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1 Introduction and main results
In this paper, we consider the existence of multiple positive solutions for the following
generalized nonhomogeneous Kirchhoff-Schréodinger—Poisson system:

(@+ [ps |Vul® + b fp3 u?)(—Au + bu) + qéf (u) = g(u) + h(x), inR> w1
—~A¢ = 2gF (u), in R3, '
where a > 0, b > 0 are constants, g > 0 is a parameter, F(t) = fotf(s) ds, f and / satisfy the
following hypotheses:
(f) f € C(R*,R") and there exists C > 0 such that f(¢) < C(|¢| + |¢]¥) for all £ € R, where
a € (2,4);
(h1) 0<h(x) € L*(R®) N CY(R3) and 0 # h(x) = h(|x]);

() |kl < my, with m, = % 4m(:fl)y5)1/(p_2)’ where p € (2,6) and y, is the Sobolev

embedding constant of H(R3) < L?(IR3), m is a constant depending on y; which

will be introduced in Lemma 3.1;
(h3) (Vh(x),x) € L2(R3) and (Vh(x),x) > 0, where (-, -) denotes the usual inner product.
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When g = 0, system (1.1) reduces to the following Kirchhoff-type equation:

(a + |Vu|? + bf u2>(—Au +bu) = g(u) + h(x), inR3. (1.2)
R3

R3

In recent years, the following Dirichlet problem of Kirchhoff-type on a bounded domain
QCRN

—(a+b [, |Vul>)Au+ V(®)u=f(xu), ins2,
u=0, on d52,

(1.3)

has been studied extensively by many researchers. With the aid of variational methods, for
various conditions of the potential V(x) and the nonlinearity f(x, #), the existence, nonex-
istence, and multiplicity results for problem (1.3) have been investigated in the literature,
one cansee [1,2, 6, 8,12, 17, 22] and the references therein. There are also many works on
the existence and multiplicity results for system (1.3) on unbounded domains. More pre-
cisely, Duan and Huang [7] dealt with problem (1.3) with sublinear case, and the existence
of infinitely many solutions for the problem has been established by using the genus prop-
erties in critical point theory. Wu [27] studied the existence of nontrivial solutions and
infinitely many high energy solutions for problem (1.3) by using a symmetric mountain
pass theorem. Liu and He [15] also studied the existence of infinitely many high energy
solutions for superlinear Kirchhoff problem (1.3) by a variant version of the fountain the-
orem. For more related topics, we refer the readers to [9, 14, 23, 28—30] and the references
therein.

Very recently, Li et al. [14] studied the existence of at least one positive radial solution
to the following nonlinear homogeneous Kirchhoff-type equation:

(a+k/ |Vu|2+)\b/ uz)(—Au+bu):f(u), in RN, (1.4)
]RN RN

where N > 3, A > 0 is a parameter. Their result can be regarded as an extension of a clas-
sical result for the semilinear equation

—Au+bu=f(u), inRN, (1.5)

to the nonlinear Kirchhoff-type equation (1.4). The more general semilinear Schrédinger
equation (1.5) with b = V/(x) has been studied by many researchers under various stipula-
tions, one can see [16, 24, 25] and the references therein.

On the other hand, the well-known Schrédinger—Poisson system

~Au+V(x)u+qou =f(x,u), inR3 L6)
_A¢ = quz, in RS,
also known as the nonlinear Schrodinger—Maxwell system, and the similar systems arise
in many mathematical physics contexts, such as in quantum electrodynamics, to describe
the interaction between a charge particle interacting with the electromagnetic field, and
also in semiconductor theory, in nonlinear optics, and in plasma physics (see [5] for more
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details on the physics aspects). Many papers deal with problem (1.6) by using the modern
variational method and the critical point theory under various assumptions on the poten-
tial V'(x) and the nonlinearity f(x, u); see [19-21] and the references therein. Very recently,
there have also been many authors who investigated the generalized Schrédinger—Poisson
system on bounded domains or on unbounded domains, see [3, 4, 13, 31]. In [13] the au-
thors considered the following system:

