∥∥2

H1 ,

which contradicts with (3.15). Hence I(u(t)) < 0 and ‖u(t)‖2
H1 is strictly increasing on t ∈

[0, t∗).
For any T̄ ∈ (0, t∗), we define a functional by

H(t) :=
∫ t

0

∥∥u(τ )
∥∥2

H1 dτ +
(
t∗ – t

)‖u0‖2
H1 + α(t + β)2, ∀t ∈ [0, T̄], (3.16)

where α, β are two positive constants which will be determined later. Then

H(0) = t∗‖u0‖2
H1 + αβ2 > 0. (3.17)

Since ‖u(t)‖2
H1 is strictly increasing, we can write

H ′(t) =
∥∥u(t)

∥∥2
H1 – ‖u0‖2

H1 + 2α(t + β)

=
∫ t

0

d
dτ

∥∥u(τ )
∥∥2

H1 dτ + 2α(t + β)

≥ 2α(t + β) > 0. (3.18)
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Thus H(t) ≥ H(0) and H(t) is strictly increasing on [0, T̄]. Furthermore, applying (3.18)
and (2.1), we deduce

H ′′(t) =
d
dt

∥∥u(t)
∥∥2

H1 + 2α = –2I
(
u(t)

)
+ 2α

= (p – 1)
∥∥∇u(t)

∥∥2
2 – 2(p + 1)J

(
u(t)

)
+ 2α

≥ p – 1
Cp + 1

‖u0‖2
H1 – 2(p + 1)J(u0) + 2(p + 1)

∫ t

0
‖uτ‖2

H1 dτ . (3.19)

By using the Cauchy–Schwarz inequality, Hölder’s and Young’s inequalities, we can derive

ξ (t) :=
(∫ t

0

∥∥u(τ )
∥∥2

H1 dτ + α(t + β)2
)(∫ t

0
‖uτ‖2

H1 dτ + α

)

–
(

1
2

∫ t

0

d
dτ

∥∥u(τ )
∥∥2

H1 dτ + α(t + β)
)2

≥ 0, ∀t ∈ [0, T̄]. (3.20)

For any constant μ > 0, by (3.18)–(3.20), we have

H(t)H ′′(t) – μ
(
H ′(t)

)2

= H(t)H ′′(t) – 4μ

(
1
2

∫ t

0

d
dτ

∥∥u(τ )
∥∥2

H1 dτ + α(t + β)
)2

= H(t)H ′′(t) + 4μ

[(∫ t

0

∥∥u(τ )
∥∥2

H1 dτ + α(t + β)2
)(∫ t

0
‖uτ‖2

H1 dτ + α

)]

– 4μ
[
H(t) –

(
t∗ – t

)‖u0‖2
H1

](∫ t

0
‖uτ‖2

H1 dτ + α

)

= H(t)H ′′(t) + 4μξ (t) – 4μ
[
H(t) –

(
t∗ – t

)‖u0‖2
H1

](∫ t

0
‖uτ‖2

H1 dτ + α

)

≥ H(t)H ′′(t) – 4μH(t)
(∫ t

0
‖uτ‖2

H1 dτ + α

)

≥ H(t)
[

p – 1
Cp + 1

‖u0‖2
H1 – 2(p + 1)J(u0) +

(
2(p + 1) – 4μ

)∫ t

0
‖uτ‖2

H1 dτ – 4μα

]
.

Taking μ = p+1
2 and restricting α to satisfy

0 < α ≤ p – 1
2(p + 1)(Cp + 1)

‖u0‖2
H1 – J(u0)

yields

H(t)H ′′(t) –
p + 1

2
(
H ′(t)

)2 ≥ 0. (3.21)

Let W (t) = (H(t))
1–p

2 for t ∈ [0, T̄], then by H(t) > 0, H ′(t) > 0, p > 1, and (3.21), we obtain

W ′(t) =
1 – p

2
(
H(t)

)– p+1
2 H ′(t) < 0, ∀t ∈ [0, T̄],
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and

W ′′(t) =
1 – p

2
(
H(t)

)– p+1
2 –1

[
H(t)H ′′(t) –

p + 1
2

(
H ′(t)

)2
]

≤ 0, ∀t ∈ [0, T̄].

