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Abstract
This work is concerned with a viscoelastic equation with a nonlinear frictional
damping and a relaxation function satisfying g′(t)≤ –ξ (t)gp(t), t ≥ 0, 1≤ p < 3

2 . We
establish general decay rate results using the multiplier method and some properties
of non-homogeneous ordinary differential inequalities. These results extend and
improve many results in the literature.
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1 Introduction
In this paper, we consider the following viscoelastic problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ +∞

0 g(s)�u(t – s) ds + |ut|m–2ut = 0 in Ω × (0, +∞),

u(x, t) = 0 on ∂Ω × (0, +∞),

u(x, –t) = u0(x, t), ut(x, 0) = u1(x) in Ω × (0, +∞),

(1)

where u denotes the transverse displacement of waves and Ω is a bounded domain of
R

N (N ≥ 1) with a smooth boundary ∂Ω , g is a positive and decreasing function and m > 1.
The study of viscoelastic problems has attracted the attention of many authors, and sev-

eral decay and blow-up results have been established. In [1], Cavalcanti et al. considered
the equation

utt – �u +
∫ t

0
g(t – s)�u(x, s) ds + a(x)ut + |u|p–1u = 0, in Ω × (0,∞), (2)

where a : Ω →R
+ is a function which may vanish on a part of the domain Ω but satisfies

a(x) ≥ a0 on ω ⊂ Ω and g satisfies, for two positive constants ξ1 and ξ2,

–ξ1g(t) ≤ g ′(t) ≤ –ξ2g(t), t ≥ 0.

They established an exponential decay result under some restrictions on ω. Berrimi and
Messaoudi [2] improved the result of [1], under weaker conditions on both a and g , to a
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problem where a source term is competing with the damping term. Fabrizio and Polidoro
[3] studied the following system:

⎧
⎨

⎩

utt – �u +
∫ t

0 g(t – τ )�u(τ ) dτ + ut = 0 in Ω × (0,∞),

u = 0 on ∂Ω × (0,∞),

and showed that the exponential decay of the relaxation function is a necessary condition
for the exponential decay of the solution energy. Cavalcanti and Oquendo [4] considered
the following problem:

utt – k0�u +
∫ t

0
div

[
a(x)g(t – s)�u(x, s)

]
ds + b(x)h(ut) + f (u) = 0 (3)

and established, for a(x) + b(x) ≥ ρ > 0, an exponential stability result for g decaying expo-
nentially and h linear and a polynomial stability result for g decaying polynomially and h
nonlinear. Rivera [5] considered equations for linear isotropic homogeneous viscoelastic
solids of integral type which occupy a bounded domain or the whole space R

n, with zero
boundary and history data and in the absence of external body forces. In the bounded
domain case, an exponential decay result was proved for exponentially decaying mem-
ory kernels, and for the whole space case, a polynomial decay result was established and
the rate of the decay was given. This latter result was later pushed to a situation where the
kernel is decaying algebraically but not exponentially by Cabanillas and Rivera [6]. In their
paper, the authors showed that the decay of solutions is also algebraic, at a rate which can
be determined by the rate of the decay of the relaxation function and may be improved by
the regularity of the initial data. The authors considered both cases, the bounded domains
and that of a material occupying the entire space. This result was later improved by Baretto
et al. [7], where equations related to linear viscoelastic plates were treated. Precisely, they
showed that the solution energy decays at the same decay rate of the relaxation function.
For partially viscoelastic materials, Rivera et al. [8, 9] showed that solutions decay expo-
nentially to zero, provided the relaxation function decays in a similar fashion, regardless
of the size of the viscoelastic part of the material. Pazoto et al. [10] investigated a class of
abstract viscoelastic equations of the form

utt + Au(t) + βu(t) –
(
g ∗ Aαu

)
(t) = 0 (4)

for 0 ≤ α ≤ β ,β ≥ 0. The main focus was on the case when 0 < α < 1, and the main result
was that solutions for (4) decay polynomially even if the kernel g decays exponentially.
This result is sharp (see Theorem 12 [10]). See also Rivera et al. [11], where the authors
studied a more general abstract problem than (4) and established a necessary and sufficient
condition to obtain an exponential decay. The work of [10] and [11] has been improved
by Jamilu and Messaoudi [12].