~Au+u+qpf(u) =g(u), inR3 w7
—A =2qF (u), in R3. '
They proved that there exists go > 0 such that the system has at least a positive radial
solution for g € [0, o).
By using the symmetric mountain pass theorem, the authors in [32] studied the following
Kirchhoff-Schrédinger—Poisson system:

(@+b [os[IVul* + Vx)u?)[-Au + V(x)u] + Al(x)pu = f (x,u), inR3, 8)

~A¢ = M(x)?, in R, '
where constants a > 0, b > 0, and A > 0. They proved the existence of infinitely many
solutions assuming that f has sublinear growth in u.

Motivated by the above facts, in this paper, we consider the more general nonhomo-
geneous Kirchhoff-Schrédinger—Poisson system (1.1). The aim of this paper is to prove
the existence and multiplicity of positive radial solutions for system (1.1) when f is sub-
critical and g is superlinear at infinity. To the best of our knowledge, there have been no
works concerning this case up to now. Compared to the aforementioned results, our result
extends these results to some extent.

In this paper, since we are concerned with the existence of positive solutions to (1.1),
we assume that f(£) = g(¢) = 0 for £ < 0. And the following assumptions will be used in this
paper.

(g1) g € C(R*,R*) and there exists C > 0 such that g(t) < C(1 + |¢|P~!) for all £ € R, where

p€(2,6);

(&) Tim,_og(t)/t = 0;

(g3) lims 00 g(£)/23 = 00.

The main results of the present paper can be described as follows.

Theorem 1.1 Assume that (f), (h1)—(hs3), and (g1)—(g3) hold. Then there exists qo > 0 such
that problem (1.1) has at least two positive radial solutions (u, ) € H'(R3) x DV2(R3) for
all0 <g<qoand0<b<1/4y;}.

According to Theorem 3.4 in Sect. 3, we have the following result.

Remark 1.2 Assume that (f), (h1)—(h3), and (g1)—(g3) hold. Then, for any g > 0, problem
(1.1) has at least one positive radial solution (&, ¢) € H'(R?) x DY2(R3).

This paper is organized as follows. In Sect. 2, we give the variational framework to our
problem. Section 3 is devoted to proving the existence of a local minimum around the
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origin with negative energy. In Sect. 4, the existence of mountain-pass type critical point
is obtained.

2 Variational setting and preliminaries
In this section, we assume that (f), (%1), (g1), and (gz) hold, then we study the variational
framework of (1.1). Firstly, we give the following notations:

« H'(R3) is the usual Sobolev space equipped with the inner product and norm

(u,v) = (Vu - Vv + buv)dx, lull = (u, u)*2.
R3

o L5(R3) (1 < s < +00) is a Lebesgue space whose norm is denoted by || - ||s.

+ Let DV2(R3) := {u € L°(R®) : |Vu| € L2(R?)} be the Sobolev space with the norm
itz = fis |V d.

+ Cand C; denote various positive constants, which may vary from line to line.

+ The strong (respectively weak) convergence is denoted by — (respectively —).

+ B,(0) denotes a ball centered at the origin with radius p > 0.

+ Let S be the best constant of the Sobolev embedding D¥?(R3) < L(R?), which is
given by

el

S= n 7
ueDL2RI\(0) ||ullg

Now we have that the embedding H!(R3) — L*(R?) is continuous for s € [2,6], and there
exists y; > 0 such that

lulls < vsllul, VueH'(R®).

Let H = H!(R?) be the subspace of H(R?) containing only the radial functions. Then, due
to the result of [26], the embedding H < L*(R®) is compact for s € (2,6).

By virtue of the variational nature of problem (1.1), its weak solutions (u, ¢) € H!(R3) x
DY2(R3) are critical points of the C* functional J : H*(R3) x D¥2(R3) — R defined by

1 1
J(u,¢>>:g’uunzquuu‘lj/ |V¢|2dx+q/ Flu)p dx
R3 R3

_/RS G(u)dx—/]RS hudx, (2.1)

where G(u) = fou g(s)ds. By condition (f) and the Lax—Milgram theorem, for every u €
H(R3), there exists unique ¢ = ¢, € DV2(R3) satisfying —A¢ = 2gF(u). Similar to the ar-
gument in [13], we can derive that the function ¢, has the following properties.

