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Abstract
This paper deals with the boundedness of solutions to the following quasilinear
chemotaxis–haptotaxis model of parabolic–parabolic–ODE type:

⎧
⎪⎨

⎪⎩

ut =∇ · (D(u)∇u) – χ∇ · (u∇v) – ξ∇ · (u∇w) +μu(1 – ur–1 –w), x ∈ Ω , t > 0,

vt =�v – v + uη , x ∈ Ω , t > 0,

wt = –vw, x ∈ Ω , t > 0,

under zero-flux boundary conditions in a smooth bounded domain Ω ⊂ R
n(n ≥ 2),

with parameters r ≥ 2, η ∈ (0, 1] and the parameters χ > 0, ξ > 0,μ > 0. The diffusivity
D(u) is assumed to satisfy D(u) ≥ δu–α , D(0) > 0 for all u > 0 with some α ∈R and
δ > 0. It is proved that if α < n+2–2nη

2+n , then, for sufficiently smooth initial data
(u0, v0,w0), the corresponding initial-boundary problem possesses a unique
global-in-time classical solution which is uniformly bounded.
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1 Introduction
Chemotaxis is the motion of cells moving towards the higher concentration of a chemical
signal. A classical mathematical model for chemotaxis was proposed by Keller and Segel
[9]. In the recent 40 years, a large quantity of the Keller–Segel system were proposed and
have been extensively studied; see Hillen and Painter [15] for example.

Another important extension of the classical Keller–Segel model to a more complex cell
migration mechanism was proposed by Chaplain and Lolas [4, 5] in order to describe pro-
cesses of cancer cell invasion of surrounding healthy tissue. In addition to random motion,
cancer cells bias their movement toward increasing concentrations of a diffusible enzyme
as well as according to gradients of non-diffusible tissue by detecting matrix molecules
such as vitronectin adhered therein. The latter type of directed migration toward immov-
able cues is commonly referred to as haptotaxis. Apart from that, in this modeling context
the cancer cells are usually also assumed to follow a logistic growth competing for space
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with healthy tissue. The enzyme is produced by cancer cells and it is supposed to be in-
fluenced by diffusion and degradation. The tissue, also named extracellular matrix, can
be degraded by enzyme upon contact; on the other hand, the tissue might possess the
ability to remodel the healthy level. In [10, 21, 28, 29, 46], authors studied the following
parabolic–parabolic–ODE chemotaxis–haptotaxis model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u) – χ∇ · (u∇v)

– ξ∇ · (u∇w) + μu(1 – u – w), x ∈ Ω , t > 0,

vt = �v – v + u, x ∈ Ω , t > 0,

wt = –vw, x ∈ Ω , t > 0,

D(u) ∂u
∂ν

– χu ∂v
∂ν

– ξu ∂w
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω ,

(1.1)

in smoothly bounded domain Ω ⊂ R
n, n ≥ 2, where χ > 0, ξ > 0, μ > 0 are parameters,

the variables u, v and w represent the density of cancer cells, the enzyme concentration
and the density of the extracellular matrix, D(u) describes the density-dependent motility
of cancer cells through the extracellular matrix, χ and ξ represent the chemotactic and
haptotactic sensitivities, μ is the proliferation rate of cells.

For the special case D(u) = 1 in (1.1), Tao and Wang [19] proved that model (1.1) pos-
sesses a unique global-in-time classical solution for any χ > 0 in one space dimension, or
for small χ

μ
> 0 in two and three space dimensions. Later, Tao [17] improved the result of

[19] for any μ > 0 in two space dimensions. Hillen, Painter and Winkler [6] studied the
global boundedness and asymptotic behavior of the solution to (1.1) in one space dimen-
sion. Tao [18] proved that the model has a unique classical solution which is global-in-time
and bounded in two space dimensions. Cao [3] proved that the model has a unique clas-
sical solution which is global-in-time and bounded in three space dimensions. Tao and
Winkler [26] claimed that if n ≤ 3 and (u, v, w) is a bounded global classical solution, then
under the fully explicit condition μ > χ2

8 the solution (u, v, w) approaches the spatially uni-
form state (1, 1, 0) as time goes to infinity. Then Wang and Ke [30] proved that the model
possesses a unique global-in-time classical solution that is bounded in the case 3 ≤ n ≤ 8
and μ is appropriately large.