For infinite history problems, Giorgi et al. [13] considered the following semilinear hy-
perbolic equation with linear memory in a bounded domain Ω ⊂R

3:

utt – K(0)�u –
∫ +∞

0
K ′(s)�u(t – s) ds + g(u) = f , in Ω ×R

+
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with K(0), K(∞) > 0, and K ′ ≤ 0 and proved the existence of global attractors for the so-
lutions. Conti and Pata [14] considered the following semilinear hyperbolic equation:

utt + αut – K(0)�u –
∫ +∞

0
K ′(s)�u(t – s) ds + g(u) = f , in Ω ×R

+, (5)

where the memory kernel is a convex decreasing smooth function such that K(0) > K(∞) >
0 and g : R → R is a nonlinear term of at most cubic growth satisfying some conditions.
They proved the existence of a regular global attractor. In [15], Appleby et al. studied the
linear integro-differential equation

utt + Au(t) +
∫ t

–∞
K(t – s)Au(s) ds = 0, t > 0

and established an exponential decay result for strong solutions in a Hilbert space. Pata
[16] discussed the decay properties of the semigroup generated by the following equation:

utt + αAu(t) + βut(t) –
∫ +∞

0
μ(s)Au(t – s) ds = 0,

where A is a strictly positive self-adjoint linear operator and α > 0,β ≥ 0 and the mem-
ory kernel μ is a decreasing function satisfying specific conditions. Subsequently, they
established necessary as well as sufficient conditions for the exponential stability. In [17],
Guesmia considered

utt + Au –
∫ +∞

0
g(s)Bu(t – s) ds = 0

and introduced a new ingenuous approach for proving a more general decay result based
on the properties of convex functions and the use of the generalized Young inequality. He
used a larger class of infinite history kernels satisfying the following condition:

∫ +∞

0

g(s)
G–1(–g ′(s))

ds + sup
s∈R+

g(s)
G–1(–g ′(s))

< +∞ (6)

such that

G(0) = G′(0) = 0 and lim
t→+∞ G′(t) = +∞, (7)

where G : R+ → R
+ is an increasing strictly convex function. Using this approach,

Guesmia and Messaoudi [18] later looked into

utt – �u +
∫ t

0
g1(t – s) div

(
a1(x)∇u(s)

)
ds +

∫ +∞

0
g2(s) div

(
a2(x)∇u(t – s)

)
ds = 0,

in a bounded domain and under suitable conditions on a1 and a2 and for a wide class of
relaxation functions g1 and g2 that are not necessarily decaying polynomially or exponen-
tially, and established a general decay result from which the usual exponential and poly-
nomial decay rates are only special cases. Messaoudi and Al-Gharabli [19] considered the
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following nonlinear wave equation:

|ut|ρutt – �u – �utt +
∫ +∞

0
g(s)�u(t – s) ds = 0, in Ω × (0, +∞)

and proved a general decay result of the solution energy using an approach different from
that introduced by Guesmia [17]. For more results in this direction, we refer to [20] and
[21].

In the present work, we study the asymptotic behavior of solutions of (1), under assump-
tion (9) (below) instead of (6) considered in Guesmia [17] and Al-Gharabli [22]. This work
will extend the result of Belhannache et al. [23] for the finite history case to the infinite
history case. The proof of the current result is easier than the one in [17] and [22] since we
need no convex function properties or the generalized Young inequality. Moreover, this
result gives a better rate of decay in some cases (see Remark 4.3 below).

The rest of this paper is organized as follows. In Sect. 2, we present some assumptions
and material needed for our work. Some technical lemmas are presented and proved in
Sect. 3. Finally, we state and prove our main decay results and provide some examples in
Sect. 4.

2 Preliminaries
In this section, we present some materials needed for the proof of our results and state
a well-posedness result of the problem. We use the standard Lebesgue space L2(Ω) and
Sobolev space H1

0 (Ω) with their usual scalar products and norms and assume the following
hypotheses.