Lemma 2.1 ([13]) For every u € H'(R3), we have
() Npul?rs =2 [gs F(u)p, dx;
(ii) ¢u =0;
(iii) [1pullpr2 < gCCllull® + [lul|**);
(iv) fps Fu)pu dox < gCr(luel|* + [|ue| > V);
(v) if u is a radial function, then ¢, is radial too.
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According to Lemma 2.1 and (2.1), we can prove that (&, ¢) € H(R3) x DY*(R3) is a
solution of (1.1) if and only if # € H'(R3) is a critical point of the one variable functional
defined as

Jo(u) = gllull2 + illull‘ug/]jo F(u)q&udx—/Rg G(u)dx—/]Rg hu dx. (2.2)

It is easy to check that J, : H — R is well defined and is class of C 1 and we have

(@), v) = atu,v) + l|ul® (w,v) +q/Rsf(u)¢uvdx
—/ g(u)vdx—/ hvdx, Yu,veH. (2.3)
R3 R3

In order to obtain the existence of mountain-pass type critical point in Sect. 4, the
boundedness of Palais—Smale sequences is crucial. But the standard arguments used to
prove the boundedness of Palais—Smale sequences do not work. To overcome the diffi-
culty, following [11], we use a cut-off function x € C(R,, [0, 1]) satisfying

x(@) =1, te[0,1/2],
x() =0, te[1,00],
X lloc <4,

and study the following modified functional / qT : H — R defined by

a 1
I = Sut? s Zut® s Thet) [

Hmmw—/

G(u)dx—/ hudx, VYueH,
R3 R3

where hir(u) = x(”;—gz

In fact, for T > 0 sufficiently large and g sufficiently small, we can find a critical point of
]qT such that [|u| < T/+/2, hence u is also a critical point of J,.

In Sect. 4, we use the method based on the “monotonicity trick” introduced by Struwe

). In the following, we discuss the existence of critical points of / qT .

in [18], which has been successfully used to handle many homogeneous elliptic problems.
Now we recall the following result.

Theorem 2.2 ([10]) Let (X, || - ||) be a Banach space and I C R, be an interval. Consider
the family of C* functionals on X:

() =A(m) —AB(u), rel,

with B nonnegative and either A(u) — oo or B(u) — oo as ||u|| — oo. We assume that there
are two points vy,v, € X such that

¢, = inf max J,(y(#)) > max{J,(v1),/i(v2)}, Vrel,
yerl) t€[0,1]

where

= {y € C(10,1,X) :y(0) = vi, ¥ (1) = va}.
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Then, for almost every A € I, there is a sequence {u,} C X such that
(i) {uy)} is bounded,
(i) Jo.(un) = c3;
(i) J;(un) — O in the dual space X' of X.

3 Existence of solution u, with negative energy

In this section, we prove that, for any g > 0, system (1.1) has a positive radial solution with
negative energy. With the aid of Ekeland’s variational principle, this solution is obtained
by seeking a local minimum of the energy functional ;. Now we give some useful lemmas
that will be used later.

Lemma 3.1 Assume that (f), (h1), (h2), (1), (g2), and (g3) hold. Then there exist p,o >0
such that, for all q > 0, J;|juj=p (1) > .

Proof By conditions (g1) and (g2), for -%;, there exists m > 0 such that

2]/22’
a -1
&) < —5lul + mlulP™, VueR, (3.1)
2y;
and
G(u) < izuz + T|u|p, Yu e R. (3.2)
4y; p

Then, for allg > 0 and u € H, by Lemma 2.1, H6lder’s inequality, and Sobolev’s embedding
theorem, we have

1
1) = S+ g+ 4 [ Fuopudr- [ Goas- [ nuas
R3 R3 R3
zf”u"z_/ Guds— [ huds
2 R3 R3
> S~ [ (izuzﬂw)dx_/ e dx
2 ’3 \ 473 p R3
a m
> ||u||<1||u||—— 5||u||f’-l—y2||hn2). (33)
p