When D ∈ C2([0,∞)), D(0) > 0 and D(u) ≥ δu–α for all u ≥ 0 with some δ > 0, the global
existence of a unique classical solution to (1.1) was proved by Tao and Winkler in [21]
under the assumption that either n ≤ 8 and α < 4–n2

n2+4n or n ≥ 9 and α < (
√

8n(n + 1) – n2 –
n – 2)/(n2 + 2n). When D ∈ C2([0,∞)), D(u) ≥ δu–α for all u ≥ 0 with some δ > 0 and
α < 0, Zheng et al. [46] studied model (1.1) and found that (1.1) possesses a unique global
classical solution which is uniformly bounded in the case of non-degenerate diffusion (i.e.
D(0) > 0) and possesses at least one nonnegative global weak solution in the case of de-
generate diffusion (D(0) ≥ 0) in two space dimensions. Li and Lankeit [10] proved that for
sufficiently regular initial date global bounded solutions exist whenever α < 2

n – 1 in two,
three and four space dimensions. When D ∈ C2([0,∞)), D(u) ≥ δ(u + 1)–α for all u ≥ 0
with some δ > 0, Wang clarified the issue of the global boundedness to solutions of (1.1)
without any restriction on the space dimension with α < 2–n

n+2 in [28, 29].
When the second PDE in (1.1) is replaced by 0 = �v – v + u and D(u) = 1 in (1.1), Tao and

Wang [20] proved that model (1.1) possesses a unique global bounded classical solution for
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any μ > 0 in two space dimension, and for large μ > 0 in three space dimensions. Tao and
Winkler [23] proved that model (1.1) possesses a unique global smooth solution for first-
order compatibility conditions in two space dimension. For all n ≥ 1, Tao and Winkler [24]
proved that model (1.1) possesses a unique global bounded classical solution for μ > χ . In
particular, the global solution (u, v, w) approaches the spatially uniform state (1, 1, 0) as
time goes to infinity under an additional assumption on the size of μ and the initial data
u0 and w0. Later, Tao and Winkler [25] studied global boundedness for model (1.1) under
the condition μ > (n+2)+

n χ . Furthermore, in addition to the explicit smallness on w ≡ 0,
they gave the exponential decay of w in the large time limit.

Zheng [41] considered the following chemotaxis–haptotaxis model with generalized lo-
gistic source:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u) – χ∇ · (u∇v)

– ξ∇ · (u∇w) + u(1 – ur–1 – w), x ∈ Ω , t > 0,

vt = �v – v + u, x ∈ Ω , t > 0,

wt = –vw, x ∈ Ω , t > 0,
∂u
∂ν

= ∂v
∂ν

= ∂w
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω ,

(1.2)

in smoothly bounded domain Ω ⊂ R
n, n ≥ 3, where χ > 0, ξ > 0, r > 1 are parameters.

Zheng [41] proved that model (1.2) possesses a unique global classical solution which is
uniformly bounded in Ω × (0,∞) in the case of D(u) ≥ δ(u + 1)–α for all u > 0 with some
δ > 0 and some

α

⎧
⎪⎪⎨

⎪⎪⎩

< 2
n – 1, if 1 < r < n+2

n ,

< – (n+2–2r)+
n+2 , if n+2

2 ≥ r ≥ n+2
n ,

≤ 0, if r > n+2
2 .

