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Abstract
In this paper, based on the concepts of changing-periodic time scales, we introduce a
notion of local pseudo almost automorphic functions on an arbitrary time scale with
a bounded graininess function μ. Then, some properties of local pseudo almost
automorphic functions are investigated. As applications, by adopting the concept of a
Π -semigroup on time scales, we obtain some new sufficient conditions for the
existence of local pseudo almost automorphic mild solutions for a class of semilinear
dynamic equations on arbitrary time scales.
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1 Introduction
Almost periodic and almost automorphic functions are widely studied and applied in the
literature, and there have been several natural and powerful generalizations of classical
almost automorphic functions (see [1–4]). In [5–7], the authors introduced the concept
of pseudo almost automorphic functions, which generalizes both the classical concept of
almost automorphy and that of pseudo almost periodicity. Moreover, they proved that
the space of pseudo almost automorphic functions is complete, which solves a key fun-
damental problem on this issue and it paves the way for further study and applications
of pseudo almost automorphic functions. For other contributions concerning pseudo al-
most automorphy, we refer the reader to [8, 9] and the references therein related to ap-
plications (see [10–17]). In [18], N’Guérékata and Pankov introduced another generaliza-
tion of almost automorphic functions, i.e., Stepanov-like almost automorphic functions.
This notion was, subsequently, used to study the existence of weak Stepanov-like almost
automorphic solutions to some parabolic evolution equations. In addition, Diagana and
N’Guérékata studied the existence and uniqueness of almost automorphic solutions to
some evolution equations on Banach spaces with Stepanov-like almost automorphic co-
efficients; we refer the reader to [19, 20] and the references therein for more contributions
concerning Stepanov-like almost automorphy.

Almost periodicity and almost automorphy of functions were extended to time scales
and were studied with the development of the time scale theory initiated by Hilger in 1988
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(see [21–24]). Various types of time variables can be unified and applied to dynamic equa-
tions to obtain many results for almost periodic and almost automorphic solutions (see
[25–27]). For example, one can obtain difference equations by taking a regular discrete
type of time variable like T = hZ, h > 0, or differential equations by taking a continuous
type of time variable like T = R. Time scales hZ and R have some very nice properties
so that the dynamic change of functions established on them can be described well be-
cause of the closedness for the translation of time variables. Periodic time scales have a
nice closedness for the translation of time variables (see [28]). For example, consider the
following periodic time scale:

T =
+∞⋃

k=–∞

[
k(a + b), k(a + b) + a

]
, a, b ∈R, k ∈ Z. (1.1)

We can take its periodicity set Π0 = {n(a+b), n ∈ Z} as the translations number set for time
scale (1.1). Under the translation of any number from Π0, the time scale T will coincide
with itself, and in this case, we say T is with “complete closedness”. Further, the time scale
T also includes the classical time scales since if a = 1, b = 0, then T = R; if a = 0, b = h, h > 0,
then T = hZ. A time scale with such a type of “complete closedness” assists in conquering
the difficulties of defining and studying functions on time scales.

In 2014, Wang and Agarwal introduced the concept of almost periodic time scales to
describe that a time scale is with “almost complete closedness” (see [29, 30]). For example,
consider the following time scale:

Let a > 1 and consider the following almost periodic time scale:
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Then we have

σ (t) =

⎧
⎨

⎩
t, if ∈⋃∞

m=1[pm, a + pm),

t + | sin
√

3t + sin
√

7t|, if t ∈⋃∞
m=1{a + pm}

and

μ(t) =

⎧
⎨

⎩
0, if t ∈⋃∞

m=1[pm, a + pm),

| sin
√

3t + sin
√

7t|, if t ∈⋃∞
m=1{a + pm}.

This type of time scales can describe the “double almost periodicity” of an object with
almost periodic dynamic behavior in the real world. We can take its almost periodicity
set Πε = E{ε,T} as the translations number set for time scale (1.2). Under the translation
of any number from Πε , the time scale T will almost coincide with itself when ε > 0 is
sufficiently small, and in this case, we say T is with “almost complete closedness”. This
type of time scales is more general and comprehensive than periodic time scales.

Therefore, “complete closedness” and “almost complete closedness” of time scales under
translations are significant and pivotal when introducing and studying functions on time
scales. To solve the closedness of an arbitrary time scale, in 2015, a completely new concept
called “changing-periodic time scales” was proposed in [31], which provides an effective
method to decompose an arbitrary time scale with the bounded graininess function μ

into an accountable union of periodic time scales, that is, there exist accountable periodic
sub-timescales with “complete closedness” so that they can cover an arbitrary time scale
with the bounded graininess function μ. This new idea may be difficult to be understood
if we adopt the concept of periodic time scales introduced by Kaufmann and Raffoul (see
[28]) because all the periodic sub-timescales with “complete closedness” in [31] are with
“translation direction” which was not considered in [28]. For example, consider

T =
+∞⋃

k=0

[
k(a + b), k(a + b) + a

]
, a, b ∈R

+, k ∈ Z. (1.3)

A time scale of the type (1.3) should be regarded as a periodic time scale in [31]. However,
according to the concept of periodic time scales from [28], (1.3) is not a periodic time
scale. In fact, for any t ∈ T, we have t + (a + b) ∈ T, but there exists t0 = 0 ∈ T such that
t0 – (a + b) = –(a + b) /∈ T. Nevertheless, (1.3) has nice closedness in translation for time
variables if the time scale is only translated towards the positive direction, because for any
t ∈ T, we have t + (a + b) ∈ T. In 2016, Wang, Agarwal, and O’Regan attached time scales
under translations with “translation direction” and introduced several new concepts of
periodic time scales to improve the results from [31, 32] (see [33, 34]), Moreover, Agarwal
and O’Regan provided some key notes and comments on changing-periodic time scales
(see [35]). Based on these fundamental works, we find a feasible and plausible way to solve
the closedness under translations for arbitrary time scales with bounded graininess func-
tion μ, which paves the way for introducing some new well-defined functions on periodic
sub-timescales with “complete closedness”. Therefore, it is possible to investigate almost
periodicity and almost automorphy of solutions for dynamic equations on an arbitrary
time scale based on these basic works.
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Motivated by the above, we first propose the concept of local almost automorphic func-
tions and investigate their relative properties. Then we introduce the concept of a local
pseudo almost automorphic function and deduce some important relative properties on
time scales. Finally, as applications, using the concept of a Π -semigroup that was intro-
duced in 2016 for time scales (see [36]), we obtain some new sufficient conditions for the
existence of local pseudo almost automorphic solutions for a class of semilinear dynamic
equations on time scales.

The organization of this paper is as follows. In Sect. 2, we introduce some notations and
definitions and state some preliminary results needed in the later sections. In Sect. 3, we
propose the concepts of local almost automorphic functions on time scales in a Banach
space. Based on these, the concept of local pseudo almost automorphic function is also
introduced and some basic properties are investigated. In Sect. 4, as applications of our
results, by using the concept of a Π -semigroup that was introduced in 2016 for time scales,
we establish the existence of the local pseudo almost automorphic solutions for a class of
semilinear dynamic equations on arbitrary time scales.