Set
a m
t)=—t——yPtt, t>0.
n(t) PR >

Since p € (2,6), by direct calculation, we see that

alp-2)

max n(&) =nlp) =

where

( ap )1/(p2)
P=\—"7T "7 .
dm(p - 1)y
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Then it follows from (3.3) that, if ¥, |l4ll2 < n(p), i.e., 1hll2 < y5'n(p) := my,, there exists

@ = p(1(p) = y2llhll2) > 0 such that Jyljuy-p () > o, where m, = B2 (Csop) V2. 0

Lemma 3.2 Assume that (f), (h1), and (g1) hold. Then, for any g > 0,
o= inf{]q(u) ‘U e Ep} <0,
where p is given by Lemma 3.1 and Ep ={u e H and ||u| < p}.

Proof By (1), we can choose a function ¢ € H such that fR?’ h(x)e dx > 0. By Lemma 2.1,
for ¢ > 0 small enough, we obtain

at* o o4 q
Jo(te) = —ul*+ —loll* + = | Flp)psydx— | Gltp)dx—t | hodx

2 4' 2 R3 R3 R3
at? iz 7

< —lul® + —llel* + = Cr(Elpl* + 21| X1+) —t] he dx
2 4 2 B3

<0,

which shows that ¢ = inf{/,(#) : u € Ep} <0. O

Lemma 3.3 Assume that (f), (h1), (1), (&), and (g3) hold. If {u,} is a bounded Palais—
Smale sequence of J;, then {u,} has a convergent subsequence in H.

Proof Since {u,} is a bounded (PS) sequence of J, then J,(u,) is bounded, ](;(u,,) — 0in
H!, where H™! is the dual space of H. We may assume that, up to a subsequence,

U, —~u inH,
u, — u inL*(R%),s € (2,6),

u,— u ae onR3
By (g1) and (g2), for any ¢ > O, there exists C, > 0 such that
gw) <éelul + CelulP™, VueR,

then

‘/ &(u) (1 — u) dx S/ [lutl + Celoanl?™ ] |4y, — 1] dx
R3 R3

-1
< éllunll2llun — ullz + Cellitn ™ 11ty — ullp

-1 -1
<eéllunllllten —ull + Coyy NunllP™ Nuy — ull p.

It follows that

/ gu,)(u, —u)dx > 0, n— oo.
R3
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By a similar argument, we have

/ gw)(u, —u)dx — 0, n— oo.
R3

By condition (f) and Holder’s inequality, we obtain

/ F )b, (1 — 1)
]R3

o B R T
R
< ClIh el 125t — 15 + 19, 1t~ ),

where 8 = 6/(5 — «) € (2,6). Then, by Lemma 2.1 and Sobolev’s embedding theorem, we
have

/ S )y, (4, —u)dx — 0, n— oo.
R3

Similarly,

/D;gf(u)dm(un -u)dx—>0, n— o0.
Noting that u, — u in E, we have that
(u,u, —u) — 0.
Thus,

VACES AR
= (a1 )~ () 10, )
v [ (), F06.) 0, - )5
- /1;3 (g(un) — g(u)) (14, — ) dx
= (o Pt = 1 (s = 1) 6, )

v [ ()8, £06.) 0, - )5

[ (et~ g0 1)

R3

2 2
= (a+ luall®) = ull® + 04(1), 11— o0.