Then it follows from W ′′(t) ≤ 0 that

W (T̄) – W (0) =
∫ T̄

0
W ′(t) dt ≤ W ′(0)T̄ .

Since W (0) = (H(0))
1–p

2 > 0, it follows that

T̄ ≤ –
W (0)
W ′(0)

=
‖u0‖2

H1

(p – 1)αβ
t∗ +

β

p – 1
.

Hence, let T̄ → t∗ and β be large enough such that

‖u0‖2
H1

(p – 1)α
< β < +∞,

then we obtain

t∗ ≤ αβ2

(p – 1)αβ – ‖u0‖2
H1

.

Consider the function

f (x, y) :=
x2

(p – 1)x –
‖u0‖2

H1
y

,

where

x ∈
( ‖u0‖2

H1

(p – 1)y
, +∞

)
, y ∈

(
0,

p – 1
2(p + 1)(Cp + 1)

‖u0‖2
H1 – J(u0)

]
.

For fixed x, we easily know f (x, y) achieves its minimum at

y = y0 :=
p – 1

2(p + 1)(Cp + 1)
‖u0‖2

H1 – J(u0).

Through simple calculation, one can see that

f ′(x, y0) =
xy0((p – 1)xy0 – 2‖u0‖2

H1 )
((p – 1)xy0 – ‖u0‖2

H1 )2 , x ∈
( ‖u0‖2

H1

(p – 1)y0
, +∞

)
,

and f (x, y0) achieves its minimum at x = x0 :=
2‖u0‖2

H1
(p–1)y0

. Hence, it holds

t∗ ≤ 8(p + 1)(Cp + 1)‖u0‖2
H1

(p – 1)2[(p – 1)‖u0‖2
H1 – 2(p + 1)(Cp + 1)J(u0)]

. (3.22)
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In addition, if we make a further assumption for p as follows:

1 < p < +∞, N = 1, 2; 1 < p ≤ N + 2
N – 2

, N ≥ 3,

then, by (3.1) and Sobolev’s embedding inequality from H1(Ω) to Lp+1(Ω), we obtain

ϕ′(t) ≤ 2
∫

Ω

|u|pu dx ≤ 2Cp+1
s

(∫
Ω

|∇u|2 dx
) p+1

2 ≤ 2Cp+1
s

(
ϕ(t)

) p+1
2 , (3.23)

where Cs = Cs(Ω , p) is the optimal embedding constant. Integrating (3.23) from 0 to t, we
derive

ϕ(t) ≤ [(
ϕ(0)

)– p–1
2 – Cp+1

s (p – 1)t
]– 2

p–1 .

Therefore, we have

t∗ ≥ 1
Cp+1

s (p – 1)‖u0‖p–1
H1

. (3.24)

This completes the proof. �

Proof of Corollary 1 Let Ω1, Ω2 be such that

Ω1,Ω2 ⊂ Ω , Ω1 ∩ Ω2 = ∅,

and let v ∈ C0(Ω1) ∩ H be an arbitrary nonzero function. Suppose J(u0) = R > 0, then there
exists r1 sufficiently large to satisfy

‖r1v‖2
H1

0 (Ω) = r2
1‖v‖2

H1
0 (Ω1) >

2(p + 1)(Cp + 1)
p – 1

R.

We claim that there exist ω̄ ∈ H and r > r1 such that J(Ω̄) = R – J(rv). By the similar ar-
gument in [33, Theorem 1.1], we know there exists a sequence {ωk} ⊂ C0(Ω2) ∩ H such
that

1
2

∫
Ω

|∇ωk|2 dx –
1

p + 1

∫
Ω

|ωk|pωk dx → +∞, as k → ∞.

On the other hand, since p > 1, it holds

R – J(rv) = R –
r2

2

∫
Ω

|∇v|2 dx +
rp+1

p + 1

∫
Ω

|v|pv dx → +∞, as k → ∞.