2 Local semigroup on changing-periodic time scales
Based on the knowledge of changing-periodic time scales in the literature [31, 35], we will
present some basic properties of semigroups induced by changing-periodic time scales.

Definition 2.1 ([31, 33]) Let T be an infinite time scale. We say T is a changing-periodic
or a piecewise-periodic time scale if the following conditions are fulfilled:

(a) T = (
⋃∞

i=1 Ti) ∪Tr and {Ti}i∈Z+ is a well-connected timescale sequence, where
Tr =

⋃k
i=1[αi,βi] and k is some finite number, and [αi,βi] are closed intervals for

i = 1, 2, . . . , k or Tr = ∅;
(b) Si is a nonempty subset of R with 0 /∈ Si for each i ∈ Z

+ and Π = (
⋃∞

i=1 Si) ∪ R0,
where R0 = {0} or R0 = ∅;

(c) for all t ∈ Ti and all ω ∈ Si, we have t + ω ∈ Ti, i.e., Ti is an ω-periodic time scale;
(d) for i �= j, for all t ∈ Ti \ {tk

ij} and all ω ∈ Sj, we have t + ω /∈ T, where {tk
ij} is the

connected points set of the timescale sequence {Ti}i∈Z+ ;
(e) R0 = {0} if and only if Tr is a zero-periodic time scale and R0 = ∅ if and only if Tr = ∅;

and the set Π is called a changing-periods set of T, Ti is called the periodic sub-timescale
of T, and Si is called the periods subset of T or the periods set of Ti, Tr is called the remain
timescale of T and R0 the remain periods set of T.

Theorem 2.1 ([31, 33]) IfT is an infinite time scale and the graininess function μ : T→R
+

is bounded, then T is a changing-periodic time scale.

Theorem 2.2 (Decomposition theorem of time scales, [31, 33]) Let T be an infinite time
scale and the graininess function μ : T → R

+ be bounded, then T is a changing-periodic
time scale, i.e., there exists a countable periodic decomposition such that T = (

⋃∞
i=1 Ti)∪Tr

and Ti is an ω-periodic sub-timescale, ω ∈ Si, i ∈ Z
+, where Ti, Si, Tr satisfy the conditions

in Definition 2.1.

Definition 2.2 Let T be a changing-periodic time scale, i.e., there exists an index function
τt for all t ∈ T such that t + τt ∈ T. The set Sτt := {τ : t + τ ∈ Tτt ,∀t ∈ Tτt } is called the
invariant translation number set of the sub-timescale Tτt .
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Definition 2.3 If S+
τt := Sτt ∩ [0, +∞) /∈ {{0},∅}, then we say S+

τt is a positive-direction semi-
group induced by the changing-periodic time scale T; if S–

τt := Sτt ∩ (–∞, 0] /∈ {{0},∅}, then
we say S–

τt is a negative-direction semigroup induced by T.

Example 2.1 Let a changing-periodic time scale be the following:

T =
{

2k,
2

11
k + 1 : k ∈ Z

}
∪
{ +∞⋃

i=–∞

[
2
3

i,
2
3

i + 1
]}

.

The time scale can be easily decomposed into the sub-timescales as follows:

T1 = {2k : k ∈ Z}, T2 =
{

2
11

k + 1 : k ∈ Z

}
, T3 =

+∞⋃

i=–∞

[
2
3

i,
2
3

i + 1
]

.

Obviously, T = T1 ∪T2 ∪T3, and hence there exists an index function τt as follows:

τt =

⎧
⎪⎪⎨

⎪⎪⎩

1, t ∈ T1,

2, t ∈ T2,

3, t ∈ T3.

According to Theorem 1.2 (decomposition theorem of time scales) from [34], we have

Sτt =

⎧
⎪⎪⎨

⎪⎪⎩

S1 = {τ : t + τ ∈ T1,∀t ∈ T1} = {2n : n ∈ Z},
S2 = {τ : t + τ ∈ T2,∀t ∈ T2} = { 2

11 n : n ∈ Z},
S3 = {τ : t + τ ∈ T3,∀t ∈ T3} = { 2

3 n : n ∈ Z}.

Hence, the positive-direction semigroup induced by T is

S+
τt =

⎧
⎪⎪⎨

⎪⎪⎩

S+
1 = {τ ∈ Z

+ : t + τ ∈ T1,∀t ∈ T1} = {2n : n ∈ Z
+},

S+
2 = {τ ∈ Z

+ : t + τ ∈ T2,∀t ∈ T2} = { 2
11 n : n ∈ Z

+},
S+

3 = {τ ∈ Z
+ : t + τ ∈ T3,∀t ∈ T3} = { 2

3 n : n ∈ Z
+}.

Moreover, the negative-direction semigroup induced by T is

S–
τt =

⎧
⎪⎪⎨

⎪⎪⎩

S–
1 = {τ ∈ Z

– : t + τ ∈ T1,∀t ∈ T1} = {2n : n ∈ Z
–},

S–
2 = {τ ∈ Z

– : t + τ ∈ T2,∀t ∈ T2} = { 2
11 n : n ∈ Z

–},
S–

3 = {τ ∈ Z
– : t + τ ∈ T3,∀t ∈ T3} = { 2

3 n : n ∈ Z
–}.

Example 2.2 Some changing-periodic time scales may only possess one-way semigroups.
Let

T =

{ ∞⋃

k=1

[
1
3

k,
1
3

k +
3
4

]}
∪
{ ∞⋃

k=1

[
–

2
13

k, –
2

13
k –

1
7

]}
.
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The time scale can be easily decomposed into the sub-timescales as follows:

T1 =
∞⋃

k=1

[
1
3

k,
1
3

k +
3
4

]
, T2 =

∞⋃

k=1

[
–

2
13

k, –
2

13
k –

1
7

]
.

Obviously, T = T1 ∪T2, and hence there exists an index function τt as follows:

τt =

⎧
⎨

⎩
1, t ∈ T1,

2, t ∈ T2.

According to Theorem 1.2 (decomposition theorem of time scales) from [34], we have

S+
τt = S+

1 =
{
τ ∈ Z

+ : t + τ ∈ T1,∀t ∈ T1
}

=
{

1
3

n : n ∈ Z
+
}

,

S–
τt = S–

2 =
{
τ ∈ Z

– : t + τ ∈ T2,∀t ∈ T2
}

=
{

2
13

n : n ∈ Z
–
}

.

Note that for T1, S–
1 = {0}; for T2, S+

2 = {0}. Hence, there exist only one-way semigroups
for this changing-periodic time scale.

By using the basic knowledge of Π -semigroup introduced in the literature [36], we
can introduce the concept of local Π -semigroup attached with translation direction on
changing-periodic time scales.