Consequently, we have ||u, — u|| — 0, that is, #, — u in E, and the proof is complete. [



Shi Boundary Value Problems (2019) 2019:139 Page9of 16

Theorem 3.4 Assume that (f), (), (h2), (1), (&2), and (g3) hold. Then, for any q > 0, there
exists uy € H such that

Jo(uo) =0 and ], (uo) = co,
where cy is given by Lemma 3.2

Proof Since ¢y = inf{J,(u) : u € B,} < 0, by Ekeland’s variational principle [18], there exists

a sequence {u,} C Ep such that

1 1 _
co < Jg(uy) < co+ p Jew) > Jy(u,) - p lw—u,ll, VYweB,.
By the standard procedure, we can see that {u,} is a bounded (PS) sequence of J,. By
Lemma 3.3, {u,} possesses a convergent subsequence. We may assume that, up to a sub-
sequence, #, — ug in H. Hence J, (1) = ¢y and ]a’z(uo) =0. O
4 Proof of Theorem 1.1
In this section, we aim to prove that system (1.1) has a positive energy solution. It is dif-

ficult to prove the boundedness of a (PS) sequence of J,. Here we consider the following
perturbed functional. For u € H,

1
TE ) = Zull® + < ull* + zhT(u)/ Fwé, dx—kf Gu)dx— | hudx
i 2 4 2 R3 R3 R3

= A(M) - )"B(u):
where A € [1/2,1] and
1
Aw) = 1+ S + o) / F(u)g dx / s
2 4 2 R3 ]R3

B(u) = /]R3 G(u) dx.

Then ]gx is of C! functionals on X = H, and for any u,v € H, we have
(U2 003) = (@ 1t? + aF ) ) + ) [ Fv

—A/H‘@g(l,t)vdx—/R3 hvdx, (4.1)

where
500 = a7 (T2 l?) [ P, . (42)

The following lemmas imply that J ; , satisfies the conditions of Theorem 2.2.

Lemma 4.1 Assume that (f), (h), (h2), (¢1), (g2), and (g3) hold. Then the following results
hold:
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(i) There exist r,a > 0 such that, for all 1 € I, ]qT,x|IIuH=r >a.
(i) There exists e € H\{0} with |le|| > r such that, for all A € I, ]qT,,\(e) <0.
(iii) Forall ) €1,

_ T T
¢ = inf max ], (v (©)) > max{/;,(0),Ju(e)} > O,

where
I = {y € C([O,l],H) :y(0)=0,y(1) = e}.

Proof (i) By conditions (g1) and (g3), for any u € H and A € I,

1
T =S+ Jut* s Thet) [ Fagutr-a [ Goas- [ s
” 2 4 2 R3 R3 R3

> f||u||2_/ G(u)dx—/ hudx.
2 R3 R3

So, by (3.3) and Lemma 3.1, there exists » > 0 such that, forall A € I and u € H with |lu| =7,
we have]qT’A(u) >a>0.

(ii) For any A € I, we choose a radial function ¥ € H with ¢ > 0 and [|¢| = 1. By (g3),
we have that, for any C, > 0 with C; ng Y*dx > 1/2, there exists C3 > 0 such that

Gu) > Cylu|* - C5, VueR.
Then, fort> T,

at? tt q [t
RGOE 7|II//II2 + ZIIl/fII4 + EX(F> A;s F(ty) ey dx

—A/l;{sG(tw)dx—tA;hlﬁdx

2 ¢
:“_+__A/ G(tl/f)dx—t/ Iy de
2 4 R3 R3
2 o1
<G g RO [ Vi G 2
R

Then we can choose ¢ > 0 large enough such that ];A(tgﬂ) < 0. Taking e = £y, then (ii) holds.
(iii) Now fix A € I and y € I, with y (1) = e. By the continuity of y, there exists £, € (0,1)
such that ||y (t, )| = r. Therefore, for any A € I, we have

e T
c > ylglfquyk (v(t,)) =a>o0.
The proof is complete. O

Lemma 4.2 Forany )\ € I and 4q>T < a, each bounded Palais—Smale sequence of the func-

tional J qT’ . admits a convergent subsequence, where T = Cy(T? + T™).
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Proof Let A € I and {u,} be a bounded (PS) sequence of]gk, that is, {u,} and ]quk(un) are
bounded, (J ; ) (u,) — 0 in H~!. We may assume that, up to a subsequence,

u,—u inH,
u, — u  inL°(R*),s €(2,6),

u,—u ae onR>

By (4.1) and the proof of Lemma 3.3,

(UL () = OF,) (), 1y — 1)