So, there exist k ∈N and r > r1 both sufficiently large such that

R – J(rv) =
1
2

∫
Ω

|∇ωk|2 dx –
1

p + 1

∫
Ω

|ωk|pωk dx.
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Now, we choose

ω̄ =

⎧⎨
⎩

ωk , x ∈ Ω2,

0, x ∈ Ω\Ω2.

Then, for uR := rv + ω̄, we have

J(uR) = J(rv) + J(ω̄) = R <
p – 1

2(p + 1)(Cp + 1)
‖r1v‖2

H1
0 (Ω)

<
p – 1

2(p + 1)(Cp + 1)
‖r1v + ω̄‖2

H1(Ω) =
p – 1

2(p + 1)(Cp + 1)
‖uR‖2

H1(Ω).

According to Theorem 1, the solution u(x, t) of problem (1.1)–(1.3) with initial data uR

blows up at finite time. This completes the proof. �

For the proof of Theorem 2, we first state a critical lemma.

Lemma 1 ([34]) Suppose that γ , θ ,η > 0 and ζ (t) is a nonnegative and absolutely contin-
uous function satisfying

ζ ′(t) + γ ζ θ (t) ≥ η, 0 < t < ∞,

then

ζ (t) ≥ min

{
ζ (0),

(
η

γ

) 1
θ
}

.

Proof of Theorem 2 Set

z1(x, t) := u(x, t) –
(‖u0‖L∞(Ω) + t‖u‖p

L∞(Ω×(0,t∗))
)
.

A direct computation shows

⎧⎪⎪⎨
⎪⎪⎩

z1t – �z1t – �z1 ≤ 0, (x, t) ∈ Ω × (0, t∗),
∂z1
∂n = 0, (x, t) ∈ ∂Ω × (0, t∗),

z1(x, 0) ≤ 0, x ∈ Ω .

By the weak maximum principle [35], we have z1(x, t) ≤ 0, namely

u(x, t) ≤ ‖u0‖L∞(Ω) + t‖u‖p
L∞(Ω×(0,t∗)). (3.25)

Similarly, set

z2(x, t) := –u(x, t) –
(‖u0‖L∞(Ω) + t‖u‖p

L∞(Ω×(0,t∗))
)
,

we can obtain the boundedness from below

u(x, t) ≥ –
(‖u0‖L∞(Ω) + t‖u‖p

L∞(Ω×(0,t∗))
)
. (3.26)
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Thus, it follows from (3.25) and (3.26) that

sup
t∈(0,t∗)

∥∥u(t)
∥∥

L∞(Ω) ≤ ‖u0‖L∞(Ω) + t‖u‖p
L∞(Ω×(0,t∗)),

which implies that the solution u(x, t) of problem (1.1)–(1.3) is global whenever p < 1.
Furthermore, we impose the condition ‖u0‖2

H1 > (Cp+1)χ (ε)|Ω|
2–Cpε

, where 0 < ε < 2
Cp

and

χ (ε) = 1–p
2 ( p+1

ε
)

1
1–p . Firstly, since p < 1, we can derive the following inequality by virtue

of Hölder’s and Young’s inequalities:

2
∫

Ω

|u|pu dx ≤ 2
(∫

Ω

|u|2 dx
) p+1

2 |Ω| 1–p
2

≤ ε

∫
Ω

|u|2 dx + χ (ε)|Ω|. (3.27)

Then, by (2.1), we obtain

–2
∫

Ω

|∇u|2 dx = –
Cp(2 + ε)

Cp + 1

∫
Ω

|∇u|2 dx –
2 – Cpε

Cp + 1

∫
Ω

|∇u|2 dx

≤ –
2 + ε

Cp + 1

∫
Ω

|u|2 dx –
2 – Cpε

Cp + 1

∫
Ω

|∇u|2 dx. (3.28)

Afterwards, substituting (3.27) and (3.28) into (3.1), we deduce

ϕ′(t) ≤ –
2 – Cpε

Cp + 1
ϕ(t) + χ (ε)|Ω|. (3.29)

Integrating (3.29) from 0 to t, it yields

ϕ(t) ≤
(

ϕ(0) –
(Cp + 1)χ (ε)|Ω|

2 – Cpε

)
e– 2–Cpε

Cp+1 t +
(Cp + 1)χ (ε)|Ω|

2 – Cpε
.