Definition 2.4 Let T be a changing-periodic time scale, and {Tτ } be a family of bounded
linear operators on a Banach space X. If for all τ1, τ2 ∈ S+

τt (or S–
τt ) the following holds:

Tτ1+τ2 = Tτ1 Tτ2 , (2.1)

then {Tτ : τ ∈ S+
τt } (or {Tτ : τ ∈ S–

τt }) is called a local one-parameter operator semigroup; if
(2.1) holds for all τ ∈ Sτt , we call {Tτ : τ ∈ Sτt } a local one-parameter operator group.

Definition 2.5 Let T be a periodic time scale, and {Tτ : τ ∈ S+
τt } (or {Tτ : τ ∈ S–

τt }) be an
operator group on a Banach space X, i.e.,

Tτ1 Tτ2 = Tτ1+τ2 , τ1, τ2 ∈ S+
τt

(
or τ1, τ2 ∈ S–

τt

)
, T0 = I.

If, for every τ0 ≥ 0 (or τ ≤ 0) and any ε > 0, there is a neighborhood U of τ0 (i.e., U =
(τ0 – δ, τ0 + δ) ∩ S+

τt (or U = (τ0 – δ, τ0 + δ) ∩ S–
τt ) for some δ > 0) such that

‖Tτ x – Tτ0 x‖ < ε for all τ ∈ U ,

then we call {Tτ : τ ∈ S+
τt } (or {Tτ : τ ∈ S–

τt }) the local strong-continuous operator semi-
group or the local Π -semigroup.

Definition 2.6 If S+
τt /∈ {{0},∅}, then we say the Π -semigroup {Tτt : τt ∈ S+

τt } is a positive-
direction local Π -semigroup on the changing-periodic time scale T; if S–

τt /∈ {{0},∅}, then
we say the Π -semigroup {Tτt : τt ∈ S–

τt } is a negative-direction local Π -semigroup on T.
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Remark 2.1 Note that local Π -semigroups on changing-periodic time scales are opera-
tor semigroups on the sub-timescale Tτt , so the semigroups induced by time scales and
Π -semigroups on time scales are completely different concepts through comparing Defi-
nitions 2.3 and 2.6.

Remark 2.2 In fact, the Π -semigroup for time scales proposed in [36] is more general
than the C0-semigroup on time scales proposed in [37] since the condition ∀t1, t2 ∈ T,
t1 ± t2 ∈ T is not required for the Π -semigroup, i.e., the condition that T is closed for
addition and subtraction can be removed. Since changing-periodic time scales can be de-
composed into countable sub-timescales with the properties of CCTS, all the properties
of the Π -semigroup on CCTS can be naturally extended to its sub-timescales when the
decomposition of theorem of time scales is applied.

3 Local pseudo almost automorphic functions on sub-CCTS
In this section, we introduce the new concept of local pseudo almost automorphic func-
tions on changing-periodic time scales and obtain some basic properties.

Definition 3.1 Each sub-timescale of a changing-periodic time scale is called the com-
plete-closed sub-timescale, short for sub-CCTS.

Definition 3.2 Let X be a Banach space and T be a changing-periodic time scale.
(i) Let f : T→X be a bounded continuous function. We say that f is local-almost

automorphic if, for every adaption factor sequence {sτ
n}∞n=1 ⊂ Sτt , we can extract a

subsequence {τ τ
n }∞n=1 such that

g(t) = lim
n→∞ f

(
t + τ τ

n
)

(3.1)

is well defined for each t ∈ T and

f (t) = lim
n→∞ g

(
t + τ τ

n
)

(3.2)

is well defined for each t ∈ T. We shall denote by LAA(T,X) the set of all such
functions.

(ii) A continuous function f : T× B →X is said to be local-almost automorphic if f (t, x)
is local-almost automorphic in t ∈ T uniformly for all x ∈ B, where B is any bounded
subset of X or B = X. We shall denote by LAA(T×X,X) the set of all such functions.

Definition 3.2 also has the following equivalent form.

Definition 3.3 Let X be a Banach space, T be a changing-periodic time scale, and f :
T → X be a bounded continuous function. We say that f is local-almost automorphic if,
for every adaption factor sequence {sτ

n}∞n=1 ⊂ Sτt , we can extract a subsequence {τ τ
n }∞n=1

(τ τ
i �= τ τ

j for i �= j) such that

f (t) = lim
m→∞ lim

n→∞ f
(
t + τ τ

n + τ τ
m
)

is well defined for each t ∈ T.
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Definition 3.4 If S+
τt /∈ {{0},∅}, then we say f is positive-direction local-almost automor-

phic; if S–
τt /∈ {{0},∅}, then we say f is negative-direction local-almost automorphic; if

S±
τt /∈ {{0},∅}, then we say f is bi-direction local-almost automorphic.

Definition 3.5 Let f , g ∈ C(T × D,En) be uniformly local-almost automorphic and T be
a changing-periodic time scale. We say f and g are synchronously local-almost automor-
phic if f , g are almost automorphic on the same periodic sub-timescales of the changing-
periodic time scale T.

Remark 3.1 Throughout this section, we always assume that all the functions on the same
changing-periodic time scale are synchronously local-almost automorphic, i.e., all the
functions satisfy Definition 3.5.

Definition 3.6
(i) The set of bounded continuous functions with local vanishing mean value is defined

as

LAA0(T,X) =
{
φ ∈ BCrd(T,X) : lim

T→∞
1
T

∫ t0+T

t0

∥∥φ(s)
∥∥�τs s = 0,

where t0 ∈ T, T ∈ Sτt0

}
.

(ii) Similarly, we define LAA0(T×X,X) to be the collection of all functions
f ∈ BCrd(T×X,X) satisfying

lim
T→∞

1
T

∫ t0+T

t0

∥∥f (s, x)
∥∥�τs s = 0, where t0 ∈ T, T ∈ Sτt0

,

uniformly for x in any bounded subset of X.

Remark 3.2 In Definition 3.6, for any t0 ∈ T, if S±
τt0

/∈ {{0},∅}, i.e., S+
τt0

= Sτt0
∩ [0, +∞) /∈

{{0},∅} and S–
τt0

= Sτt0
∩ (–∞, 0] /∈ {{0},∅}, then Tτt0

is a bi-direction periodic sub-
timescale. Hence, we obtain

lim
T→+∞

1
T

∫ t0+T

t0

∥∥φ(s)
∥∥�τs s = 0, lim

T→+∞
1

–T

∫ t0–T

t0

∥∥φ(s)
∥∥�τs s = 0,

so,

lim
T→+∞

1
2T

∫ t0+T

t0

∥∥φ(s)
∥∥�τs s = 0, lim

T→+∞
1

2T

∫ t0

t0–T

∥∥φ(s)
∥∥�τs s = 0.