(A1) g : R+ →R
+ is a C1 nonincreasing function satisfying

g(0) > 0, 1 –
∫ +∞

0
g(s) ds = � > 0. (8)

(A2) There exist a nonincreasing differentiable function ξ : R+ →R
+ and 1 ≤ p < 3

2 such
that

g ′(t) ≤ –ξ (t)gp(t), ∀t ∈R
+. (9)

(A3) For the nonlinearity in the damping, we assume that

1 < m ≤ 2n
n – 2

, if n > 2 and m > 1, if n = 1, 2. (10)

(A4) There exists m0 ≥ 0 such that

∥
∥∇u0(·, s)

∥
∥

2 ≤ m0, ∀s > 0. (11)

We introduce the “modified” energy associated to problem (1) by

E(t) =
1
2
‖ut‖2

2 +
1 – �

2
‖∇u‖2

2 +
1
2

(go∇u)(t), (12)
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where

(go∇u)(t) =
∫ +∞

0
g(s)

∥
∥∇u(t) – ∇u(t – s)

∥
∥2

2 ds.

Direct differentiation, using (1), leads to

E′(t) =
1
2
(
g ′o∇u

)
(t) –

∫

Ω

|ut|m dx ≤ 0. (13)

Now, we state without proof the existence result to problem (1).

Proposition 1 ([22, 23]) Let (u0(·, 0), u1) ∈ H1
0 (Ω) × L2(Ω) be given. Assume that (A1)–

(A4) hold and m > 1. Then problem (1) has a unique weak global solution.

3 Technical lemmas
In this section, we state and establish several lemmas needed for the proof of our main
result.

Lemma 3.1 ([4, 24]) Assume that g satisfies (A1) and (A2), then

∫ +∞

0
ξ (t)g1–σ (t) dt < +∞, ∀σ < 2 – p. (14)

Lemma 3.2 ([4, 24]) Assume that (A1) and (A2) hold and u is the solution of (1) then, for
0 < σ < 1, we have

∫ t

0
g(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds ≤ c
[(∫ t

0
g1–σ (t) dt

)

E(0)
] p–1

p–1+σ (
gpo∇u

) σ
p–1+σ .

By taking σ = 1
2 , we get

∫ t

0
g(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds ≤ c
[∫ t

0
g

1
2 (s) ds

] 2p–2
2p–1 (

gpo∇u
) 1

2p–1 (t). (15)

Remark 3.1 Using (12), (A4), and the fact E is nonincreasing, we obtain

∥
∥∇u(t) – ∇u(t – s)

∥
∥2

2

≤ 2
∥
∥∇u(t)

∥
∥

2
2 + 2

∥
∥∇u(t – s)

∥
∥2

2

≤ 4 sup
s>0

∥
∥∇u(s)

∥
∥

2
2 + 2 sup

τ<0

∥
∥∇u(τ )

∥
∥

2
2

≤ 4 sup
s>0

∥
∥∇u(s)

∥
∥

2
2 + 2 sup

τ>0

∥
∥∇u0(τ )

∥
∥

2
2

≤ 8
1 – �

E(0) + 2m2
0 := N1. (16)

Corollary 1 Assume that (A1)–(A4) hold and u is a solution of (1), then

ξ (t)
∫ +∞

0
g(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds ≤ C
[
–E′(t)

] 1
2p–1 + N1ξ (t)

∫ +∞

t
g(s) ds. (17)
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Proof Multiply both sides of (15) by ξ (t) and use (13), (14), and (16) to obtain

ξ (t)
∫ +∞

0
g(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds

= ξ (t)
∫ t

0
g(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds + ξ (t)
∫ +∞

t
g(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds

≤ Cξ
2p–2
2p–1 (t)

[∫ t

0
g

1
2 (s) ds

] 2p–2
2p–1

ξ
1

2p–1 (t)
(
gpo∇u

) 1
2p–1 (t) + N1ξ (t)

∫ +∞

t
g(s) ds

≤ C
[∫ t

0
ξ (s)g

1
2 (s) ds

] 2p–2
2p–1 (

ξgpo∇u
) 1

2p–1 (t) + N1ξ (t)
∫ +∞

t
g(s) ds

≤ C
[∫ +∞

0
ξ (s)g

1
2 (s) ds

] 2p–2
2p–1 (

–g ′o∇u
) 1

2p–1 (t) + N1ξ (t)
∫ +∞

t
g(s) ds

≤ C
[
–E′(t)