Hence, it is easy to see that the solution u(x, t) of problem (1.1)–(1.3) decays in the sense
of H1(Ω)-norm when ϕ(0) > (Cp+1)χ (ε)|Ω|

2–Cpε
, and we have

‖u(t)|2H1 ≤
(

‖u0‖2
H1 –

(Cp + 1)χ (ε)|Ω|
2 – Cpε

)
exp

{
–

2 – Cpε

Cp + 1
t
}

+
(Cp + 1)χ (ε)|Ω|

2 – Cpε
.

Finally, we claim that the solution u(x, t) is positive in the sense of W 1,s(Ω)-norm for any
s > 1 under J(u0) < 0. To this end, applying (2.2) and (3.1), we get

1
2
ϕ′(t) = –I

(
u(t)

)
= –2J

(
u(t)

)
–

1 – p
1 + p

∫
Ω

|u|pu dx

= –2J(u0) + 2
∫ t

0
‖uτ‖2

H1 dτ –
1 – p
1 + p

∫
Ω

|u|pu dx

≥ –2J(u0) –
1 – p
1 + p

∫
Ω

|u|pu dx. (3.30)
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Since p < 1, utilizing Hölder’s inequality yields

∫
Ω

|u|pu dx ≤
(∫

Ω

|u|2 dx
) p+1

2 |Ω| 1–p
2

≤
(∫

Ω

|u|2 + |∇u|2 dx
) p+1

2 |Ω| 1–p
2

=
(
ϕ(t)

) p+1
2 |Ω| 1–p

2 . (3.31)

Substituting (3.31) into (3.30), we deduce

ϕ′(t) ≥ –A
(
ϕ(t)

) p+1
2 – 4J(u0),

where A = 2(1–p)
1+p |Ω| 1–p

2 . By Lemma 1 and the fact J(u0) < 0, there holds

ϕ(t) ≥ min

{
ϕ(0),

(
–4J(u0)

A

) 2
p+1

}
, t > 0.

Since ϕ(0) = ‖u0‖2
H1 > 0, A > 0, J(u0) < 0, we get ϕ(t) > 0, ∀t > 0. For any s > 1, by the inter-

polation inequality, we obtain

‖u‖2
2 ≤ ‖u‖s‖u‖s′ , ‖∇u‖2

2 ≤ ‖∇u‖s‖∇u‖s′ ,

where 1
s + 1

s′ = 1. Then we can deduce that

‖u‖2
H1 ≤ ‖u‖s‖u‖s′ + ‖∇u‖s‖∇u‖s′

≤ 2
(‖u‖s

s + ‖∇u‖s
s
) 1

s
(‖u‖s′

s′ + ‖∇u‖s′
s′
) 1

s′

= 2‖u‖W 1,s‖u‖W 1,s′ ,

which combined with ‖u‖2
H1 > 0 implies that, for every s > 1, there does not exist T∗ > 0

such that

lim
t→T∗ ‖u‖W 1,s = 0.

This completes the proof. �

Proof of Theorem 3 Let p = 1 in the proof of Theorem 1(i), we have

ψ(t) = ϕ′(t), t ∈ (
0, t∗).

According to (3.7), we get

ϕ′(t)
ϕ(t)

>
ψ(0)
ϕ(0)

, t ∈ (
0, t∗). (3.32)
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Integrating (3.32) from 0 to t, it follows that

ϕ(t) ≥ ϕ(0)e
ψ(0)
ϕ(0) t , t ∈ (

0, t∗).

Thus, the solution u(x, t) to problem (1.1)–(1.3) grows within (0, t∗) in the sense of H1(Ω)-
norm, and we have

∥∥u(t)
∥∥2

H1 ≥ ‖u0‖2
H1 exp

{
–4J(u0)
‖u0‖2

H1
t
}

.

This completes the proof. �
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