Thus we obtain

lim
T→+∞

1
2T

∫ t0+T

t0–T

∥∥φ(s)
∥∥�τs s

= lim
T→+∞

1
2T

∫ t0+T

t0

∥∥φ(s)
∥∥�τs s + lim

T→+∞
1

2T

∫ t0

t0–T

∥∥φ(s)
∥∥�τs s = 0.
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Therefore, if Tτt0
is a bi-direction periodic sub-timescale, then the space LAA0 is as fol-

lows:

LAA0(T,X) =
{
φ ∈ BCrd(T,X) : lim

T→∞
1

2T

∫ t0+T

t0–T

∥∥φ(s)
∥∥�τs s = 0,

where t0 ∈ T, T ∈ Sτt0

}
.

Now, we introduce the set LPAA(T,X) and LPAA(T×X,X) of local pseudo almost au-
tomorphic functions:

LPAA(T,X) =
{

f = g + φ ∈ BCrd(T,X) : g ∈ LAA(T,X) and φ ∈ LAA0(T,X)
}

;

LPAA(T×X,X) =
{

f = g + φ ∈ BCrd(T×X,X) : g ∈ LAA(T×X,X)

and φ ∈ LAA0(T×X,X)
}

.

From the definition of LPAA(T,X), one can easily show the following theorem.

Theorem 3.1 For any t ∈ T, let Ω ⊂ Tτt , f = g + φ be a local pseudo almost automorphic
function. Then we have

{
g(t) : t ∈ Ω

}⊂ {
f (t) : t ∈ Ω

}
. (3.3)

Proof We claim that LAA0(T,X) is a closed sub-space. In fact, for any {φm} ⊂ LAA0(T,X)
and φm → φ, m → +∞, we obtain

lim
T→∞

1
T

∫ t0+T

t0

∥∥φ(s)
∥∥�τs s ≤ lim

T→∞
1
T

∫ t0+T

t0

∥∥φm(s) – φ(s)
∥∥�τs s

+ lim
T→∞

1
T

∫ t0+T

t0

∥∥φm(s)
∥∥�τs s = 0,

which implies that LAA0(T,X) is a closed sub-space. Hence, LAA0(T,X) is a Banach space.
Therefore, we have LPAA(T,X) = LAA(T,X) ⊕ LAA0(T,X), which implies that (3.3)

holds. This completes the proof. �

Corollary 3.1 The decomposition of a local pseudo almost automorphic function is
unique.

Proof Suppose that f ∈ LPAA(T,X) has two decompositions, that is, f = g1 + φ1 = g2 + φ2,
where g1, g2 ∈ LAA(T,X) and φ1,φ2 ∈ LAA0(T,X). Then (g1 – g2) + (φ1 – φ2) = f – f = 0.
Using Theorem 3.1, we know (g1 – g2)(t) = 0 for each t ∈ Ω . Thus, g1 = g2. Therefore,
φ1 = φ2. Hence, the decomposition of f is unique. This completes the proof. �

In the following, using the knowledge of �-measurability on time scales, we can obtain
the following lemma.

Lemma 3.1 Let f ∈ BCrd(T,X). Then f ∈ LAA0(T,X) if and only if, for any ε > 0,

lim
T→∞

1
T

μ�τt0

(
MT ,ε(f )

)
= 0
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and

MT ,ε(f ) :=
{

t ∈ [t0, t0 + T)Tτt0
:
∥∥f (t)

∥∥≥ ε, t0 ∈ T, T ∈ Sτt0

}
,

where μ�τt0
(·) denotes the �-measurability on the periodic sub-timescale Tτt0

of the time
scale T.

Proof Without loss of generality, we assume that, for t0 ∈ T, S+
τt0

/∈ {{0},∅}, i.e., Tτt0
is a

positive-direction periodic sub-timescale.
(i) Necessity. By contradiction suppose that there exists ε0 > 0 such that

lim
T→∞

1
T

μ�τt0

(
MT ,ε0 (f )

) �= 0.

Then there exists δ > 0 such that, for every n ∈ N, Tn ∈ Sτt0
,

1
Tn

μ�τt0

(
MTn ,ε0 (f )

)≥ δ

for some Tn > n. Thus we have

1
Tn

∫ t0+Tn

t0

∥∥f (s)
∥∥�τs s

=
1

Tn

∫

MTn ,ε0 (f )

∥∥f (s)
∥∥�τs s +

1
Tn

∫

[t0,t0+Tn)Tτt \MTn ,ε0 (f )

∥∥f (s)
∥∥�τs s

≥ 1
Tn

∫

MTn ,ε0 (f )

∥∥f (s)
∥∥�τs s ≥ ε0

Tn

∫

MTn ,ε0 (f )
�τs s ≥ ε0δ.

This contradicts the assumption.
(ii) Sufficiency. From the statement of Lemma 3.1 it is clear that ‖f ‖ ≤ M, M is some

constant. For any ε > 0, there exists T0 > 0 such that, for T > T0,

1
T

μ�τt0

(
MT ,ε(f )

)
<

ε

M + 1
.

Then

1
T

∫ t0+T

t0

∥∥f (s)
∥∥�τs s

=
1
T

(∫

MT ,ε (f )
‖f (s)‖�τs s +

∫

[t0,t0+T)Tτt \MT ,ε (f )

∥∥f (s)
∥∥�τs s

)

≤ M
T

μ�τt0

(
MT ,ε(f )

)
+

1
T
(
T – μ�τt0

(
MT ,ε(f )

)) · 1
M + 1

≤ Mε

M + 1
+

1
M + 1

.

Hence,

lim
T→∞

∫ t0+T

t0

∥∥f (s)
∥∥�τs s = 0.

That is, f ∈ LAA0(T,X).
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A similar argument can be supplied for the case S–
τt0

/∈ {{0},∅}, i.e., Tτt0
is a negative-

direction periodic sub-timescale, and the case S±
τt0

/∈ {{0},∅}, i.e., Tτt0
is a bi-direction pe-

riodic sub-timescale, and one can easily obtain the same result (we omit the details). This
completes the proof. �

Theorem 3.2 Let f = g + φ ∈ LPAA(T × X,X) with g ∈ LAA(T × X,X), φ ∈ LAA0(T ×
X,X). Assume:

(i) g(t, x) is uniformly continuous on any bounded subset uniformly for t ∈ T.
(ii) There exists a nonnegative function 
∗ ∈ Lp(Tτt ) (1 ≤ p ≤ ∞) such that

∥∥f (t, x) – f (t, y)
∥∥≤ 
∗(t)‖x – y‖

for all x, y ∈X and t ∈ Tτt .
If x ∈ LPAA(T,X), then f (·, x(·)) ∈ LPAA(T,X), where

Lp(Tτt0
) :=

{

∗ : Tτt →R :

∫

Tτt

[

∗(s)

]p
�τs s < ∞

}

and

∥∥
∗∥∥
Lp(Tτt ) =

(∫

Tτt

[

∗(s)

]p
�τs s

) 1
p

.

