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When q = 0, system (1.1) reduces to the following Kirchhoff-type equation:

(
a +

∫
R3

|∇u|2 + b
∫
R3

u2
)

(–�u + bu) = g(u) + h(x), in R
3. (1.2)

In recent years, the following Dirichlet problem of Kirchhoff-type on a bounded domain
Ω ⊂R

N

⎧⎨
⎩–(a + b

∫
Ω

|∇u|2)�u + V (x)u = f (x, u), in Ω ,

u = 0, on ∂Ω ,
(1.3)

has been studied extensively by many researchers. With the aid of variational methods, for
various conditions of the potential V (x) and the nonlinearity f (x, u), the existence, nonex-
istence, and multiplicity results for problem (1.3) have been investigated in the literature,
one can see [1, 2, 6, 8, 12, 17, 22] and the references therein. There are also many works on
the existence and multiplicity results for system (1.3) on unbounded domains. More pre-
cisely, Duan and Huang [7] dealt with problem (1.3) with sublinear case, and the existence
of infinitely many solutions for the problem has been established by using the genus prop-
erties in critical point theory. Wu [27] studied the existence of nontrivial solutions and
infinitely many high energy solutions for problem (1.3) by using a symmetric mountain
pass theorem. Liu and He [15] also studied the existence of infinitely many high energy
solutions for superlinear Kirchhoff problem (1.3) by a variant version of the fountain the-
orem. For more related topics, we refer the readers to [9, 14, 23, 28–30] and the references
therein.

Very recently, Li et al. [14] studied the existence of at least one positive radial solution
to the following nonlinear homogeneous Kirchhoff-type equation:

(
a + λ

∫
RN

|∇u|2 + λb
∫
RN

u2
)

(–�u + bu) = f (u), in R
N , (1.4)

where N ≥ 3, λ ≥ 0 is a parameter. Their result can be regarded as an extension of a clas-
sical result for the semilinear equation

–�u + bu = f (u), in R
N , (1.5)

to the nonlinear Kirchhoff-type equation (1.4). The more general semilinear Schrödinger
equation (1.5) with b = V (x) has been studied by many researchers under various stipula-
tions, one can see [16, 24, 25] and the references therein.

On the other hand, the well-known Schrödinger–Poisson system

⎧⎨
⎩–�u + V (x)u + qφu = f (x, u), in R

3,

–�φ = qu2, in R
3,

(1.6)

also known as the nonlinear Schrödinger–Maxwell system, and the similar systems arise
in many mathematical physics contexts, such as in quantum electrodynamics, to describe
the interaction between a charge particle interacting with the electromagnetic field, and
also in semiconductor theory, in nonlinear optics, and in plasma physics (see [5] for more
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details on the physics aspects). Many papers deal with problem (1.6) by using the modern
variational method and the critical point theory under various assumptions on the poten-
tial V (x) and the nonlinearity f (x, u); see [19–21] and the references therein. Very recently,
there have also been many authors who investigated the generalized Schrödinger–Poisson
system on bounded domains or on unbounded domains, see [3, 4, 13, 31]. In [13] the au-
thors considered the following system:

⎧⎨
⎩–�u + u + qφf (u) = g(u), in R

3,

–�φ = 2qF(u), in R
3.

(1.7)

They proved that there exists q0 > 0 such that the system has at least a positive radial
solution for q ∈ [0, q0).

By using the symmetric mountain pass theorem, the authors in [32] studied the following
Kirchhoff–Schrödinger–Poisson system:

⎧⎨
⎩(a + b

∫
R3 [|∇u|2 + V (x)u2])[–�u + V (x)u] + λl(x)φu = f (x, u), in R

3,

–�φ = λl(x)u2, in R
3,

(1.8)

where constants a > 0, b ≥ 0, and λ ≥ 0. They proved the existence of infinitely many
solutions assuming that f has sublinear growth in u.

Motivated by the above facts, in this paper, we consider the more general nonhomo-
geneous Kirchhoff–Schrödinger–Poisson system (1.1). The aim of this paper is to prove
the existence and multiplicity of positive radial solutions for system (1.1) when f is sub-
critical and g is superlinear at infinity. To the best of our knowledge, there have been no
works concerning this case up to now. Compared to the aforementioned results, our result
extends these results to some extent.

