
Qin et al. Boundary Value Problems        (2019) 2019:145 
https://doi.org/10.1186/s13661-019-1254-5

R E S E A R C H Open Access

Monotone iterative method for a p-Laplacian
boundary value problem with fractional
conformable derivatives
Jianfang Qin1, Guotao Wang1,2, Lihong Zhang1* and Bashir Ahmad2

*Correspondence:
zhanglih149@126.com
1School of Mathematics and
Computer Science, Shanxi Normal
University, Linfen, People’s Republic
of China
Full list of author information is
available at the end of the article

Abstract
By using monotone iterative method, the extremal solutions and the unique solution
are obtained for a nonlinear fractional p-Laplacian boundary value problem involving
fractional conformable derivatives and nonlocal integral boundary conditions.
Comparison theorems related to the proposed study are also proved. The paper
concludes with an illustrative example for the main result.
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1 Introduction
Fractional calculus provides powerful tools to deal with complex phenomena occurring in
various areas of applied and technical sciences such as control theory, optical and thermal
systems, rheology, materials and mechanical systems, robotics, etc. Numerous researchers
have investigated different aspects (existence, uniqueness, stability, etc.) of fractional dif-
ferential equations involving Caputo, Riemann–Liouville, Hadamard type derivatives, for
instance, see [1–10]. For some recent results on Riemann–Liouville fractional differen-
tial equations, we refer the reader to the articles [11–15] and the references cited therein.
Fractional p-Laplacian boundary value problems also received considerable attention, for
example, see [16–26]. The literature on fractional differential equations equipped with
integral boundary conditions also contains a variety of interesting results [27–32].

Monotone iterative method is found to be an important and efficient method to ob-
tain sequences of monotone solutions for initial and boundary value problems. For some
applications of this technique to nonlinear fractional differential equations, see [15, 33–
43]. In 2017, Jarad et. al. [44] proposed a new fractional derivative, which is known as
fractional conformable derivative (see definition (2.4)). To the best of the authors’ knowl-
edge, the fractional p-Laplacian problem involving fractional conformable derivatives is
yet to be investigated. In this paper, we apply monotone iterative method to prove the
existence of extremal and uniqueness of solutions for the following nonlinear fractional
p-Laplacian problem involving fractional conformable derivatives and nonlocal integral
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boundary condition:

⎧
⎨

⎩

β
0 Dα(φp(γ0 Dαh(t))) = f (t, h(t), γ

0 Dαh(t)), t ∈ (0, d], d > 0,

t
α(1–β)

p–1 γ
0 Dαh(t)|t=0 =

∫ τ

0 a(s)h(s) ds, g(h̃(0), h̃(d)) = 0, τ ∈ (0, d),
(1.1)

where 0 < α,γ ,β ≤ 1, φp(t) = |t|p–2t, a ∈ C([0, d], [0,∞)), f ∈ C([0, d] × R
2,R), g ∈

C(×R
2,R), φp, p > 1, denotes the p-Laplacian operator and φ–1

p = φq, 1
p + 1

q = 1, h̃(0) =
tα(1–γ )h(t)|t=0, h̃(d) = tα(1–γ )h(t)|t=d , and γ

0 Dα is the fractional conformable derivative of
order γ .

We emphasize that the results obtained for problem (1.1) are new and significantly con-
tribute to the existing literature on p-Laplacian problems with fractional conformable
derivatives. In order to establish the desired results, we prove two comparison theorems
related to the problem at hand, which are presented in Sect. 2. The main results are pre-
sented in Sect. 3.

2 Preliminaries and lemmas
For α,γ ∈ (0, 1), we denote by Cα(1–γ )([0, d],R) a Banach space

{
h ∈ C((0, d],R) : tα(1–γ )h ∈ C

(
[0, d],R

)}
, (2.1)

endowed with the norm ‖h‖Cα(1–γ ) = supt∈[0,d] tα(1–γ )|h(t)|.
Let

Y =
{

h(t) ∈ Cα(1–γ )
(
[0, d],R

)
: γ

0 Dαh(t) ∈ Ck
(
[0, d],R

)
and tkγ

0 Dαh(t)|t=0 = ε
}

, (2.2)

where 0 < α,γ < 1, k = α(1–β)
p–1 , ε =

∫ τ

0 a(s)h(s) ds, be a Banach space equipped with the norm
‖h‖Y = max{supt∈[0,d] tα(1–γ )|h(t)|, supt∈[0,d] |γ0 Dαh(t)|}.