Proof Without loss of generality, we assume that, for t ∈ T, S+
τt /∈ {{0},∅}, i.e., Tτt is a

positive-direction periodic sub-timescale.
Since f ∈ LPAA(T×X,X) and x ∈ LPAA(T,X), we have by definition that f = g + φ and

x = α + β , where g ∈ LAA(T×X,X), φ ∈ LAA0(T×X,X), α ∈ LAA(T,X), β ∈ LAA0(T,X).
Thus the function f can be decomposed as

f
(
t, x(t)

)
= g
(
t,α(t)

)
+ f
(
t, x(t)

)
– f
(
t,α(t)

)
+ φ

(
t,α(t)

)
.

Let

G(t) = g
(
t,α(t)

)
; Φ(t) = f

(
t, x(t)

)
– f
(
t,α(t)

)
+ φ

(
t,α(t)

)
.

From g(t, x) ∈ LAA(T × X,X), then for every sequence of real numbers {sτ
n}∞n=1 ⊂ Sτt , we

can extract a subsequence {τ τ
n }∞n=1 such that

g∗(t, x) = lim
n→∞ g

(
t + τ τ

n , x
)

is well defined for each t ∈ T and

g(t, x) = lim
n→∞ g∗(t + τ τ

n , x
)

is well defined for each t ∈ T. In view of assumption (i) and α ∈ LAA(T,X), one can extract
{τ ′

n}∞n=1 ⊂ {τ τ
n }∞n=1 such that

lim
n→∞ g

(
t + τ ′

n,α
(
t + τ ′

n
))

= lim
n→∞ g

(
t + τ ′

n,α∗(t)
)

= g∗(t,α∗(t)
)
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and

lim
n→∞ g∗(t + τ ′

n,α∗(t + τ ′
n
))

= lim
n→∞ g∗(t + τ ′

n,α(t)
)

= g
(
t,α(t)

)
.

Hence, G(t) ∈ LAA(T,X). To show that f (·, x(·)) ∈ LPAA(T,X), it is sufficient to prove that
Φ(t) ∈ LAA0(T,X).

First, we prove that f (t, x(t)) – f (t,α(t)) ∈ LAA0(T,X). Clearly, f (t, x(t)) – f (t,α(t)) is
bounded and rd-continuous. We can assume ‖f (t, x(t)) – f (t,α(t))‖ ≤ M, ∀t ∈ Tτt .

Since x(t), α(t) are bounded, we can choose a bounded subset Bτt ⊂ Tτt such that
x(Tτt ),α(Tτt ) ⊂ Bτt , where x(Tτt ), α(Tτt ) denote the value field of x, α under Tτt . Under
assumption (ii), for given ε > 0, ‖x – y‖ ≤ ε implies that

∥∥f (t, x) – f (t, y)
∥∥ < ε
∗(t) for all t ∈ Tτt .

Since β(t) ∈ LAA0(T,X), Lemma 3.1 yields that

lim
T→∞

1
T

μ�τt

(
MT ,ε

(
β(t)

))
= 0.

Thus, for any t0 ∈ Tτt , T ∈ Sτt0
, we obtain

1
T

∫ t0+T

t0

∥∥f
(
t, x(t)

)
– f
(
t,α(t)

)∥∥�τt t

=
1
T

∫

MT ,ε (β(t))

∥∥f
(
t, x(t)

)
– f
(
t,α(t)

)∥∥�τt t

+
1
T

∫

[t0,t0+T)Tτt \MT ,ε (β(t))

∥∥f
(
t, x(t)

)
– f
(
t,α(t)

)∥∥�τt t

≤ M
T

μ�τt

(
MT ,ε

(
β(t)

))
+

ε

T

∫ t0+T

t0


∗(t)�τt t.

Case 1. If p = 1, we obtain that

ε

T

∫ t0+T

t0


∗(t)�τt t ≤ ε

T

∫

Tτt


∗(t)�τt t ≤ ε‖
∗‖Lp(Tτt )

T
.

Case 2. If p = ∞, we obtain that

ε

T

∫ t0+T

t0


∗(t)�τt t ≤ ε
∥∥
∗∥∥

L∞(Tτt ).

Case 3. If 1 < p < ∞, then

ε

T

∫ t0+T

t0


∗(t)�τt t ≤ ε

T

(∫ t0+T

t0

[

∗(t)

]p
�τt t

) 1
p
(∫ t0+T

t0

�τt t
) 1

q
≤ ε‖
∗‖Lp(Tτt )

T1– 1
q

,

where q = p(p – 1)–1. Hence, we obtain

lim
T→∞

1
T

∫ t0+T

t0

∥∥f
(
t, x(t)

)
– f
(
t,α(t)

)∥∥�τt t = 0.
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Next, we show that φ(t,α(t)) ∈ LAA0(T,X). Let ε > 0. Since g(t, x) is uniformly continuous
in any bounded subset uniformly for t ∈ T, there exists δ > 0 such that ‖g(t, x) – g(t, y)‖ ≤ ε

for all x, y ∈ Bτt with ‖x – y‖ ≤ δ. Let δ0 = min{ε, δ}. Then

∥∥φ(t, x) – φ(r, x)
∥∥≤ ∥∥f (t, x) – f (t, y)

∥∥ +
∥∥g(t, x) – g(t, y)

∥∥≤ ε
(

∗(t) + 1

)

for all x, y ∈ Bτt with ‖x – y‖ ≤ δ0.
Set I = α([t0, t0 + T)Tτt ), where T ∈ Sτt . Then I is compact in R since the image of a com-

pact set under a continuous mapping is compact. Therefore, one can find a finite number
of open balls Ok (k = 1, 2, . . . , m) with center xk ∈ I and radius δ0 small enough such that
I ⊂⋃m

k=1 Ok and

∥∥φ
(
t,α(t)

)
– φ(t, xk)

∥∥≤ ε
(

∗(t) + 1

)
, α(t) ∈ Ok , t ∈ [t0, t0 + T)Tτt .

Suppose ‖φ(t, xp)‖ = max1≤k≤m{‖φ(t, xk)‖}, where p is an index number among {1, 2, . . . ,
m}. The set Bk

τt = {t ∈ [t0, t0 + T)Tτt : α(t) ∈ Ok} is open in [t0, t0 + T)Tτt =
⋃m

k=1 Bk
τt . Let

E1
τt = B1

τt , Ek
τt = Bk

τt

∖ k–1⋃

j=1

Bj
τt (2 ≤ k ≤ m).

Then Ei
τt ∩ Ej

τt = ∅ when i �= j, 1 ≤ i, j ≤ m. Observe

1
T

∫ t0+T

t0

∥∥φ
(
t,α(t)

)∥∥�τt t

=
1
T

∫
⋃m

k=1 Bk
τt

∥∥φ
(
t,α(t)

)∥∥�τt t

≤ 1
T

m∑

k=1

∫

Bk
τt

(∥∥φ
(
t,α(t)

)
– φ(t, xk)

∥∥ +
∥∥φ(t, xk)

∥∥)�τt t

≤ 1
T

m∑

k=1

∫

Bk
τt

ε
(

∗(t) + 1

)
�τt t +

1
T

m∑

k=1

∫

Bk
τt

∥∥φ(t, xk)
∥∥�τt t

≤ ε +
ε

T

∫ t0+T

t0


∗(t)�τt t +
1
T

∫ t0+T

t0

∥∥φ(t, xp)
∥∥�τt t.