In this paper, since we are concerned with the existence of positive solutions to (1.1),
we assume that f (t) = g(t) = 0 for t < 0. And the following assumptions will be used in this
paper.

(g1) g ∈ C(R+,R+) and there existsC > 0 such thatg(t) ≤ C(1 + |t|p–1) for all t ∈R, where

p ∈ (2, 6);
(g2) limt→0 g(t)/t = 0;

(g3) limt→∞ g(t)/t3 = ∞.

The main results of the present paper can be described as follows.

Theorem 1.1 Assume that (f ), (h1)–(h3), and (g1)–(g3) hold. Then there exists q0 > 0 such
that problem (1.1) has at least two positive radial solutions (u,φ) ∈ H1(R3) ×D1,2(R3) for
all 0 ≤ q < q0 and 0 ≤ b ≤ 1/4γ 2

2 .

According to Theorem 3.4 in Sect. 3, we have the following result.

Remark 1.2 Assume that (f ), (h1)–(h2), and (g1)–(g3) hold. Then, for any q ≥ 0, problem
(1.1) has at least one positive radial solution (u,φ) ∈ H1(R3) ×D1,2(R3).

This paper is organized as follows. In Sect. 2, we give the variational framework to our
problem. Section 3 is devoted to proving the existence of a local minimum around the
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origin with negative energy. In Sect. 4, the existence of mountain-pass type critical point
is obtained.

2 Variational setting and preliminaries
In this section, we assume that (f ), (h1), (g1), and (g2) hold, then we study the variational
framework of (1.1). Firstly, we give the following notations:

€ H1(R3) is the usual Sobolev space equipped with the inner product and norm

〈u, v〉 =
∫
R3

(∇u · ∇v + buv) dx, ‖u‖ = 〈u, u〉1/2.

€ Ls(R3) (1 ≤ s ≤ +∞) is a Lebesgue space whose norm is denoted by‖ · ‖s.
€ LetD1,2(R3) := {u ∈ L6(R3) : |∇u| ∈ L2(R3)} be the Sobolev space with the norm

‖u‖2
D1,2 :=

∫
R3 |∇u|2 dx.

€ C andCi denote various positive constants, which may vary from line to line.
€ The strong (respectively weak) convergence is denoted by→ (respectively⇀).
€ Bρ(0) denotes a ball centered at the origin with radiusρ > 0.
€ LetS be the best constant of the Sobolev embeddingD1,2(R3) ↪→ L6(R3), which is

given by

S = inf
u∈D1,2(R3)\{0}

‖u‖2
D1,2

‖u‖2
6

.

Now we have that the embedding H1(R3) ↪→ Ls(R3) is continuous for s ∈ [2, 6], and there
exists γs > 0 such that

‖u‖s ≤ γs‖u‖, ∀u ∈ H1(
R

3).

Let H = H1
r (R3) be the subspace of H1(R3) containing only the radial functions. Then, due

to the result of [26], the embedding H ↪→ Ls(R3) is compact for s ∈ (2, 6).
By virtue of the variational nature of problem (1.1), its weak solutions (u,φ) ∈ H1(R3) ×

D1,2(R3) are critical points of the C1 functional J : H1(R3) ×D1,2(R3) →R defined by

J(u,φ) =
a
2
‖u‖2 +

1
4
‖u‖4 –

1
4

∫
R3

|∇φ|2 dx + q
∫
R3

F(u)φ dx

–
∫
R3

G(u) dx –
∫
R3

hu dx, (2.1)

where G(u) =
∫ u

0 g(s) ds. By condition (f ) and the Lax–Milgram theorem, for every u ∈
H1(R3), there exists unique φ = φu ∈ D1,2(R3) satisfying –�φ = 2qF(u). Similar to the ar-
gument in [13], we can derive that the function φu has the following properties.