= (‘Z + ”un”2 + ﬂ;(un))<umun —u) - (d + ”u”Z +d§(lft))(u, Uy — U)

+ qhr () A; ) oty ) s~ g ) /R Fla)la ) dx

i [ (et) ~glw) , ~ )
R3

= (“ + ||un||2 + dz;(un))(unr Uy —u) +0p(1),

and then (a + ||u,||> + a;(uy,))(u,,, U, —u) —> 0,n—> o00.
When ||u,|| < T, by Lemma 2.1(iv), we obtain that

< qCi(lunll* + ) = T?T. (4.4)

/ )b, dx
]R3

By (4.2),

|ag ()| 5qT‘QIX’(T‘leunllz)I’/}Rs F(u)$u, dx| < 44°T. (4.5)

It follows from the assumption 447 < a that a + ||u,|? + al(u,) > a- 4¢*T > 0, hence
(t4y, u,, — u) — 0. This together with u,, — u shows that u, — u in H. The proof is com-

plete. O

Lemma 4.3 Let 4q27" < a, then for almost every ) € I, there exists u* € H\{0} such that
qT,A)’(u*) =0 and]qT,A(u*) =c.

Proof Firstly, it is easy to see that B(u) > 0 and A(u) — oo as |lu|| — oo. Then, by

Lemma 4.1 and Theorem 2.2, for almost every XA € I, there exists a bounded sequence

{u}} C H such that

T\ (A T (
(]q,x) (u;) =0, ]M(un) = C.
By Lemma 4.2, we can obtain that there exists #* € H such that u’ — u*. Hence (J ; ) W) =

0 and ]qT,,\(uA) = ¢;.. Furthermore, it follows from f(¢) = g(t) = 0 for ¢ < 0 and Lemma 4.1(i)
that u* € H\{0}. O
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By virtue of Lemma 4.3, we have that there exist {,} C [ with {A,} — 1~ and a nonneg-

ative sequence {u*"} (denoted by {u,} for simplicity) satisfying
(]L]T,An)/(un) :()r ]qjj)hn(un) =Chye

In order to obtain that ||u,| < T/+/2, the following Pohozaev identity is important, the

proof can be obtained as Lemma 2.2 in [13], and the details are omitted here.

Lemma 4.4 Ifu € H is a weak solution of

[a + lull® + ag (0)](-Au + bu) + ghr (W)df (1) = 2g(w) + h(x), in R,

(4.6)
—A¢ =2qF (u), inR3,
then the following Pohozaev identity holds:
[a+ [l +aT(u)] 1/ |Vu|*dx + §b/‘ wrdx ) + th (u)/ F(u)p, dx
1 2 R3 2 R3 2 T R3 “
:BA/ G(u)dx+/ (3h(x) + (Vh(x), x))udx. (4.7)
R3 R3

The following lemma shows that ||u,|| < T/~/2.

Lemma 4.5 Let u, be a critical point of]quAn atlevel c,,. Then there exist To > 1 and qo > 0
with 162 T3 To < a such that, for any q € [0,qo) and b < 1/4y2, ||u,|| < To/~/2foralln € N.

Proof We will argue by contradiction. Assume that for every T > 1 there exists g7 satisfy-
ing 1642 T2T < a such that

limsup ||u,]| > T/v/2. (4.8)

n—> 0000

Firstly, since (]qT, 2y) (Un) = 0, by (4.7), u, satisfies the following Pohozaev identity:

1 3
[a+ N2, ]|% +aqT(u,,)]<§/3 |V, |* dx + 519/3 uidx)
R R

+ §th(un)/ F(u,)¢u, dx
2 ]R3

:SAV,/ G(un)dx+/ (3h(x)+<Vh(x),x))u,qu. (4.9)
R3 R3

By using ]qT,,\n(”n) = ¢, we have that

3 3 3
2 et + 2 Yo + —th(un)/ F()pu, dx — BM/ G(u,) dx — 3/ hu,, dx
2 4 2 R3 ]R3 ]RS