Using the same discussion as above, we obtain

lim
T→∞

1
T

∫ t0+T

t0

∥∥φ
(
t,α(t)

)∥∥�τt t = 0.

That is, φ(t,α(t)) ∈ LAA0(T,X). Hence, G(t) ∈ LAA(T,X) and Φ(t) ∈ LAA0(T,X). This
means that f (·, x(·)) ∈ LPAA(T,X).

A similar argument can be supplied for the case S–
τt /∈ {{0},∅}, i.e., Tτt is a negative-

direction periodic sub-timescale, and the case S±
τt /∈ {{0},∅}, i.e., Tτt is a bi-direction peri-

odic sub-timescale, and one can easily obtain the same result (we omit the details). This
completes the proof. �
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4 Applications to semilinear dynamic equations
In this section, we discuss local almost automorphic mild solutions for dynamic equations
on changing-periodic time scales. We use our recent new concept of a Π -semigroup (for
more details on a Π -semigroup, see [36]).

Consider the following differential equation:

x�(t) = Ax(t) + f
(
t, x(t)

)
, t ∈ T, (4.1)

where A is the infinitesimal generator of a Π -semigroup for the periodic sub-timescale
Tτt , x : Tτt →X, f : Tτt ×X→X.

Definition 4.1 A local mild solution to (4.1) is a continuous function x(t) : Tτt → X sat-
isfying

x(t) = T τ
t,t0 x(t0) +

∫ t

t0

T τ
t,sf
(
s, x(s)

)
�τs s

for all t ≥ t0 and all t0 ∈ Tτt , where T τ
t,t0 is the moving-operator on Tτt .

Remark 4.1 Note that from Definition 3.20 in the literature [36], one can obtain T τ
t,t0 =

eτ
A(t, t0), where eτ

A(t, t0) is the exponential function generated by A on Tτt .

Now, we investigate the existence and uniqueness of a pseudo almost automorphic so-
lution to (4.1). We need the following assumptions:

(H1) Let A be the infinitesimal generator of a Π -semigroup {Tτ : τ ∈ Sτt }. The moving-
operator family {T τ

t,t0 : t, t0 ∈ Tτt , t ≥ t0} is exponentially stable, that is, there exist
K > 0, ω > 0 such that

∥∥T τ
t,t0

∥∥≤ Keτ
�ω(t, t0) for all t ∈ Tτt .

(H2) f : R×X→X is local pseudo almost automorphic.
(H3) There exists a nonnegative function 
0 ∈ Lp(Tτt ,R+) (p = 1, 2) such that

∥∥f (t, x) – f (t, y)
∥∥≤ 
0(t)‖x – y‖

for all x, y ∈ X and t ∈ Tτt .

Lemma 4.1 Let v ∈ LAA(T,X). If S–
τt /∈ {{0},∅} and u : Tτt →X is the function defined by

u(t) =
∫ t

–∞
T τ

t,sv(s)�τs s, t ≥ s,

then u(·) ∈ LAA(T,X). If S+
τt /∈ {{0},∅} and u : Tτt →X is the function defined by

u(t) =
∫ +∞

t
T τ

t,sv(s)�τs s, t ≥ s,

then u(·) ∈ LAA(T,X).
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Proof Obviously, u(t) is a continuous functions on Tτt . Let {sτ
n}∞n=1 ⊂ S–

τt be an arbitrary
sequence of real numbers. Since v is local almost automorphic, there exists a subsequence
{τ τ

n }∞n=1 ⊂ {sτ
n}∞n=1 such that h(t) := limn→∞ v(t + τ τ

n ) is well defined for each t ∈ T.
Now, we consider

u
(
t + τ τ

n
)

=
∫ t+ττ

n

–∞
T τ

t+ττ
n ,sv(s)�τs s =

∫ t

–∞
T τ

t,sv
(
s + τ τ

n
)
�τs s

=
∫ t

–∞
T τ

t,svn(s)�τs s,

where vn(s) = v(s + τ τ
n ), n = 1, 2, . . . . We have

∥∥u
(
t + τ τ

n
)∥∥ ≤

∫ t

–∞

∥∥T τ
t,svn(s)

∥∥�τs s ≤
∫ t

–∞
Keτ

�ω(t, s)
∥∥vn(s)

∥∥�τs s

≤ K‖v‖LAA(T,X)

∫ t

–∞
eτ
�ω(t, s)�τs s

≤ K
1 + μω

‖v‖LAA(T,X)

∫ t

–∞
eτ
�ω

(
t,σ (s)

)
�τs s

≤ –
K(1 + ωμ)
ω(1 + μω)

(
eτ
�ω(t, –∞) – eτ

�ω(t, t)
)‖v‖LAA(T,X)

=
K
ω

‖v‖LAA(T,X),

where μ = infs∈Tτt μτ (s) and ‖v‖LAA(T,X) := sups∈Tτt
‖v(s)‖.

By the continuity of the moving-operator {T τ
t : t, t0 ∈ Tτt , t ≥ t0} it follows that

T τ
t,svn(s) → T τ

t,sh(s), as n → ∞,

for each s ∈ Tτt fixed and any t ≥ s, and we get

lim
n→∞ u

(
t + τ τ

n
)

=
∫ t

–∞
T τ

t,sh(s)�τs s

by the Lebesgue dominated convergence theorem. Furthermore, if S+
τt /∈ {{0},∅}, i.e., Tτt

is a positive-direction periodic sub-timescale, analogously to the above proof, we can also
obtain

lim
n→∞ u

(
t + τ τ

n
)

=
∫ +∞

t
T τ

t,sh(s)�τs s.

This shows that u(t) is a local almost automorphic function. The proof is complete. �

Lemma 4.2 Let f = g + φ ∈ LPAA(T,X) and {T τ
t,t0 : t, t0 ∈ Tτt , t ≥ t0} be exponentially

stable. If S–
τt /∈ {{0},∅}, then F(t) :=

∫ t
–∞ Tt,sf (s)�s ∈ LPAA(T,X). If S+

τt /∈ {{0},∅}, then
F(t) :=

∫ +∞
t Tt,sf (s)�s ∈ LPAA(T,X).
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Proof Let F(t) = G(t) + Φ(t), where

G(t) :=
∫ t

–∞
T τ

t,sg(s)�τs s and Φ(t) :=
∫ t

–∞
T τ

t,sφ(s)�τs s.