Lemma 2.1 ([13]) For every u ∈ H1(R3), we have
(i) ‖φu‖2

D1,2 = 2q
∫
R3 F(u)φu dx;

(ii) φu ≥ 0;
(iii) ‖φu‖D1,2 ≤ qC(‖u‖2 + ‖u‖α+1);
(iv)

∫
R3 F(u)φu dx ≤ qC1(‖u‖4 + ‖u‖2(α+1));

(v) if u is a radial function, then φu is radial too.
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According to Lemma 2.1 and (2.1), we can prove that (u,φ) ∈ H1(R3) × D1,2(R3) is a
solution of (1.1) if and only if u ∈ H1(R3) is a critical point of the one variable functional
defined as

Jq(u) =
a
2
‖u‖2 +

1
4
‖u‖4 +

q
2

∫
R3

F(u)φu dx –
∫
R3

G(u) dx –
∫
R3

hu dx. (2.2)

It is easy to check that Jq : H →R is well defined and is class of C1, and we have

〈
J ′
q(u), v

〉
= a〈u, v〉 + ‖u‖2〈u, v〉 + q

∫
R3

f (u)φuv dx

–
∫
R3

g(u)v dx –
∫
R3

hv dx, ∀u, v ∈ H . (2.3)

In order to obtain the existence of mountain-pass type critical point in Sect. 4, the
boundedness of Palais–Smale sequences is crucial. But the standard arguments used to
prove the boundedness of Palais–Smale sequences do not work. To overcome the diffi-
culty, following [11], we use a cut-off function χ ∈ C(R+, [0, 1]) satisfying

⎧⎪⎪⎨
⎪⎪⎩

χ (t) = 1, t ∈ [0, 1/2],

χ (t) = 0, t ∈ [1,∞],

‖χ ′‖∞ ≤ 4,

and study the following modified functional JT
q : H →R defined by

JT
q (u) =

a
2
‖u‖2 +

1
4
‖u‖4 +

q
2

hT (u)
∫
R3

F(u)φu dx –
∫
R3

G(u) dx –
∫
R3

hu dx, ∀u ∈ H ,

where hT (u) = χ ( ‖u‖2

T2 ). In the following, we discuss the existence of critical points of JT
q .

In fact, for T > 0 sufficiently large and q sufficiently small, we can find a critical point of
JT
q such that ‖u‖ ≤ T/

√
2, hence u is also a critical point of Jq.

In Sect. 4, we use the method based on the “monotonicity trick” introduced by Struwe
in [18], which has been successfully used to handle many homogeneous elliptic problems.
Now we recall the following result.

Theorem 2.2 ([10]) Let (X,‖ · ‖) be a Banach space and I ⊂ R+ be an interval. Consider
the family of C1 functionals on X:

Jλ(u) = A(u) – λB(u), λ ∈ I,

with B nonnegative and either A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞. We assume that there
are two points v1, v2 ∈ X such that

cλ = inf
γ∈Γλ

max
t∈[0,1]

Jλ
(
γ (t)

)
> max

{
Jλ(v1), Jλ(v2)

}
, ∀λ ∈ I,

where

Γλ =
{
γ ∈ C

(
[0, 1], X

)
: γ (0) = v1,γ (1) = v2

}
.
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Then, for almost every λ ∈ I , there is a sequence {un} ⊂ X such that
(i) {un} is bounded;

(ii) Jλ(un) → cλ;

(iii) J ′
λ(un) → 0 in the dual space X–1 of X.

3 Existence of solution u0 with negative energy
In this section, we prove that, for any q ≥ 0, system (1.1) has a positive radial solution with
negative energy. With the aid of Ekeland’s variational principle, this solution is obtained
by seeking a local minimum of the energy functional Jq. Now we give some useful lemmas
that will be used later.

Lemma 3.1 Assume that (f ), (h1), (h2), (g1), (g2), and (g3) hold. Then there exist ρ,α > 0
such that, for all q ≥ 0, Jq|‖u‖=ρ(u) ≥ α.

Proof By conditions (g1) and (g2), for a
2γ 2

2
, there exists m > 0 such that

g(u) ≤ a
2γ 2

2
|u| + m|u|p–1, ∀u ∈ R, (3.1)

and

G(u) ≤ a
4γ 2

2
u2 +

m
p

|u|p, ∀u ∈R. (3.2)

Then, for all q ≥ 0 and u ∈ H , by Lemma 2.1, Hölder’s inequality, and Sobolev’s embedding
theorem, we have

Jq(u) =
a
2
‖u‖2 +

1
4
‖u‖4 +

q
2

∫
R3

F(u)φu dx –
∫
R3

G(u) dx –
∫
R3

hu dx

≥ a
2
‖u‖2 –

∫
R3

G(u) dx –
∫
R3

hu dx

≥ a
2
‖u‖2 –

∫
R3

(
a

4γ 2
2

u2 +
m
p

|u|p
)

dx –
∫
R3

hu dx

≥ ‖u‖
(

a
4
‖u‖ –

m
p

γ p
p ‖u‖p–1 – γ2‖h‖2

)
. (3.3)

Set

η(t) =
a
4

t –
m
p

γ p
p tp–1, t ≥ 0.