Definition 2.1 ([44]) The Riemann–Liouville type fractional conformable integral of or-
der γ ∈ C, Re(γ ) ≥ 0 is defined by

γ
a Iαh(t) =

1
Γ (γ )

∫ t

a

(
(t – a)α – (s – a)α

α

)γ –1

h(s)
ds

(s – a)1–α
. (2.3)

Definition 2.2 ([44]) The fractional conformable derivative of Riemann–Liouville type of
order γ ∈C, Re(γ ) ≥ 0 is defined by

γ
a Dαh(t) = n

aT α
(n–γ

a Iα
)
h(t)

=
n
aT α

Γ (n – γ )

∫ t

a

(
(t – a)α – (s – a)α

α

)n–γ –1

h(s)
ds

(s – a)1–α
,

(2.4)

where

n =
[
Re(γ )

]
+ 1, n

aT α = aT α
aT α · · · aT α

︸ ︷︷ ︸
n times

, (2.5)
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and aT α is the conformable differential operator [45]

aT αh(t) = (t – a)1–αh′(t). (2.6)

Lemma 2.1 ([44]) Let 0 < Re(γ ) < 1, n = –[– Re(γ )], f ∈ L((0, d),R). Then

γ
a Iα

(
γ
a Dαh(t)

)
= h(t) –

γ –1
a Dαh(a)
αγ –1Γ (γ )

(t – a)αγ –α .

Let us first consider the problem

⎧
⎨

⎩

β
0 Dα(φp(γ0 Dαh(t))) = f (t, h(t), γ

0 Dαh(t)), t ∈ (0, d],

t
α(1–β)

p–1 γ
0 Dαh(t)|t=0 =

∫ τ

0 a(s)h(s) ds, h̃(0) = r, τ ∈ (0, d).
(2.7)

Applying Lemma 2.1 to problem (2.7) with l(t) = φp(γ0 Dαh(t)) and h̃(0) = r, we obtain

h(t) = rtα(γ –1) +
1

Γ (γ )

∫ t

0

(
tα – sα

α

)γ –1

φq
(
l(s)

) ds
s1–α

=: Bl(t) (2.8)

and

φp
(
t

α(1–β)
p–1 γ

0 Dαh(t)
)

= tα(1–β)φp
(γ

0 Dαh(t)
)

= tα(1–β)l(t). (2.9)

Thus problem (2.7) takes the form

⎧
⎨

⎩

β
0 Dαl(t) = f (t, Bl(t),φq(l(t))), t ∈ (0, d],

tα(1–β)l(t)|t=0 = φp[
∫ τ

0 a(s)h(s) ds], τ ∈ (0, d).
(2.10)

If (2.10) has a solution l(t), then we get a solution h(t) of Eq. (2.7) after inserting l(t) in
Eq.(2.8). This shows the existence of a solution for problem (2.10).

In the following lemma, we use ‖h‖∗ = supt∈[0,d] |h(t)|.

Lemma 2.2 Suppose that f ∈ C([0, d] ×R
2,R), 0 < α,β < 1, and there exists a nonnegative

bounded integrable function M on [0, d] such that

∣
∣f (t, h1, h2) – f (t, l1, l2)

∣
∣ ≤ M(t)

∣
∣φp(l2) – φp(h2)

∣
∣, t ∈ (0, d].

Then problem (2.10) has a unique solution l(t) ∈ Cα(1–β)([0, d],R), if

dα(β–1)ξp–2ηq–2

Γ (γ + 1)

∫ τ

0
a(s)

(
sα

α

)γ –1

ds +
Mdαβ

Γ (β + 1)αβ
< 1, (2.11)

where ξ takes the values between
∫ τ

0 a(s)γ0 Iαφq(h(s)) ds and
∫ τ

0 a(s)γ0 Iαφq(l(s)) ds, the values
of η remain between h(u) and l(u), and M = supt∈[0,d] |M(t)|.
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Proof According to Lemma 2.1 and tα(1–β)l(t)|t=0 = φp(
∫ τ

0 a(s)h(s) ds), problem (2.10) is
equivalent to the following integral equation:

l(t) = φp

[∫ τ

0
a(s)Bl(s) ds

]

tα(β–1)

+
1

Γ (β)

∫ t

0

(
tα – sα

α

)β–1

f
(
s, Bl(s),φq

(
l(s)

)) ds
s1–α

:= Al(t). (2.12)

For any h, l ∈ Cα(1–β)([0, d],R), we have

‖Ah – Al‖∗

≤ sup
t∈[0,d]

tα(β–1)
∣
∣
∣
∣φp

[∫ τ

0
a(s)Bh(s) ds

]