Then, by Lemma 4.1, G(t) ∈ LAA(T,X). Now we show that Φ(t) ∈ LAA0(T,X).
In fact, for S–

τt /∈ {{0},∅}, i.e.,Tτt is a negative-direction periodic sub-timescale, we obtain

1
T

∫ t0+T

t0

∥∥Φ(s)
∥∥�τs s =

1
T

∫ t0+T

t0

∥∥∥∥
∫ s

–∞
T τ

s,θφ(θ )�τθ θ

∥∥∥∥�τs s ≤ I1 + I2,

where

I1 :=
1
T

∫ t0+T

t0

∥∥∥∥
∫ t0+T

–∞
T τ

s,θφ(θ )�τθ θ

∥∥∥∥�τs s

and

I2 :=
1
T

∫ t0+T

t0

∥∥∥∥
∫ s

t0+T
T τ

s,θφ(θ )�τθ θ

∥∥∥∥�τs s.

One can obtain

I1 :=
1
T

∫ t0+T

t0

∥∥∥∥
∫ t0+T

–∞
T τ

s,θφ(θ )�τθ θ

∥∥∥∥�τs s

≤ 1
T

∫ t0+T

t0

(∫ t0+T

–∞

∥∥T τ
s,θ
∥∥∥∥φ(θ )

∥∥�τθ θ

)
�τs s

≤ K
T

∫ t0+T

t0

(∫ t0+T

–∞
eτ
�ω(s, θ )

∥∥φ(θ )
∥∥�τθ θ

)
�τs s

≤ –
K(1 + μω)

Tω(1 + μω)
‖φ‖LAA0(T,X)

∫ t0+T

t0

(
eτ
�ω(s, –∞) – eτ

�ω(s, t0 + T)
)
�τs s

≤ K(1 + μ̄ω)
Tω

‖φ‖LAA0(T,X)

∫ t0+T

t0

eτ
ω

(
t0 + T ,σ (s)

)
�τs s

≤ K(1 + μ̄ω)
Tω

‖φ‖LAA0(T,X)
(
eτ
ω(t0 + T , t0) – eτ

ω(t0 + T , t0 + T)
)

≤ K(1 + μ̄ω)
Tω

‖φ‖LAA0(T,X)
(
eτ
ω(t0 + T , t0) – 1

)
.

Since ‖φ‖LAA0(T,X) := sups∈Tτt
‖φ(s)‖ < ∞, let T → –∞, then limT→–∞ I1 = 0. Also

I2 :=
1
T

∫ t0+T

t0

∥∥∥∥
∫ s

t0+T
T τ

s,θφ(θ )�τθ θ

∥∥∥∥�τs s

≤ 1
T

∫ t0+T

t0

(∫ s

t0+T

∥∥T τ
s,θ
∥∥∥∥φ(θ )

∥∥�τθ θ

)
�τs s

≤ K
T

∫ t0+T

t0

(∫ s

t0+T
eτ
�ω(s, θ )�τθ θ

)∥∥φ(s)
∥∥�τs s
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≤ –
K(1 + μω)

Tω(1 + μω)

∫ t0+T

t0

(
eτ
�ω(s, t0 + T) – eτ

�ω(s, s)
)∥∥φ(s)

∥∥�τs s

≤ K(1 + ωμ̄)
Tω

(
eτ
ω(t0 + T , t0) – eτ

ω(t0 + T , t0 + T)
)

+
K

Tω

∫ t0+T

t0

∥∥φ(s)
∥∥�τs s.

Since φ ∈ LAA0(T,X), then limT→–∞ 1
T
∫ t0+T

t0
‖φ(s)‖�τs s = 0. Hence limT→–∞ I2 = 0.

For S+
τt /∈ {{0},∅}, i.e., Tτt is a positive-direction periodic sub-timescale, we obtain

1
T

∫ t0+T

t0

∥∥Φ(s)
∥∥�τs s =

1
T

∫ t0+T

t0

∥∥∥∥
∫ +∞

s
T τ

s,θφ(θ )�τθ θ

∥∥∥∥�τs s ≤ I1 + I2,

where

I1 :=
1
T

∫ t0+T

t0

∥∥∥∥
∫ +∞

t0

T τ
s,θφ(θ )�τθ θ

∥∥∥∥�τs s

and

I2 :=
1
T

∫ t0+T

t0

∥∥∥∥
∫ s

t0

T τ
s,θφ(θ )�τθ θ

∥∥∥∥�τs s.

Similar to the above discussion for the case S–
τt /∈ {{0},∅}, we also obtain limT→+∞ I1 = 0

and limT→+∞ I2 = 0. Therefore, we obtain the desired result. This completes the proof. �

Through Lemma 4.2, we can obtain the following theorem to guarantee the existence of
a unique local pseudo almost automorphic mild solution for (4.1).

Theorem 4.1 Under assumptions (H1)–(H3), if S–
τt �= {0} or S+

τt /∈ {{0},∅}, then (4.1) has a
unique local pseudo almost automorphic mild solution.

Proof For the case S–
τt /∈ {{0},∅}, we consider the nonlinear operator Fτ given by

(Fτ x)(t) =
∫ t

–∞
T τ

t,sf
(
s, x(s)

)
�τs s.

By Lemma 4.2, we see Fτ maps LPAA(T,X) into LPAA(T,X).
Case 1: 
0 ∈ L1(Tτt ). Let x, y ∈ LPAA(T,X) and observe

‖Fτ x – Fτ y‖ ≤ sup
t∈Tτt

∫ t

–∞

∥∥T τ
t,s
[
f
(
s, x(s)

)
– f
(
s, y(s)

)]∥∥�τs s

≤ sup
t∈Tτt

∫ t

–∞

∥∥T τ
t,s
∥∥
0(s)

∥∥x(s) – y(s)
∥∥�τs s

≤ K‖x – y‖X
∫ t

–∞
eτ
�ω(t, s)
0(s)�τs s

≤ K‖x – y‖
∫ t

–∞

0(s)�τs s,
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and

∥∥F 2
τ x – F 2

τ y
∥∥ ≤ K

∫ t

–∞

0(s)

∥∥Fτ x(s) – Fτ y(s)
∥∥�τs s

≤ K2‖x – y‖
∫ t

–∞

0(s)

∫ s

–∞

0(θ )�τθ θ�τs s

≤ K2

2
‖x – y‖

(∫ t

–∞

0(s)�τs s

)2

.

Induction on n in the same way gives

∥∥F n
τ x – F n

τ y
∥∥≤ Kn

n!
‖x – y‖

(∫ t

–∞

0(s)�τs s

)n

.

Therefore,

∥∥F n
τ x – F n

τ y
∥∥≤ (K‖
0‖L1(Tτt ))n

n!
‖x – y‖.

For sufficiently large n,
(K‖
0‖L1(Tτt ))n

n! < 1. From the Banach contraction mapping theorem,
the mapping Fτ has a unique fixed point x ∈ LPAA(T,X), and this fixed point satisfies the
integral equation

x(t) =
∫ t

–∞
T τ

t,sf
(
s, x(s)

)
�τs s for all t ∈ Tτt .