=3¢, (4.10)
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Hence, by (4.5), (4.9), (4.10), and (/3), we can obtain that

a
(||un||2+ 5) / Viey[? dx
R

<o b+ af )] [ |19,
R3
3 3
=36, + Sal )l + I+ ghrtn) [ Fu)o, &
2 4 R3

- / (Vh(x),x)un dx
R3
3 1 2 3 4
=3¢, + Sag nllunl” + el + ghr(un) | Flutn)pu, d. (4.11)
R
Now we estimate the right-hand side of (4.11), by Lemma 4.1 and (4.3), we have

¢, < max/g; (t)

cmad L0 / Gy de + max T (£ /F(tl/f)¢ d
X — + — — Ay x=x| =
=2 . s TN 2 ) s by &
< max —+———C2t/ w4dx+C4}+Aq(T)

R3
=C5+Aq(T).

If £ > T, then x(%) = 0. Thus, by (4.4), we have that

q L 5 o
A,(T) < = max <-q°T"T.
q( )= 2 telo,T _2q

[ Fewion o
11JRr3
By (4.4) and (4.5), we also have that
th(un)/ F(un)pu, dx < ¢*T*T
R3
and
|a] () |llunll® < 4q° T*T.
Then, by (4.11), we can obtain that
L 2 3 4 [ grry~ 22T | 22
2ot ]” + — [V, |"dx < —luy|*+3( Cs + =q"T°T | +64°T°T +q°T°T,
4 ) Jes 4 2
which implies that
1 3 3b 17 ~
N l* + >4 / |V, )? dx < —||u,,||2/ u2dx+3Cs + —q°T°T. (4.12)
4 4' R3 4 R3 2

Since b < 1/4y3, (4.12) implies that

3a 17 ~
—/ |Vu,|* dx < 3Cs + —¢*T*T.
4' ]R3 2

Page 13 0of 16
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On the other hand, since ( qT,M)’(uy,), u,) =0, by (4.1), (g1), and (g3), we have that
(@ P+ ] 1 4 ) [ ),

=)\y,/ g(u,,)n,,dx+/ hu, dx
R3 R3

a
— llunll3 + Cllunll§ + vallAll2 |4l (4.13)

=<
2y;

Thus, by (4.12) and (4.13), we obtain that
3a 9 6 _ o3 34 5 0% ’
— unll” = v2llBllallunll < Cllunllg < S7C(4Csla+ —q"T°T ) .
4 3a

Since y, [|/]l5 < 7(p) in Lemma 3.1 and 16¢% T>T < a, then we have

3
Z“ et 1® = 0(0) 4]l < S CACs/a + 17/24)%, (4.14)

By (4.8) and (4.14), it is impossible for T > 1 large enough. Thus, we obtain the conclu-
sion. g

Proofof Theorem 1.1 By virtue of the result of Theorem 3.4, in order to prove Theorem 1.1,
here we just need to prove that problem (1.1) has a positive radial solution v, with positive
energy. Let To, go be defined as in Lemma 4.5 and u,, be a critical point of ] ; 5 atlevelc,.
From Lemma 4.5 we have that ||u,|| < Ty/+/2 and {cs,} is bounded. So

1
T2, @) = Slaaal + a1 + Tz (a,) fR F(,)4, dx

—)»,,/ G(u,,)dx—/ hu, dx.
R3 R3

Now we claim that {u,} is a (PS) sequence of /. Indeed,

Jalten) = I (1) + G~ 1) f Gluty) d,
]R3
and

= (032, o)+ G =1 [ gl
R
The fact {u,,} is bounded implies that ng G(u,) dx is bounded and {fR?, glu,)vdx} < Clv|.
Thus, when 1, — 1, we have that {x,} is a bounded (PS) sequence of J,. By Lemma 3.3,
{u,,} has a convergent subsequence, we may assume that i, — vo. Consequently, / é(vo) =0.
According to Lemma 4.1, we have that

]q(v()) = nli)ngo]q(un) = )l)rrolo];gn (un) >c>0,

and vy is a positive solution by the condition of f(¢) = g(¢) = 0 for £ < 0. Thus, the proof is
finished. 0
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