] 1
2p–1 + N1ξ (t)

∫ +∞

t
g(s) ds. (18)�

Lemma 3.3 ([22]) Under assumptions (A1)–(A4), the functional

ψ(t) :=
∫

Ω

uut dx

satisfies, along the solution, the estimate

ψ ′(t) ≤ –
�

4
‖∇u‖2

2 + ‖ut‖2
2 +

1 – �

2�
(go∇u)(t)

+ c
∫

Ω

|ut|m dx, if m ≥ 2 (19)

and

ψ ′(t) ≤ –
�

4
‖∇u‖2

2 + ‖ut‖2
2 +

1 – �

2�
(go∇u)(t)

+ c(Ω)
(∫

Ω

|ut|m dx
) 2m–2

m
, if m < 2. (20)

Lemma 3.4 ([22]) Under assumptions (A1)–(A4), the functional

χ (t) := –
∫

Ω

ut

∫ +∞

0
g(s)

(
u(t) – u(t – s)

)
ds dx

satisfies, for all δ > 0 and along the solution, the estimate

χ ′(t) ≤ –δ
[
1 + 2(1 – �)2]‖∇u‖2

2 –
(
(1 – �) – δ

)‖ut‖2
2 + C(δ)(go∇u)(t)

+
g(0)
4δ

(
–
(
g ′o∇u

))
(t) + C(δ)

∫

Ω

|ut|m dx, if m ≥ 2 (21)

and

χ ′(t) ≤ –δ
[
1 + 2(1 – �)2]‖∇u‖2

2 –
(
(1 – �) – δ

)‖ut‖2
2 + C(δ)(go∇u)(t)
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+
g(0)
4δ

(
–
(
g ′o∇u

))
(t) + c(δ,Ω)

(∫

Ω

|ut|m dx
) 2m–2

m
, if m < 2. (22)

Lemma 3.5 ([22]) Assume that (A1)–(A4) hold. Then there exist strictly positive constants
ε1, ε2,α1, c such that the functional

L = E(t) + ε1ψ(t) + ε2χ (t)

satisfies, for all t ∈R
+,

F ∼ E, (23)

L′(t) ≤ –α1E(t) + c(go∇u)(t) if m ≥ 2 (24)

and

L′(t) ≤ –α1E(t) + c(go∇u)(t) + c
(∫

Ω

|ut|m dx
) 2m–2

m
if m < 2. (25)

4 The main result
In this section we state and prove our decay result. We start with two remarks.

Remark 4.1 If 1 + 1
4p–3 < m < 2, we have

2m – 2
m

>
1

2p – 1
, (26)

and if 1 < m < 1 + 1
4p–3 < 2, we have

2m – 2
m

<
1

2p – 1
. (27)

Remark 4.2 Using (13) and (16), we have

∣
∣E′(t)

∣
∣ ≤ 1

2
∣
∣g ′o∇u(t)

∣
∣ ≤ N1

2
g(0) = c. (28)

Theorem 4.1 Let (u0(·, 0), u1) ∈ H1
0 (Ω) × L2(Ω) be given. Assume that (A1)–(A4) hold.

Then, for m ≥ 2, we have

E(t) ≤ δ1

(

1 +
∫ t

0

(
g(s)

)1–δ0 ds
)

e–δ0
∫ t

0 ξ (s) ds + δ1

∫ +∞

t
g(s) ds, p = 1, (29)

and

E(t) ≤ C(1 + t)
–1

2p–2 ξ
– 2p–1

2p–2 (t)
(

1 +
∫ t

0
(1 + s)

1
2p–2 ξ

2p–1
2p–2 (s)h2p–1 ds

)

, 1 < p <
3
2

. (30)

Moreover, for any 1 < p < 3
2 , if

∫ +∞

0

[

(1 + t)
–1

2p–2 ξ
– 2p–1

2p–2 (t)
(

1 +
∫ t

0
(1 + s)

1
2p–2 ξ

2p–1
2p–2 (s)h2p–1(s) ds

)]

dt < +∞, (31)
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then we have

E(t) ≤ C(1 + t)
–1

p–1 ξ
– 2p

p–1 (t)
(

1 +
∫ t

0
(1 + s)

1
p–1 ξ

p
p–1 (s)hp(s) ds

)

, 1 < p <
3
2

, (32)

where Ch(t) := N1ξ (t)
∫ +∞

t g(s) ds), δ1, C are strictly positive numbers and δ0 ∈ (0,γ0], γ0 ∈
(0, 1).