Case 2: 
0 ∈ L2(Tτt ). First, put

λ(t) =
∫ t

–∞

2

0(s)�τs s.

Since 0 < λ(t) <
∫ +∞

–∞ 
2
0(t)�τt t < +∞, λ(t) is bounded. We let λ0 = sups∈Tτt

λ(s). Then we
define an equivalent norm over LPAA(T,X) as follows:

‖f ‖c,t0 = eτ
�λ0 (t0, c)‖f ‖,

where c, t0 ∈ Tτt , c ≥ t0 are fixed positive numbers. We have

‖Fτ x – Fτ y‖

≤ sup
t∈Tτt

∫ t

–∞

∥∥T τ
t,s
[
f
(
s, x(s)

)
– f
(
s, y(s)

)]∥∥�τs s

≤ sup
t∈Tτt

∫ t

–∞

0(s)

∥∥T τ
t,s
∥∥∥∥x(s) – y(s)

∥∥�τs s

≤ K
∫ t

–∞
eτ
�ω(t, s)
(s)eτ

λ0 (t0, c)�τs s‖x – y‖c,t0

≤ K
(∫ t

–∞

[
eτ
λ0 (t0, c)

]2

2

0(s)�τs s
) 1

2
(∫ t

–∞

[
eτ
�ω(t, s)

]2
�τs s

) 1
2 ‖x – y‖c,t0 .
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Therefore, one has

∫ t

–∞

[
eτ
�ω(t, s)

]2
�τs s ≤

∫ t

–∞
eτ
�ω(t, s)�τs s

≤ 1
1 + μω

∫ t

–∞
eτ
�ω

(
t,σ (s)

)
�τs s

≤ –
1
ω

(
eτ
�ω(t, –∞) – eτ

�ω(t, t)
)≤ 1

ω
.

Furthermore,

∫ t

–∞

[
eτ
λ0 (t0, c)

]2

2

0(s)�τs s ≤
∫ t

–∞
eτ
�λ0 (c, t0)
2

0(s)�τs s ≤ λ0eτ
�λ0 (c, t0).

As a result, we obtain

‖Fτ x – Fτ y‖c,t0 ≤ K
(

1
ω

) 1
2
λ

1
2
0
(
eτ
�λ0 (c, t0)

) 1
2 ‖x – y‖c,t0 := ξ‖x – y‖c,t0 ,

where ξ = K( 1
ω

) 1
2 λ

1
2
0 (eτ

�λ0
(c, t0)) 1

2 . Hence, it is easy to observe that one can take sufficiently
large c > t0 such that ξ < 1. Thus Fτ is a contractive mapping. We get a fixed point x ∈
LPAA(T,X) by the Banach fixed point theorem.

For the case S+
τt /∈ {{0},∅}, we consider the nonlinear operator Fτ given by

(Fτ x)(t) =
∫ +∞

t
T τ

t,sf
(
s, x(s)

)
�τs s.

By Lemma 4.2, we see Fτ maps LPAA(T,X) into LPAA(T,X). A similar argument can be
supplied for the case S+

τt0
/∈ {{0},∅}, so we omit it here. This completes the proof. �

Example 4.1 Let x�
1 = –x2 and x�

2 = x1, then one can easily calculate that x1 = cos1(t, t0)
and x2 = sin1(t, t0). Consider two time scales as follows:

T1 =
{

4k, (4k + 2)π : k ∈ Z
+}∪

(+∞⋃

k=1

[
(4k – 1)π , 4kπ

]
)

∪ Pa,| sin
√

3t+sin
√

7t|

and

T2 =
+∞⋃

k=0

[5k, 5k + 4] ∪THn , where THn = {Hn : n ∈N0}

and Hn is harmonic numbers.
Since T1, T2 are changing-periodic time scales, according to the decomposition theo-

rem of time scales, one can obtain the periodic sub-timescale which is included in T1 as
{4k, (4k + 2)π : k ∈ Z

+} ∪ (
⋃+∞

k=1[(4k – 1)π , 4kπ ]) and the periodic sub-timescale of T2 as⋃+∞
k=0[5k, 5k + 4]. By Theorem 4.1, there are local almost automorphic solutions on these

periodic sub-timescales, see Figs. 1–6.
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Figure 1 The local almost automorphic solution x1 on the sub-periodic time scales
{4k, (4k + 2)π : k ∈ Z

+} ∪ (
⋃+∞

k=1 [(4k – 1)π , 4kπ ])

Figure 2 The local almost automorphic solution x1 on the sub-periodic time scale
⋃+∞

k=0 [5k, 5k + 4]

5 Conclusion
In this section, we introduce the concept of local almost automorphic functions on
changing-periodic time scales and obtain some new results on local almost automorphic
solutions for a class of semilinear dynamic equations by using the Π -semigroup for time
scales. Based on changing-periodic time scales, we are able to study almost automorphic
problems on an arbitrary time scale. Before we could only discuss almost automorphic
problems on the time scales with “complete closedness”. For example, in the past, it was
impossible to study almost automorphic problems on the following time scale:

Pa,e–t =
∞⋃

m=1

[pm, a + pm], a > 1, t > a, t ∈ T,
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Figure 3 The local almost automorphic solution x2 on the sub-periodic time scales
{4k, (4k + 2)π : k ∈ Z

+} ∪ (
⋃+∞

k=1 [(4k – 1)π , 4kπ ])

Figure 4 The local almost automorphic solution x2 on the sub-periodic time scale
⋃+∞

k=0 [5k, 5k + 4]

where

pm = (m – 1)a +
m–1∑

k=1

exp
{

–
[
ka + exp(–a) + exp

(
–
(
2a + exp(–a)

))
+ · · ·

+ exp
(
–
(
(k – 1)a + exp(–a)

))]
︸ ︷︷ ︸

k terms

}
.

Then we have

σ (t) =

⎧
⎨

⎩
t, if t ∈⋃∞

m=1[pm, a + pm),

t + e–t , if t ∈⋃∞
m=1{a + pm}
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Figure 5 The local almost automorphic solutions x1, x2 on the sub-periodic time scales
{4k, (4k + 2)π : k ∈ Z

+} ∪ (
⋃+∞

k=1 [(4k – 1)π , 4kπ ])

Figure 6 The local almost automorphic solutions x1, x2 on the sub-periodic time scales
⋃+∞

k=0 [5k, 5k + 4]

and

μ(t) =

⎧
⎨

⎩
0, if t ∈⋃∞

m=1[pm, a + pm),

e–t , if t ∈⋃∞
m=1{a + pm}.

However, by using the knowledge of changing-periodic time scales, through the decompo-
sition theorem of time scales, we are able to study almost automorphic problems on such
a type of time scale. For example, from Theorem 4.1, we see that (4.1) has a unique local
almost automorphic solution on the time scale Pa,e–t . Moreover, we can consider periodic
or almost periodic problems for dynamic equations on an arbitrary time scale through this
effective tool in the future.
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