Since p ∈ (2, 6), by direct calculation, we see that

max
t≥0

η(t) = η(ρ) =
a(p – 2)
4(p – 1)

ρ,

where

ρ =
(

ap
4m(p – 1)γ p

p

)1/(p–2)

.
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Then it follows from (3.3) that, if γ2‖h‖2 < η(ρ), i.e., ‖h‖2 < γ –1
2 η(ρ) := mp, there exists

α = ρ(η(ρ) – γ2‖h‖2) > 0 such that Jq|‖u‖=ρ(u) ≥ α, where mp = a(p–2)
4γ2(p–1) ( ap

4m(p–1)γ p
p

)1/(p–2). �

Lemma 3.2 Assume that (f ), (h1), and (g1) hold. Then, for any q ≥ 0,

c0 = inf
{
Jq(u) : u ∈ Bρ

}
< 0,

where ρ is given by Lemma 3.1 and Bρ = {u ∈ H and ‖u‖ ≤ ρ}.

Proof By (h1), we can choose a function ϕ ∈ H such that
∫
R3 h(x)ϕ dx > 0. By Lemma 2.1,

for t > 0 small enough, we obtain

Jq(tϕ) =
at2

2
‖u‖2 +

t4

4
‖ϕ‖4 +

q
2

∫
R3

F(tϕ)φtϕ dx –
∫
R3

G(tϕ) dx – t
∫
R3

hϕ dx

≤ at2

2
‖u‖2 +

t4

4
‖ϕ‖4 +

q2

2
C1

(
t4‖ϕ‖4 + t2(1+α)‖ϕ‖2(1+α)) – t

∫
R3

hϕ dx

< 0,

which shows that c0 = inf{Jq(u) : u ∈ Bρ} < 0. �

Lemma 3.3 Assume that (f ), (h1), (g1), (g2), and (g3) hold. If {un} is a bounded Palais–
Smale sequence of Jq, then {un} has a convergent subsequence in H .

Proof Since {un} is a bounded (PS) sequence of Jq, then Jq(un) is bounded, J ′
q(un) → 0 in

H–1, where H–1 is the dual space of H . We may assume that, up to a subsequence,

un ⇀ u in H ,

un → u in Ls(
R

3), s ∈ (2, 6),

un → u a.e. on R
3.

By (g1) and (g2), for any ε > 0, there exists Cε > 0 such that

g(u) ≤ ε|u| + Cε|u|p–1, ∀u ∈R,

then

∣∣∣∣
∫
R3

g(un)(un – u) dx
∣∣∣∣ ≤

∫
R3

[
ε|un| + Cε|un|p–1]|un – u|dx

≤ ε‖un‖2‖un – u‖2 + Cε‖un‖p–1
p ‖un – u‖p

≤ ε‖un‖‖un – u‖ + Cεγ
p–1
p ‖un‖p–1‖un – u‖p.

It follows that
∫
R3

g(un)(un – u) dx → 0, n → ∞.
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By a similar argument, we have

∫
R3

g(u)(un – u) dx → 0, n → ∞.

By condition (f ) and Hölder’s inequality, we obtain

∣∣∣∣
∫
R3

f (un)φun (un – u) dx
∣∣∣∣

≤ C
∫
R3

[|un| + |un|α
]
φun |un – u|dx

≤ C
[‖φun‖6‖un‖12/5‖un – u‖12/5 + ‖φun‖6‖un‖α

6 ‖un – u‖β

]
,

where β = 6/(5 – α) ∈ (2, 6). Then, by Lemma 2.1 and Sobolev’s embedding theorem, we
have

∫
R3

f (un)φun (un – u) dx → 0, n → ∞.