– φp

[∫ τ

0
a(s)Bl(s) ds

]∣
∣
∣
∣

+ sup
t∈[0,d]

1
Γ (β)

∫ t

0

(
tα – sα

α

)β–1∣
∣f

(
s, Bh(s),φq

(
h(s)

))
– f

(
s, Bl(s),φq

(
l(s)

))∣
∣ ds
s1–α

≤ sup
t∈[0,d]

tα(β–1)
∣
∣
∣
∣φp

[∫ τ

0
a(s)

(

rsα(γ –1) +
1

Γ (γ )

∫ s

0

(
sα – uα

α

)γ –1

φq
(
h(u)

) du
u1–α

)

ds
]

– φp

[∫ τ

0
a(s)

(

rsα(γ –1) +
1

Γ (γ )

∫ s

0

(
sα – uα

α

)γ –1

φq
(
l(u)

) du
u1–α

)

ds
]∣
∣
∣
∣

+ sup
t∈[0,d]

1
Γ (β)

∫ t

0

(
tα – sα

α

)β–1

M(s)
∣
∣h(s) – l(s)

∣
∣ ds
s1–α

≤ sup
t∈[0,d]

tα(β–1)
∣
∣
∣
∣

[∫ τ

0
a(s)

(
rsα(γ –1))ds

+
∫ τ

0
a(s)

1
Γ (γ )

∫ s

0

(
sα – uα

α

)γ –1∣
∣φq

(
h(u)

)∣
∣ du
u1–α

) ds
]p–1

–
[∫ τ

0
a(s)

(
rsα(γ –1))ds +

∫ τ

0
a(s)

1
Γ (γ )

∫ s

0

(
sα – uα

α

)γ –1∣
∣φq

(
l(u)

)∣
∣ du
u1–α

) ds
]p–1∣∣

∣
∣

+ sup
t∈[0,d]

1
Γ (β)

∫ t

0

(
tα – sα

α

)β–1

M(s)
ds

s1–α
‖h – l‖∗

≤ sup
t∈[0,d]

tα(β–1)
∣
∣
∣
∣(p – 1)ξp–2

[∫ τ

0
a(s)

(
rsα(γ –1))ds +

∫ τ

0
a(s)

1
Γ (γ )

∫ s

0

(
sα – uα

α

)γ –1

× φq
(
h(u)

) du
u1–α

ds –
∫ τ

0
a(s)

(
rsα(γ –1))ds

–
∫ τ

0
a(s)

1
Γ (γ )

∫ s

0

(
sα – uα

α

)γ –1

φq
(
l(u)

) du
u1–α

ds
]∣
∣
∣
∣

+ sup
t∈[0,d]

M
Γ (β + 1)

(
tα

α

)β

‖h – l‖∗

≤ dα(β–1)(p – 1)ξp–2
∣
∣
∣
∣

∫ τ

0
a(s)

1
Γ (γ )

∫ s

0

(
sα – uα

α

)γ –1(
φq

(
h(u)

)
– φq

(
l(u)

)) du
u1–α

ds
∣
∣
∣
∣
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+
Mdαβ

Γ (β + 1)αβ
‖h – l‖∗

≤ dα(β–1)(p – 1)ξp–2(q – 1)ηq–2
∫ τ

0
a(s)

1
Γ (γ )

∫ s

0

(
sα – uα

α

)γ –1 du
u1–α

ds‖h – l‖∗

+
Mdαβ

Γ (β + 1)αβ
‖h – l‖∗

=
(

dα(β–1)ξp–2ηq–2

Γ (γ + 1)

∫ τ

0
a(s)

(
sα

α

)γ –1

ds +
Mdαβ

Γ (β + 1)αβ

)

‖h – l‖∗,

which, in view of (2.11), implies that the operator A has a unique fixed point by the Banach
fixed point theorem. In consequence, problem (2.10) has a unique solution. �

Lemma 2.3 If 0 < α,γ ,β < 1, ψ ∈ Cα(1–β)([0, d],R), and M is a nonnegative bounded inte-
grable function on [0, d], then the following problem

⎧
⎨

⎩

β
0 Dα(φp(γ0 Dαh(t))) + M(t)φp(γ0 Dαh(t)) = ψ(t), t ∈ (0, d],

t
α(1–β)

p–1 γ
0 Dαh(t)|t=0 = c, h̃(0) = r,

(2.13)

has a unique solution h ∈ Y , provided that Mdαβ < Γ (β + 1)αβ .