Remark 4.3 Let us compare our estimates (30) and (32) with the one of [17] and [22]
obtained for (1). Our estimate (32) improves the decay rate given in [17]. Indeed, let
g(t) = a

(1+t)q , q > 2, where a is chosen so that hypothesis (A1) remains valid. Then

g ′(t) =
–aq

(1 + t)q+1 = –b
(

a
(1 + t)q

) q+1
q

= –bgp(t), p =
q + 1

q
<

3
2

, b > 0. (33)

Let us compute

h(t) = ξ (t)
∫ +∞

t
g(s) ds =

ab
q – 1

(1 + t)1–q, q =
1

p – 1
. (34)

Routine calculations yield, for some positive constant C,

∫ t

0
(1 + s)

1
p–1 ξ

p
p–1 (s)hp ds = C(1 + t)p(1–q)+ 1

p–1 +1 – C. (35)

Therefore, estimate (32) yields

E(t) ≤ C(1 + t)
–q2+q+1

q , (36)

which implies that (36) improves the following decay rate obtained in [17]:

E(t) ≤ C(1 + t)–p, ∀0 < p <
q – 1

2
. (37)

This is because q2–q–1
2 > q–1

2 for q > 2. As a conclusion our approach improves and has a
better decay rate than the one of [17].

Proof of Theorem 4.1 For the proof of (29), see [19]. For (30), we multiply (24) by
ξα+1(t)Eα(t), where α = 2p – 2, and use (17) to obtain

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + c(ξE)α(t)

[
–E′(t)

] 1
α+1 + Ch(t)ξα(t)Eα(t). (38)

Use of Young’s inequality, with q = α + 1 and q∗ = α+1
α

, gives

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + 2εξα+1(t)Eα+1 – CεE′(t) + Cεhα+1(t). (39)

Choosing ε small enough and letting F := ξα+1EαL + CεE ∼ E, we have, for positive con-
stants c1 and c2,

F ′(t) ≤ –c1ξ
α+1(t)Fα+1(t) + c2hα+1(t). (40)
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Multiplying both sides of (40) by ξβ , β > 1, we get

ξβF ′(t) ≤ –c1ξ
α+1+β (t)Fα+1(t) + c2ξ

βhα+1(t). (41)

Recalling that ξ > 0 and nonincreasing, one can see that

%labelL0
(
ξβF(t)

)′ ≤ –c1ξ
α+1+β (t)Fα+1(t) + c2ξ

βhα+1(t). (42)

Noting ϕ = ξβF and taking β = α+1
α

, we obtain

ϕ′(t) ≤ –c1ϕ
α+1(t) + c2ξ

β (t)hα+1(t). (43)

Let

f (t) := ϕ(t) – Ψ (t); where Ψ (t) = c2(1 + t)
–1
α

∫ t

0
ξβ (s)hα+1(s)(1 + s)

1
α ds. (44)

From the definition of Ψ , we have

c2ξ
β (t)hα+1(t) = Ψ ′(t) +

c2

α
(1 + t)

–1
α –1

∫ t

0
ξβ (s)hα+1(s)(1 + s)

1
α ds. (45)

Since ξβ (s)hα+1(1 + s) 1
α > 0, we have, for all t ≥ t0 > 0,

ν :=
∫ t0

0
ξβ (s)hα+1(s)(1 + s)

1
α ds ≤

∫ t

0
ξβ (s)hα+1(s)(1 + s)

1
α ds,

and then

∫ t
0 ξβ (s)hα+1(s)(1 + s) 1

α ds
ν

≥ 1, ∀t ≥ t0.