Similarly,

∫
R3

f (u)φu(un – u) dx → 0, n → ∞.

Noting that un ⇀ u in E, we have that

〈u, un – u〉 → 0.

Thus,

〈
J ′
q(un) – J ′

q(u), un – u
〉

=
(
a + ‖un‖2)〈un, un – u〉 –

(
a + ‖u‖2)〈u, un – u〉

+ q
∫
R3

(
f (un)φun – f (u)φu

)
(un – u) dx

–
∫
R3

(
g(un) – g(u)

)
(un – u) dx

=
(
a + ‖un‖2)‖un – u‖2 +

(‖un‖2 – ‖u‖2)〈u, un – u〉

+ q
∫
R3

(
f (un)φun – f (u)φu

)
(un – u) dx

–
∫
R3

(
g(un) – g(u)

)
(un – u) dx

=
(
a + ‖un‖2)‖un – u‖2 + on(1), n → ∞.

Consequently, we have ‖un – u‖ → 0, that is, un → u in E, and the proof is complete. �
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Theorem 3.4 Assume that (f ), (h1), (h2), (g1), (g2), and (g3) hold. Then, for any q ≥ 0, there
exists u0 ∈ H such that

J ′
q(u0) = 0 and Jq(u0) = c0,

where c0 is given by Lemma 3.2

Proof Since c0 = inf{Jq(u) : u ∈ Bρ} < 0, by Ekeland’s variational principle [18], there exists
a sequence {un} ⊂ Bρ such that

c0 ≤ Jq(un) ≤ c0 +
1
n

, Jq(w) ≥ Jq(un) –
1
n

‖w – un‖, ∀w ∈ Bρ .

By the standard procedure, we can see that {un} is a bounded (PS) sequence of Jq. By
Lemma 3.3, {un} possesses a convergent subsequence. We may assume that, up to a sub-
sequence, un → u0 in H . Hence Jq(u0) = c0 and J ′

q(u0) = 0. �

4 Proof of Theorem 1.1
In this section, we aim to prove that system (1.1) has a positive energy solution. It is dif-
ficult to prove the boundedness of a (PS) sequence of Jq. Here we consider the following
perturbed functional. For u ∈ H ,

JT
q,λ(u) =

a
2
‖u‖2 +

1
4
‖u‖4 +

q
2

hT (u)
∫
R3

F(u)φu dx – λ

∫
R3

G(u) dx –
∫
R3

hu dx

= A(u) – λB(u),

where λ ∈ [1/2, 1] and

A(u) =
a
2
‖u‖2 +

1
4
‖u‖4 +

q
2

hT (u)
∫
R3

F(u)φu dx –
∫
R3

hu dx,

B(u) =
∫
R3

G(u) dx.

Then JT
q,λ is of C1 functionals on X = H , and for any u, v ∈ H , we have

〈(
JT
q,λ

)′(u), v
〉

=
(
a + ‖u‖2 + aT

q (u)
)〈u, v〉 + qhT (u)

∫
R3

f (u)φuv dx

– λ

∫
R3

g(u)v dx –
∫
R3

hv dx, (4.1)

where

aT
q (u) = qT–2χ ′(T–2‖u‖2)∫

R3
F(u)φu dx. (4.2)

The following lemmas imply that JT
q,λ satisfies the conditions of Theorem 2.2.

Lemma 4.1 Assume that (f ), (h1), (h2), (g1), (g2), and (g3) hold. Then the following results
hold:
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(i) There exist r, a > 0 such that, for all λ ∈ I, JT
q,λ|‖u‖=r ≥ a.

(ii) There exists e ∈ H\{0} with ‖e‖ ≥ r such that, for all λ ∈ I, JT
q,λ(e) < 0.

(iii) For all λ ∈ I,

cλ = inf
γ∈Γλ

max
t∈[0,1]

JT
q,λ

(
γ (t)

)
> max

{
JT
q,λ(0), Jλ(e)

}
> 0,

where

Γλ =
{
γ ∈ C

(
[0, 1], H

)
: γ (0) = 0,γ (1) = e

}
.

Proof (i) By conditions (g1) and (g2), for any u ∈ H and λ ∈ I ,

JT
q,λ(u) =

a
2
‖u‖2 +

1
4
‖u‖4 +

q
2

hT (u)
∫
R3

F(u)φu dx – λ

∫
R3

G(u) dx –
∫
R3

hu dx

≥ a
2
‖u‖2 –

∫
R3

G(u) dx –
∫
R3

hu dx.