Proof Letting l(t) = φp(γ0 Dαh(t)), we have

⎧
⎨

⎩

γ
0 Dαh(t) = φq(l(t)), t ∈ (0, d],

h̃(0) = r,
(2.14)

and
⎧
⎨

⎩

β
0 Dαl(t) + M(t)l(t) = ψ(t), t ∈ (0, d],

tα(1–β)l(t)|t=0 = φp(c).
(2.15)

Let f (t, Bl(t),φq(l(t))) = ψ(t) – M(t)l(t). For l1, l2 ∈ Cα(1–β)([0, d],R), we have

∣
∣f

(
t, Bl1,φq(l1)

)
– f

(
t, Bl2,φq(l2)

)∣
∣ =

∣
∣M(t)

∣
∣|l2 – l1| ≤ M|l2 – l1|.

Thus, problem (2.15) has a unique solution l ∈ Cα(1–β)([0, d],R) by Lemma 2.2, and
γ
0 Dαh ∈ C α(1–β)

p–1
([0, d],R). Moreover, problem (2.14) has a solution h ∈ Cα(1–γ )([0, d],R) by

Lemma 2.1. By inserting l in h, we get a unique solution h ∈ Y of problem (2.13). �

Definition 2.3 If h ∈ Y is a lower solution of (1.1), then
⎧
⎨

⎩

β
0 Dα(φp(γ0 Dαh(t))) ≤ f (t, h(t), γ

0 Dαh(t)), t ∈ (0, d], d > 0,

t
α(1–β)

p–1 γ
0 Dαh(t)|t=0 ≤ ∫ τ

0 a(s)h(s) ds, g(h̃(0), h̃(d)) ≤ 0, τ ∈ (0, d).
(2.16)

If l ∈ Y is an upper solution of (1.1), then
⎧
⎨

⎩

β
0 Dα(φp(γ0 Dαl(t))) ≥ f (t, l(t), γ

0 Dαl(t)), t ∈ (0, d], d > 0,

t
α(1–β)

p–1 γ
0 Dαl(t)|t=0 ≥ ∫ τ

0 a(s)h(s) ds, g(l̃(0), l̃(d)) ≥ 0, τ ∈ (0, d).
(2.17)
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Lemma 2.4 (Comparison theorem)
(C1) Let M be a nonnegative bounded integrable function on [0, d]. If m ∈ Cα(1–β)([0, d],R)

satisfies
⎧
⎨

⎩

β
0 Dαm(t) + M(t)m(t) ≥ 0, t ∈ (0, d],

tα(1–β)m(t)|t=0 ≥ 0,

then m(t) ≥ 0, t ∈ (0, d].
(C2) Assume that n ∈ Cα(1–γ )([0, d],R) satisfies

⎧
⎨

⎩

γ
0 Dαn(t) ≥ 0, t ∈ (0, d],

tα(1–γ )n(t)|t=0 ≥ 0.

Then n(t) ≥ 0, t ∈ (0, d].

Proof Assume that m(t) ≥ 0 is not true. Then there exist t1, t2 ∈ (0, d] such that m(t2) < 0,
m(t1) = 0 and m(t) ≥ 0 for t ∈ (0, t1) and m(t) < 0 for t ∈ (t1, t2). Since M(t) ≥ 0, ∀t ∈ [0, d],
we have β

0 Dαm(t) ≥ 0, ∀t ∈ (t1, t2).
According to

β
0 Dαm(t) = t1–α d

dt
1–β
0 Iαm(t),

we obtain that 1–β
0 Iαm(t) is nondecreasing on (t1, t2). Hence 1–β

0 Iαm(t) – 1–β
0 Iαm(t1) ≥ 0,

t ∈ (t1, t2). On the other hand, we have

1–β
0 Iαm(t) – 1–β

0 Iαm(t1)

=
1

Γ (1 – β)

∫ t

0

(
tα – sα

α

)–β

m(s)
ds

s1–α
–

1
Γ (1 – β)

∫ t1

0

(
t1

α – sα

α

)–β

m(s)
ds

s1–α

=
1

Γ (1 – β)

∫ t1

0

[(
tα – sα

α

)–β

–
(

t1
α – sα

α

)–β]

m(s)
ds

s1–α

+
1

Γ (1 – β)

∫ t

t1

(
tα – sα

α

)–β

m(s)
ds

s1–α

< 0, ∀t ∈ (t1, t2),

which is a contradiction. Therefore, m(t) ≥ 0, ∀t ∈ (0, d].
Obviously, the conclusion of (C2) holds. It follows from (2.8) that n(t) ≥ 0, ∀t ∈ (0, d]. �

3 Main results
Theorem 3.1 Assume that

(L1) h0, l0 ∈ Y are lower and upper solutions of (1.1), respectively with h0(t) ≤ l0(t), t ∈
(0, d];

(L2) there exists a function M ∈ C([0, d],R), t ∈ [0, d] such that

f
(
t, l(t), γ

0 Dαl(t)
)

– f
(
t, h(t), γ

0 Dαh(t)
) ≥ –M(t)

[
φp

(γ
0 Dαl(t)

)
– φp

(γ
0 Dαh(t)

)]

for h0(t) ≤ h(t) ≤ l(t) ≤ l0(t), t ∈ (0, d];
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(L3) the function g satisfies

g(m2, n2) – g(m1, n1) ≥ m2 – m1

for h̃0(0) ≤ m2 ≤ m1 ≤ l̃0(0), h̃0(d) ≤ n2 ≤ n1 ≤ l̃0(d), if M(t)dαβ < Γ (β + 1)αβ .
Then there exist sequences {hn}, {ln} ∈ Y such that (1.1) has extremal solutions m(t), n(t)

in [h0, l0] = {h ∈ Y : h0(t) ≤ h(t) ≤ l0(t), t ∈ (0, d]} satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0(t) ≤ h1(t) ≤ · · · ≤ hn(t) ≤ · · · ≤ m(t) ≤ n(t) ≤ · · · ≤ ln(t) ≤ · · · ≤ l1(t) ≤ l0(t),
γ
0 Dαh0 ≤ γ

0 Dαh1 ≤ · · · ≤ γ
0 Dαhn ≤ · · · ≤ γ

0 Dαm ≤ γ
0 Dαn ≤ · · ·

≤ γ
0 Dαln ≤ · · · ≤ γ

0 Dαl1 ≤ γ
0 Dαl0,

φp(γ0 Dαh0) ≤ φp(γ0 Dαh1) ≤ · · · ≤ φp(γ0 Dαhn) ≤ · · · ≤ φp(γ0 Dαm) ≤ φp(γ0 Dαn) ≤ · · ·
≤ φp(γ0 Dαln) ≤ · · · ≤ φp(γ0 Dαl1) ≤ φp(γ0 Dαl0),

for t ∈ (0, d], n = 1, 2, 3, . . . .

Proof Let F(h(t)) = f (t, h(t), γ
0 Dαh(t)). For n = 1, 2, . . . , we define

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β
0 Dα(φp(γ0 Dαhn(t))) + M(t)φp(γ0 Dαhn(t))

= F(hn–1(t)) + M(t)φp(γ0 Dαhn–1(t)), t ∈ (0, d],

t
α(1–β)

p–1 γ
0 Dαhn(t)|t=0 =

∫ τ

0 a(s)hn–1(s) ds,

h̃n(0) = h̃n–1(0) – g(h̃n–1(0), h̃n–1(d)), τ ∈ (0, d),

(3.1)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

β
0 Dα(φp(γ0 Dαln(t))) + M(t)φp(γ0 Dαln(t))

= F(ln–1(t)) + M(t)φp(γ0 Dαln–1(t)), t ∈ (0, d],

t
α(1–β)

p–1 γ
0 Dαln(t)|t=0 =

∫ τ

0 a(s)ln–1(s) ds,

l̃n(0) = l̃n–1(0) – g(l̃n–1(0), l̃n–1(d)), τ ∈ (0, d).

(3.2)

Notice that the functions h1, l1 are well defined in Y by Lemma 2.3.
Now, we prove that h0(t) ≤ h1(t) ≤ l1(t) ≤ l0(t), γ

0 Dαh0(t) ≤ γ
0 Dαh1(t) ≤ γ

0 Dαl1(t) ≤
γ
0 Dαl0(t), t ∈ (0, d], and h̃0(0) ≤ h̃1(0) ≤ l̃1(0) ≤ l̃0(0). Let λ(t) = φp(γ0 Dαh1(t))–φp(γ0 Dαh0(t)).
From (2.9), (3.1), and (L1), we have

⎧
⎪⎪⎨

⎪⎪⎩

β
0 Dαλ(t) + M(t)λ(t) = F(h0(t)) – β

0 Dα(φp(γ0 Dαh0(t))) ≥ 0,

tα(1–β)λ(t)|t=0 = φp(t
α(1–β)

p–1 γ
0 Dαh1(t))|t=0 – φp(t

α(1–β)
p–1 γ

0 Dαh0(t))|t=0

≥ ∫ τ

0 a(s)h0(s) ds –
∫ τ

0 a(s)h0(s) ds = 0.