Thus (45) yields, ∀t ≥ t0,

c2ξ
β (t)hα+1(t) ≤ Ψ ′(t) +

1
αcα

2 να
cα+1

2
[
(1 + t)

–1
α

]α+1
[∫ t

0
ξβ (s)hα+1(s)(1 + s)

1
α ds

]α+1

. (46)

We can choose c2 large enough so that 1
αcα2 να ≤ c1, and then we get

c2ξ
β (t)hα+1(t) ≤ Ψ ′(t) + c1Ψ

α+1, ∀t ≥ t0. (47)

Now, using (47) and the definition of f , we get, ∀t ≥ t0,

f ′(t) = ϕ′(t) – Ψ ′(t) ≤ –c1ϕ
α+1(t) + c2ξ

β (t)hα+1(t) – Ψ ′(t)

≤ –c1
[
(f + Ψ )α+1(t)

]
+ c2ξ

β (t)hα+1(t) – Ψ ′(t). (48)

Since f (0) > 0, then there exists t1 > 0 such that f (t) > 0,∀t ∈ [0, t1). Hence,

f ′(t) ≤ –c1
[
f α+1(t) + Ψ α+1(t)

]
+ c2ξ

β (t)hα+1(t) – Ψ ′(t), ∀t ∈ [t0, t1)
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≤ –c1

[

f α+1(t) + Ψ α+1(t) –
c2

c1
ξβ (t)hα+1(t) +

1
c1

Ψ ′(t)
]

. (49)

Thus,

f ′(t) ≤ –c1f α+1(t), ∀t ∈ [t0, t1). (50)

Integrating over (t0, t), we have

f (t) ≤ c
(t – t0) 1

α

, ∀t ∈ [t0, t1). (51)

If t1 = +∞, using again the definitions of f and Ψ , we have, for t large enough,

ϕ(t) ≤ C(1 + t)
–1
α

[

1 +
∫ t

0
ξβ (s)hα+1(s)(1 + s)

1
α ds

]

. (52)

If t1 < +∞, then there exists t2 > t1 such that f (t) ≤ 0,∀t1 ≤ t < t2. Hence, (44) yields ϕ(t) ≤
Ψ (t),∀t1 ≤ t < t2; consequently, we get (52). If t2 = +∞, we are done. Otherwise, there
exists t3 > t2 such that f (t2) = 0 and f (t) > 0,∀t2 < t < t3, we then repeat steps (49)–(51) on
[t2, t3) to obtain (52). Therefore, (52) remains valid for all t ≥ t0. Multiply (52) by ξ–β and
recall the definition of ϕ, then for β = α+1

α
we have

F(t) ≤ C(1 + t)
–1
α ξ– α+1

α

[

1 +
∫ t

0
ξ

α+1
α (s)hα+1(s)(1 + s)

1
α ds

]

. (53)

Using the fact F ∼ E and recalling that α = 2p – 2, we get

E(t) ≤ C(1 + t)
–1

2p–2 ξ
– 2p–1

2p–2

(

1 +
∫ t

0
(1 + s)

1
2p–2 ξ

2p–1
2p–2 (s)h2p–1 ds

)

. (54)

This establishes (30).
To show (32), we note that simple calculations, using (30) and (31), yield

∫ +∞

t0

E(t) dt < +∞. (55)

Use (55) in the following quantity to obtain

I(t) :=
∫ t

0

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds ≤ C
∫ t

0

(∥
∥∇u(t – s)

∥
∥2

2 +
∥
∥∇u(t)

∥
∥2

2

)
ds

≤ C
∫ t

0

[
E(t – s) + E(t)

]
ds

≤ 2C
∫ t

0
E(t – s) ds

≤ 2C
∫ t

0
E(s) ds < 2C

∫ ∞

0
E(s) ds < ∞. (56)
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Without loss of the generality, we assume that I(t) > 0 for all t ≥ t0; otherwise (1) yields
an exponential decay. Assumption (A2), Jensen’s inequality, and the fact that ξ is nonin-
creasing lead to

ξ (t)
∫ t

0
g(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds

≤ I(t)
I(t)

∫ t

0

(
ξp(s)gp(s)