So, by (3.3) and Lemma 3.1, there exists r > 0 such that, for all λ ∈ I and u ∈ H with ‖u‖ = r,
we have JT

q,λ(u) ≥ a > 0.
(ii) For any λ ∈ I , we choose a radial function ψ ∈ H with ψ ≥ 0 and ‖ψ‖ = 1. By (g3),

we have that, for any C2 > 0 with C2
∫
R3 ψ4 dx > 1/2, there exists C3 > 0 such that

G(u) ≥ C2|u|4 – C3, ∀u ∈ R.

Then, for t > T ,

JT
q,λ(tψ) =

at2

2
‖ψ‖2 +

t4

4
‖ψ‖4 +

q
2
χ

(
t2

T2

)∫
R3

F(tψ)φtψ dx

– λ

∫
R3

G(tψ) dx – t
∫
R3

hψ dx

=
at2

2
+

t4

4
– λ

∫
R3

G(tψ) dx – t
∫
R3

hψ dx

≤ at2

2
+

t4

4
–

1
2

C2t4
∫
R3

ψ4 dx + C4. (4.3)

Then we can choose t > 0 large enough such that JT
q,λ(tψ) < 0. Taking e = tψ , then (ii) holds.

(iii) Now fix λ ∈ I and γ ∈ Γλ with γ (1) = e. By the continuity of γ , there exists tγ ∈ (0, 1)
such that ‖γ (tγ )‖ = r. Therefore, for any λ ∈ I , we have

cλ ≥ inf
γ∈Γλ

JT
q,λ

(
γ (tγ )

) ≥ a > 0.

The proof is complete. �

Lemma 4.2 For any λ ∈ I and 4q2T̃ < a, each bounded Palais–Smale sequence of the func-
tional JT

q,λ admits a convergent subsequence, where T̃ = C1(T2 + T2α).
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Proof Let λ ∈ I and {un} be a bounded (PS) sequence of JT
q,λ, that is, {un} and JT

q,λ(un) are
bounded, (JT

q,λ)′(un) → 0 in H–1. We may assume that, up to a subsequence,

un ⇀ u in H ,

un → u in Ls(
R

3), s ∈ (2, 6),

un → u a.e. on R
3.

By (4.1) and the proof of Lemma 3.3,

〈(
JT
q,λ

)′(un) –
(
JT
q,λ

)′(u), un – u
〉

=
(
a + ‖un‖2 + aT

q (un)
)〈un, un – u〉 –

(
a + ‖u‖2 + aT

q (u)
)〈u, un – u〉

+ qhT (un)
∫
R3

f (un)φun (un – u) dx – qhT (u)
∫
R3

f (u)φu(un – u) dx

– λ

∫
R3

(
g(un) – g(u)

)
(un – u) dx

=
(
a + ‖un‖2 + aT

q (un)
)〈un, un – u〉 + on(1),

and then (a + ‖un‖2 + aT
q (un))〈un, un – u〉 → 0, n → ∞.

When ‖un‖ ≤ T , by Lemma 2.1(iv), we obtain that

∣∣∣∣
∫
R3

F(un)φun dx
∣∣∣∣ ≤ qC1

(‖un‖4 + ‖un‖2(1+α)) = qT2T̃ . (4.4)

By (4.2),

∣∣aT
q (un)

∣∣ ≤ qT–2∣∣χ ′(T–2‖un‖2)∣∣∣∣∣∣
∫
R3

F(un)φun dx
∣∣∣∣ ≤ 4q2T̃ . (4.5)

It follows from the assumption 4q2T̃ < a that a + ‖un‖2 + aT
q (un) ≥ a – 4q2T̃ > 0, hence

〈un, un – u〉 → 0. This together with un ⇀ u shows that un → u in H . The proof is com-
plete. �

Lemma 4.3 Let 4q2T̃ < a, then for almost every λ ∈ I , there exists uλ ∈ H\{0} such that
(JT

q,λ)′(uλ) = 0 and JT
q,λ(uλ) = cλ.