By (C1) of Lemma 2.4, we obtain λ(t) ≥ 0, t ∈ (0, d], which means φp(γ0 Dαh1(t)) ≥
φp(γ0 Dαh0(t)). The monotone increasing property of φp(t) ensures that γ

0 Dαh1(t) ≥
γ
0 Dαh0(t). Thus, γ

0 Dα(h1(t) – h0(t)) ≥ 0. According to h̃1(0) – h̃0(0) = –g(h̃0(0), h̃0(d)) ≥ 0,
we have h1(t) ≥ h0(t), t ∈ (0, d] by (C2) of Lemma 2.4. In a similar manner, we can obtain
that l1(t) ≤ l0(t), γ

0 Dαh1(t) ≤ γ
0 Dαh0(t), t ∈ (0, d], and l̃1(0) ≤ l̃0(0).
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Setting η(t) = φp(γ0 Dαl1(t)) – φp(γ0 Dαh1(t)) and using (L2), we have

⎧
⎨

⎩

β
0 Dαη(t) + M(t)η(t) = F(l0(t)) – F(h0(t)) + M(t)[φp(γ0 Dαl0(t)) – φp(γ0 Dαh0(t))] ≥ 0,

tα(1–β)η(t)|t=0 = φp(t
α(1–β)

p–1 γ
0 Dαl1(t))|t=0 – φp(t

α(1–β)
p–1 γ

0 Dαh1(t))|t=0 ≥ 0.

By (C1) of Lemma 2.4, we obtain η(t) ≥ 0, t ∈ (0, d]. Then φp(γ0 Dαl1(t)) ≥ φp(γ0 Dαh1(t)),
and γ

0 Dαl1(t) ≥ γ
0 Dαh1(t). By (L3), we have

l̃1(0) – h̃1(0) = l̃0(0) – g
(
l̃0(0), l̃0(d)

)
– h̃0(0) + g

(
h̃0(0), h̃0(d)

)

= l̃0(0) – h̃0(0) + g
(
h̃0(0), h̃0(d)

)
– g

(
l̃0(0), l̃0(d)

)

≥ l̃0(0) – h̃0(0) + h̃0(0) – l̃0(0) = 0.

Thus, l1(t) ≥ h1(t), t ∈ (0, d] by (C2) of Lemma 2.4.
Next, we show that h1, l1 are lower and upper solutions of (1.1), respectively. By (3.1)

and (L2), we obtain

β
0 Dα

(
φp

(γ
0 Dαh1(t)

))

= F
(
h0(t)

)
– M(t)

[
φp

(γ
0 Dαh1(t)

)
– φp

(γ
0 Dαh0(t)

)]
– F

(
h1(t)

)
+ F

(
h1(t)

)

≤ M(t)
[
φp

(γ
0 Dαh1(t)

)
– φp

(γ
0 Dαh0(t)

)]
– M(t)

[
φp

(γ
0 Dαh1(t)

)

– φp
(γ

0 Dαh0(t)
)]

+ F
(
h1(t)

)

= F
(
h1(t)

)
.

By (L3), we have

0 = g
(
h̃0(0), h̃0(d)

)
– g

(
h̃1(0), h̃1(d)

)
+ g

(
h̃1(0), h̃1(d)

)
+ h̃1(0) – h̃0(0)

≥ h̃0(0) – h̃1(0) + g
(
h̃1(0), h̃1(d)

)
+ h̃1(0) – h̃0(0)

= g
(
h̃1(0), h̃1(d)

)
,

and

t
α(1–β)

p–1 γ
0 Dαh1(t)|t=0 =

∫ τ

0
a(s)h0(s) ds ≤

∫ τ

0
a(s)h1(s) ds, (3.3)

which imply that h1 is a lower solution of (1.1). Analogously, we can verify that l1 is an
upper solution of (1.1).

Using the mathematical induction, we have

h0(t) ≤ h1(t) ≤ · · · ≤ hn(t) ≤ hn+1(t) ≤ ln+1(t) ≤ ln(t) ≤ · · · ≤ l1(t) ≤ l0(t),
γ
0 Dαh0 ≤ γ

0 Dαh1 ≤ · · · ≤ γ
0 Dαhn ≤ γ

0 Dαhn+1 ≤ γ
0 Dαln+1 ≤ γ

0 Dαln ≤ · · ·
≤ γ

0 Dαl1 ≤ γ
0 Dαl0,

h̃0(0) ≤ h̃1(0) ≤ · · · ≤ h̃n(0) ≤ h̃n+1(0) ≤ l̃n+1(0) ≤ l̃n(0) ≤ · · · ≤ l̃1(0) ≤ l̃0(0)