) 1
p
∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds

≤ CI(t)
(

1
I(t)

∫ t

0
ξp(s)gp(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds
) 1

p

≤ CI1– 1
p (t)

(∫ t

0
ξp(s)gp(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds
) 1

p

≤ CI1– 1
p (t)ξp–1(0)

(∫ t

0
ξ (s)gp(s)

∥
∥∇u(t – s) – ∇u(t)bigr‖2

2 ds
) 1

p

≤ C
(∫ t

0
–g ′(s)

∥
∥∇u(t – s) – ∇u(t)

∥
∥2

2 ds
) 1

p

≤ C
(
–E′(t)

) 1
p . (57)

Multiply (24) by ξ (t) to get

ξ (t)L′(t) ≤ –α1ξ (t)E(t) + α2ξ (t)
∫ t

0
g(s)

∥
∥∇u(t) – ∇u(t – s)

∥
∥2

2 ds

+ α2ξ (t)
∫ +∞

t
g(s)

∥
∥∇u(t) – ∇u(t – s)

∥
∥2

2 ds. (58)

Then, using (57), (16), and the definition of Ch(t), we have

ξ (t)L′(t) ≤ –α1ξ (t)E(t) + C
[
–E′(t)

] 1
p + Ch(t). (59)

Multiply (59) by ξα(t)Eα(t), where α = p – 1, to obtain

ξα+1(t)Eα(t)L′(t)

≤ –α1ξ
α+1(t)Eα+1(t) + C(ξE)α(t)

[
–E′(t)

] 1
α+1 + Ch(t)ξα(t)Eα(t). (60)

Use of Young’s inequality, with q = α + 1 and q∗ = α+1
α

, gives

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + 2εξα+1(t)Eα+1 – CεE′(t) + Cεhα+1(t). (61)

Choose ε small enough and let F̃ := ξα+1EαL + CεE ∼ E, then there exist positive constants
β1 and β2 such that

F̃ ′(t) ≤ –β1ξ
α+1(t)̃Fα+1(t) + β2hα+1(t). (62)
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Repeating the same computations as above, we obtain

E(t) ≤ C(1 + t)
–1

p–1 ξ
– 2p

p–1

(

1 +
∫ t

0
(1 + s)

1
p–1 ξ

p
p–1 (s)hp ds

)

. (63)

This establishes (32). �

Theorem 4.2 Let (u0(·, 0), u1) ∈ H1
0 (Ω) × L2(Ω) be given. Assume that (A1)–(A4) hold.

Then, for 1 < m < 2, p = 1, and positive constants ci, i = 1, 2, 3, we have the following esti-
mate:

E(t) ≤ c1e–δ0
∫ t

0 ξ (s) ds
(

c2 + c3

∫ t

0
eδ0

∫ t
0 ξ (s) dsH(s) ds

)

, (64)

where H(t) = h(t) + εξ
m

2–m (t).

Proof For (64), we multiply (25) by ξ (t); using (13), (17), and Young’s inequality, we have

ξ (t)L′(t) ≤ –α1ξ (t)E(t) + c
[
–E′(t)

]
+ Ch(t) + cξ (t)

(∫

Ω

|ut|m dx
) 2m–2

m

≤ –α1ξ (t)E(t) + c
[
–E′(t)

]
+ Ch(t) + cξ (t)

(
–E′(t)

) 2m–2
m

≤ –α1ξ (t)E(t) + Ch(t) + εξ
m

2–m (t) –
(
c(ε) + c

)
E′(t). (65)

By letting F(t) := ξ (t)L(t) + (c(ε) + c)E(t) ∼ E(t), we arrive at

F
′(t) ≤ –α1ξ (t)F(t) + CH(t), (66)

where H(t) = h(t) + εξ
m

2–m (t). Repeating the same steps of [25], then (64) is established. �

Remark 4.4 Estimate (64) gives a decay estimate on E(t) if ξ (t) converges to zero when
t goes to infinity. If ξ (t) is a constant, that is, g ′(t) ≤ –ξg(t), then g(t) converges to zero
exponentially when t goes to infinity. In this case, we have the following estimates:

⎧
⎨

⎩

E(t) ≤ c2e–c1t m ≥ 2;

E(t) ≤ c(1 + t)– 2m–2
2–m 1 < m < 2.