Proof Firstly, it is easy to see that B(u) ≥ 0 and A(u) → ∞ as ‖u‖ → ∞. Then, by
Lemma 4.1 and Theorem 2.2, for almost every λ ∈ I , there exists a bounded sequence
{uλ

n} ⊂ H such that

(
JT
q,λ

)′(uλ
n
) → 0, JT

q,λ
(
uλ

n
) → cλ.

By Lemma 4.2, we can obtain that there exists uλ ∈ H such that uλ
n → uλ. Hence (JT

q,λ)′(uλ) =
0 and JT

q,λ(uλ) = cλ. Furthermore, it follows from f (t) = g(t) = 0 for t < 0 and Lemma 4.1(i)
that uλ ∈ H\{0}. �
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By virtue of Lemma 4.3, we have that there exist {λn} ⊂ I with {λn} → 1– and a nonneg-
ative sequence {uλn} (denoted by {un} for simplicity) satisfying

(
JT
q,λn

)′(un) = 0, JT
q,λn (un) = cλn .

In order to obtain that ‖un‖ ≤ T/
√

2, the following Pohozaev identity is important, the
proof can be obtained as Lemma 2.2 in [13], and the details are omitted here.

Lemma 4.4 If u ∈ H is a weak solution of

⎧⎨
⎩[a + ‖u‖2 + aT

q (u)](–�u + bu) + qhT (u)φf (u) = λg(u) + h(x), in R
3,

–�φ = 2qF(u), in R
3,

(4.6)

then the following Pohozaev identity holds:

[
a + ‖u‖2 + aT

q (u)
](1

2

∫
R3

|∇u|2 dx +
3
2

b
∫
R3

u2 dx
)

+
5
2

qhT (u)
∫
R3

F(u)φu dx

= 3λ

∫
R3

G(u) dx +
∫
R3

(
3h(x) +

〈∇h(x), x
〉)

u dx. (4.7)

The following lemma shows that ‖un‖ ≤ T/
√

2.

Lemma 4.5 Let un be a critical point of JT
q,λn at level cλn . Then there exist T0 > 1 and q0 > 0

with 16q2
0T2

0 T̃0 < a such that, for any q ∈ [0, q0) and b ≤ 1/4γ 2
2 , ‖un‖ ≤ T0/

√
2 for all n ∈N.

Proof We will argue by contradiction. Assume that for every T > 1 there exists qT satisfy-
ing 16q2

TT2T̃ < a such that

lim sup
n→∞∞

‖un‖ ≥ T/
√

2. (4.8)

Firstly, since (JT
q,λn )′(un) = 0, by (4.7), un satisfies the following Pohozaev identity:

[
a + ‖un‖2 + aT

q (un)
](1

2

∫
R3

|∇un|2 dx +
3
2

b
∫
R3

u2
n dx

)

+
5
2

qhT (un)
∫
R3

F(un)φun dx

= 3λn

∫
R3

G(un) dx +
∫
R3

(
3h(x) +

〈∇h(x), x
〉)

un dx. (4.9)

By using JT
q,λn (un) = cλn , we have that

3a
2

‖un‖2 +
3
4
‖un‖4 +

3q
2

hT (un)
∫
R3

F(un)φun dx – 3λn

∫
R3

G(un) dx – 3
∫
R3

hun dx

= 3cλn . (4.10)
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Hence, by (4.5), (4.9), (4.10), and (h3), we can obtain that
(

‖un‖2 +
a
2

)∫
R3

|∇un|2 dx

≤ [
a + ‖un‖2 + aT

q (un)
] ∫

R3
|∇un|2 dx

= 3cλn +
3
2

aT
q (un)‖un‖2 +

3
4
‖un‖4 + qhT (un)

∫
R3

F(un)φun dx

–
∫
R3

〈∇h(x), x
〉
un dx

≤ 3cλn +
3
2

aT
q (un)‖un‖2 +

3
4
‖un‖4 + qhT (un)

∫
R3

F(un)φun dx. (4.11)

Now we estimate the right-hand side of (4.11), by Lemma 4.1 and (4.3), we have

cλn ≤ max
t

JT
q,λn (tψ)

≤ max
t

{
at2

2
+

t4

4
– λn

∫
R3

G(tψ) dx
}

+ max
t

q
2
χ

(
t2

T2

)∫
R3

F(tψ)φtψ dx

≤ max
t

{
at2

2
+

t4

4
–

1
2

C2t4
∫
R3

ψ4 dx + C4

}
+ Aq(T)

= C5 + Aq(T).