(3.4)

for t ∈ (0, d], n = 1, 2, 3, . . . .
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By the standard analysis, we can get that the sequences {tα(1–γ )hn} and {tα(1–γ )ln} are uni-
formly bounded and equicontinuous. Thus, in view of Arzela–Ascoli theorem, we obtain

lim
n→∞ hn(t) = m(t), lim

n→∞ ln(t) = n(t), t ∈ (0, d],

lim
n→∞

γ
0 Dαhn(t) = γ

0 Dαm(t), lim
n→∞

γ
0 Dαln(t) = γ

0 Dαn(t), t ∈ (0, d].

Hence, h0(t) ≤ m(t) ≤ n(t) ≤ l0(t) on (0, d] and m(t), n(t) are solutions of (1.1).
Moreover, we show that m(t), n(t) are extremal solutions of (1.1). Let h ∈ [h0, l0] be any

solution of (1.1). Let hn(t) ≤ h(t) ≤ ln(t), t ∈ (0, d] and that

j(t) = φp
(γ

0 Dαh(t)
)

– φp
(γ

0 Dαhn+1(t)
)
, k(t) = φp

(γ
0 Dαln+1(t)

)
– φp

(γ
0 Dαh(t)

)
.

By (L2), we obtain

⎧
⎨

⎩

β
0 Dαj(t) + M(t)j(t) = F(h(t)) – F(hn(t)) + M(t)[φp(γ0 Dαh(t)) – φp(γ0 Dαhn(t))] ≥ 0,

tα(1–β)j(t)|t=0 = φp(t
α(1–β)

p–1 γ
0 Dαh(t))|t=0 – φp(t

α(1–β)
p–1 γ

0 Dαhn+1(t))|t=0 ≥ 0,

and
⎧
⎨

⎩

β
0 Dαk(t) + M(t)k(t) = F(ln(t)) – F(h(t)) + M(t)[φp(γ0 Dαln(t)) – φp(γ0 Dαh(t))] ≥ 0,

tα(1–β)k(t)|t=0 = φp(t
α(1–β)

p–1 γ
0 Dαln+1(t))|t=0 – φp(t

α(1–β)
p–1 γ

0 Dαh(t))|t=0 ≥ 0.

Thus, by (C1) of Lemma 2.4, we have j(t) ≥ 0, k(t) ≥ 0. Then φp(γ0 Dαh(t)) ≥ φp(γ0 Dαhn+1(t)),
φp(γ0 Dαln+1(t)) ≥ φp(γ0 Dαh(t)). Hence, γ

0 Dα(h(t) – hn+1(t)) ≥ 0, γ
0 Dα(ln+1(t) – h(t)) ≥ 0.

By (L3), we have

h̃(0) – h̃n+1(0) = h̃(0) – h̃n(0) + g
(
h̃n(0), h̃n(d)

)
– g

(
h̃(0), h̃(d)

)

≥ h̃(0) – h̃n(0) + h̃n(0) – h̃(0)

= 0

and

l̃n+1(0) – h̃(0) = l̃n(0) – h̃(0) – g
(
l̃n(0), l̃n(d)

)
+ g

(
h̃(0), h̃(d)

)

≥ l̃n(0) – h̃(0) + h̃(0) – l̃n(0)

= 0.

Hence, hn+1(t) ≤ h(t) ≤ ln+1(t), t ∈ (0, d] by (C2) of Lemma 2.4, which, on taking the limit
n → ∞, yields m(t) ≤ h(t) ≤ n(t). Therefore, m(t), n(t) are extremal solutions of (1.1). �

Theorem 3.2 If the hypotheses of Theorem 3.1 hold, a(t) = 0, and there exists a function
L(t) ≥ 0 such that

L(t)
[
φp

(γ
0 Dαl(t)

)
– φp

(γ
0 Dαh(t)

)] ≤ f
(
t, h(t), γ

0 Dαh(t)
)

– f
(
t, l(t), γ

0 Dαl(t)
)

(3.5)
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for h0(t) ≤ h(t) ≤ l(t) ≤ l0(t), t ∈ (0, d] and h̃0(0) = l̃0(0), then (1.1) has a unique solution in
[h0, l0].