(67)

For the proof, see Theorem 4.1 in [22].

Theorem 4.3 Let (u0(·, 0), u1) ∈ H1
0 (Ω) × L2(Ω) be given. Assume that (A1)–(A4) hold.

Then we have, for 1 < m < 2 and 1 < p < 3
2 , the following estimates:

E(t) ≤ C(1 + t)
–1

2p–2 ξ
– 2p–1

2p–2 (t)
(

1 +
∫ t

0
(1 + s)

1
2p–2 ξ

2p–1
2p–2 (s)h2p–1(s) ds

)

,

1 +
1

4p – 3
< m < 2, (68)
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and

E(t) ≤ C(1 + t)– 2m–2
m–2 ξ– m

2–m (t)
(

1 +
∫ t

0
(1 + s)

2m–2
m–2 ξ

m
2–m (s)h

m
2m–2 (s) ds

)

,

1 < m < 1 +
1

4p – 3
. (69)

Moreover, if 1 < m < 1 + 1
4p–3 and

∫ +∞

0

[

(1 + t)– 2m–2
m–2 ξ– m

2–m (t)
(

1 +
∫ t

0
(1 + s)

2m–2
m–2 ξ

m
2–m (s)h

m
2m–2 (s) ds

)]

< +∞, (70)

then

E(t) ≤ C(1 + t)– 4m–4
2–m ξ– 6m–4

2–m (t)
(

1 +
∫ t

0
(1 + s)

4m–4
2–m ξ

6m–4
2–m (s)h

3m–2
4m–4 (s) ds

)

, (71)

where h(t) = ξ (t)
∫ ∞

t g(s) ds and C is a positive constant.

Proof For (68), we multiply (25) by ξα+1(t)Eα(t), where α = 2p – 2. Recall the definition of
h(t) and use (17) to obtain

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + c(ξE)α(t)

[
–E′(t)

] 1
2p–1

+ Ch(t)ξα(t)Eα(t) + cξ (t)(ξE)α(t)
(∫

Ω

|ut|m dx
) 2m–2

m
. (72)

Then exploit (13) to get

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + c(ξE)α(t)

[
–E′(t)

] 1
2p–1 + Ch(t)ξα(t)Eα(t)

+ c(ξE)α(t)
[
–E′(t)

] 2m–2
m . (73)

Using (26), then (73) becomes

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + c(ξE)α(t)

[
–E′(t)

] 1
2p–1 + Ch(t)ξα(t)Eα(t)

+ c(ξE)α(t)
[
–E′(t)

] 2m–2
m – 1

2p–1
[
–E′(t)

] 1
2p–1 . (74)

Recalling Remark (4.2), we get

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + c(ξE)α(t)

[
–E′(t)

] 1
2p–1 + Ch(t)ξα(t)Eα(t). (75)

Since α = 2p – 2, then we have

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + c(ξE)α(t)

[
–E′(t)

] 1
α+1 + Ch(t)ξα(t)Eα(t). (76)

Now, repeating the same calculation as that in the proof of Theorem (4.1), we obtain (68).
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For the proof of (69), we multiply (25) by ξα+1(t)Eα(t), use (17), recall the definition of
h(t) and Remark 4.1, then (73) becomes

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + c(ξE)α(t)

[
–E′(t)

] 1
2p–1 – 2m–2

m
[
–E′(t)

] 2m–2
m

+ Ch(t)ξα(t)Eα(t) + c(ξE)α(t)
[
–E′(t)

] 2m–2
m . (77)

Using Remark (4.2), we get

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + c(ξE)α(t)

[
–E′(t)

] 2m–2
m + Ch(t)ξα(t)Eα(t). (78)

Since α = 2–m
2m–2 , then we have

ξα+1(t)Eα(t)L′(t) ≤ –α1ξ
α+1(t)Eα+1(t) + c(ξE)α(t)

[
–E′(t)

] 1
α+1 + Ch(t)ξα(t)Eα(t). (79)

Now, repeating the same calculation as that in the proof of Theorem (4.1), we can establish
(69) and (71). �
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