If t ≥ T , then χ ( t2

T2 ) = 0. Thus, by (4.4), we have that

Aq(T) ≤ q
2

max
t∈[0,T]

∣∣∣∣
∫
R3

F(tψ)φtψ dx
∣∣∣∣ ≤ 1

2
q2T2T̃ .

By (4.4) and (4.5), we also have that

qhT (un)
∫
R3

F(un)φun dx ≤ q2T2T̃

and

∣∣aT
q (un)

∣∣‖un‖2 ≤ 4q2T2T̃ .

Then, by (4.11), we can obtain that
(

‖un‖2 +
3a
4

)∫
R3

|∇un|2 dx ≤ 3
4
‖un‖4 + 3

(
C5 +

1
2

q2T2T̃
)

+ 6q2T2T̃ + q2T2T̃ ,

which implies that
(

1
4
‖un‖2 +

3a
4

)∫
R3

|∇un|2 dx ≤ 3b
4

‖un‖2
∫
R3

u2
n dx + 3C5 +

17
2

q2T2T̃ . (4.12)

Since b ≤ 1/4γ 2
2 , (4.12) implies that

3a
4

∫
R3

|∇un|2 dx ≤ 3C5 +
17
2

q2T2T̃ .
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On the other hand, since 〈(JT
q,λn )′(un), un〉 = 0, by (4.1), (g1), and (g2), we have that

(
a + ‖un‖2 + aT

q (un)
)‖un‖2 + qhT (un)

∫
R3

f (un)φunnn dx

= λn

∫
R3

g(un)nn dx +
∫
R3

hun dx

≤ a
2γ 2

2
‖un‖2

2 + C‖un‖6
6 + γ2‖h‖2‖un‖. (4.13)

Thus, by (4.12) and (4.13), we obtain that

3a
4

‖un‖2 – γ2‖h‖2‖un‖ ≤ C‖un‖6
6 ≤ S–3C

(
4C5/a +

34
3a

q2T2T̃
)3

.

Since γ2‖h‖2 < η(ρ) in Lemma 3.1 and 16q2
TT2T̃ < a, then we have

3a
4

‖un‖2 – η(ρ)‖un‖ < S–3C(4C5/a + 17/24)3. (4.14)

By (4.8) and (4.14), it is impossible for T > 1 large enough. Thus, we obtain the conclu-
sion. �

Proof of Theorem 1.1 By virtue of the result of Theorem 3.4, in order to prove Theorem 1.1,
here we just need to prove that problem (1.1) has a positive radial solution v0 with positive
energy. Let T0, q0 be defined as in Lemma 4.5 and un be a critical point of JT0

q,λn at level cλn .
From Lemma 4.5 we have that ‖un‖ ≤ T0/

√
2 and {cλn} is bounded. So

JT0
q,λn (un) =

a
2
‖un‖2 +

1
4
‖un‖4 +

q
2

hT (un)
∫
R3

F(un)φun dx

– λn

∫
R3

G(un) dx –
∫
R3

hun dx.

Now we claim that {un} is a (PS) sequence of Jq. Indeed,

Jq(un) = JT0
q,λn (un) + (λn – 1)

∫
R3

G(un) dx,

and

〈
J ′
q(un), v

〉
=

〈(
JT0
q,λn

)′(un), v
〉
+ (λn – 1)

∫
R3

g(un)v dx.

The fact {un} is bounded implies that
∫
R3 G(un) dx is bounded and {∫

R3 g(un)v dx} ≤ C‖v‖.
Thus, when λn → 1, we have that {un} is a bounded (PS) sequence of Jq. By Lemma 3.3,
{un} has a convergent subsequence, we may assume that un → v0. Consequently, J ′

q(v0) = 0.
According to Lemma 4.1, we have that

Jq(v0) = lim
n→∞ Jq(un) = lim

n→∞ JT0
q,λn (un) ≥ c > 0,

and v0 is a positive solution by the condition of f (t) = g(t) = 0 for t < 0. Thus, the proof is
finished. �
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