Proof It follows by Theorem 3.1 that m(t) and n(t) are extremal solutions such that
m(t) ≤ n(t), t ∈ (0, d]. Then we just need to prove m(t) ≥ n(t), t ∈ (0, d]. Letting λ(t) =
φp(γ0 Dαm(t)) – φp(γ0 Dαn(t)), t ∈ (0, d] and using (3.5), we obtain

⎧
⎨

⎩

β
0 Dαλ(t) = F(m(t)) – F(n(t)) ≥ L(t)[φp(γ0 Dαn(t)) – φp(γ0 Dαm(t))] = –L(t)λ(t),

tα(1–β)λ(t)|t=0 = φp(t
α(1–β)

p–1 γ
0 Dαm(t))|t=0 – φp(t

α(1–β)
p–1 γ

0 Dαn(t))|t=0 = 0.
(3.6)

Then, by (C1) of Lemma 2.4, we have λ(t) ≥ 0. Thus, φp(γ0 Dαm(t)) ≥ φp(γ0 Dαn(t)). Since
φp(t) is nondecreasing, we have γ

0 Dαm(t) ≥ γ
0 Dαn(t), t ∈ (0, d]. Then, by (C2) of Lemma 2.4,

we obtain m(t) ≥ n(t). Furthermore, we have m̃(0) = ñ(0) by h̃0(0) = l̃0(0) and (3.4). There-
fore, we have m = n. The proof is completed. �

4 Example
Consider the following problem:

⎧
⎨

⎩

2
3
0 D 1

2 (φ3(
1
2
0 D 1

2 h(t))) = f (t, h(t),
1
2
0 D 1

2 h(t)), t ∈ (0, 1],

t 1
12

1
2
0 D 1

2 h(t)|t=0 =
∫ τ

0 a(s)h(s) ds, 1
2 h̃(0) – 3h̃(0)h̃(1) = 0,

(4.1)

where α = 1
2 , γ = 1

2 , β = 2
3 , d = 1, p = 3, a(t) = 0, τ = 1, and f (t, h(t),

1
2
0 D 1

2 h(t)) = 1
2 t + h(t) –

2
1
2
0 D 1

2 h(t), g(m, n) = 1
2 m – 3mn. Let h0(t) = 0, l0(t) = Γ ( 1

2 )t 1
2 . Then we have

1
2
0 D 1

2 h0(t) = 0,
1
2
0 D 1

2 l0(t) = 2 1
2 t 1

4 , and

2
3
0 D

1
2
(
φ3

( 1
2
0 D

1
2 h0(t)

))
= 0 ≤ 1

2
t = f

(
t, h0(t),

1
2
0 D

1
2 h0(t)

)
, t ∈ (0, 1],

t
1

12
1
2
0 D

1
2 h0(t)|t=0 = 0, g

(
h̃0(0), h̃0(1)

)
= 0,

2
3
0 D

1
2
(
φ3

( 1
2
0 D

1
2 l0(t)

))
=

2
3
0 D

1
2
(
2t

1
2
)

=
3 · 2 1

3

Γ ( 1
3 )

t
1
6 ≥ 1

2
t + Γ

(
1
2

)

t
1
2 – 2

3
2 t

1
4

= f
(
t, l0(t),

1
2
0 D

1
2 l0(t)

)
,

t
1

12
1
2
0 D

1
2 l0(t)|t=0 = 0, g

(
l̃0(0), l̃0(1)

)
= 0.

Thus, h0 and l0 are lower and upper solutions of (4.1), respectively, and h0 ≤ l0 on [0, 1].
In addition, for h0 ≤ h ≤ l ≤ l0, we have

f
(
t, h(t),

1
2
0 D

1
2 h(t)

)
– f

(
t, l(t),

1
2
0 D

1
2 l(t)

)

= h(t) – l(t) – 2
1
2
0 D

1
2 h(t) + 2

1
2
0 D

1
2 l(t)

≤ 2
[ 1

2
0 D

1
2 l(t) –

1
2
0 D

1
2 h(t)

]

≤ M(t)
[
φ3

( 1
2
0 D

1
2 l(t)

)
– φ3

( 1
2
0 D

1
2 h(t)

)]
,

where M(t) = 2.
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For h̃0(0) ≤ m2 ≤ m1 ≤ l̃0(0), h̃0(1) ≤ n2 ≤ n1 ≤ l̃0(1), we have

g(m1, n1) – g(m2, n2) =
1
2

m1 – 3m1n1 –
1
2

m2 + 3m2n2

≤ 1
2

(m1 – m2) ≤ m1 – m2.

Hence, assumptions (L1), (L2), and (L3) hold. According to Theorem 3.1, there exist mono-
tone iterative sequences {hn}, {ln} such that limn→∞ hn = m, limn→∞ ln = n on (0, 1] and m,
n are the extremal solutions on [h0, l0] of (4.1).
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