For the special case D(u) = 1 in (1.2) and the logistic source replaced by u(a–μur–1 –w), a ∈
R, n ≥ 1, μ > 0, Zheng [43] has shown that, when r > 2, or

μ > μ∗ =

⎧
⎪⎨

⎪⎩

(n–2)+
n χC

1
n
2 +1

n
2 +1 , if r = 2 and n ≤ 4,

is appropriately large, if r = 2 and n > 5,

the problem (1.2) possesses a global classical solution which is bounded, where C
1

n
2 +1

n
2 +1 is a

positive constant which corresponds to the maximal Sobolev regularity. When D(u) = 1
in (1.2) and the logistic source is replaced by u(a – μur–1 – λw), a ∈ R, n ≥ 1, μ > 0, λ > 0,

Zheng [44] has shown that when r > 2, or r = 2, with μ > μ� = (n–2)+
n (χ + Cβ )C

1
n
2 +1

n
2 +1 the

problem (1.2) possesses a global classical solution which is bounded, where Cβ and C n
2 +1

are positive constants.
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Many authors considered the following Keller–Segel system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u) – ∇ · (S(u)∇v) + f (u), x ∈ Ω , t > 0,

vt = �v – v + g(u), x ∈ Ω , t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω ,

(1.3)

in a smoothly bounded domain Ω ⊂R
n, n ≥ 2. Here the positive function D(u) represents

the diffusivity of the cells, and the nonnegative function S(u) measures the chemotactic
sensitivity. The functions f (u) and g(u) are the growth of u and the production of v, re-
spectively.

For D(u) = (1 + u)–α(α ∈ R), S(u) = u(1 + u)β–1(β ∈ R) and g(u) = uη(η > 0), Tao et al.
[16] proved that model (1.3) possesses a uniform-in-time boundedness of solutions in the
case of f ≡ 0, η ∈ (0, 1] and α + β + η < 1 + 2

n or in the case of f (u) = γ u – μur , γ ∈R, r > 1
and β + η < r or β + η = r, μ ≥ μ0 for some μ0 > 0; Wang et al. [27] found that model (1.3)
possesses a unique global-in-time classical solution for 0 < α +β < 2

n when f (u) = γ u–μur ,
g(u) = u, γ ∈ R, r > 1; Zheng [39] proved that model (1.3) possesses a unique global-in-
time classical solution that is bounded in the case 0 < α + β < max{r – 1 + α, 2

n }, n ≥ 1,
or β = r – 1 and μ is large enough. Afterwards,Wang and Liu [31] improved the previous
results on the boundedness of solutions to (1.3). When f (u) = u(1 – u), g(u) = u, n ≥ 3,
Zheng [42] shown that model (1.3) possesses a unique global-in-time classical solution
that is bounded in the case 0 < α + β < 4

n+2 . When f (u) = γ u – μu2, g(u) = u, D(u) ≥ δu–α ,
δuβ ≤ S(u) ≤ δ1uβ α,β ∈R, δ1 > δ > 0, u ≥ u0 with some u0 > 1, Cao [2] proved that model
(1.3) possesses a unique global-in-time classical solution that is bounded in the case β < 1.
For research on the corresponding quasilinear parabolic-elliptic problems, we refer to [37,
40] and the references therein.

For the special case f ≡ 0, g(u) = u in (1.3), Winkler [32] found that if S(u)
D(u) grows faster

than u 2
n as u → ∞ and some further technical conditions are fulfilled, then there exist

solutions that blow up in either finite or infinite time. Afterwards, Tao and Winkler [22]
proved that solutions (1.3) remain bounded under the condition that S(u)

D(u) ≤ cuα with α < 2
n

and c > 0 for all u > 1, provided that Ω is a convex domain and D(u) satisfies some other
technical conditions. Then Ishida et al. [8] generalized the result obtained in [22] to non-
convex domains.

For the special case D(u) = 1, S(u) = u, f (u) = 0 and g(u) = uη in (1.3), Liu and Tao [11]
shown the global boundedness of solutions when 0 < η < 2

n . As to the case D(u) = 1, S(u) =
χu, f (u) = u – μur and g(u) = u(u + 1)η–1 in (1.3) for all u ≥ 0 with some χ > 0, r > 1,
η > 0, Zhuang et al. [47] proved that model (1.3) possesses a globally bounded classical
solution if r > η + 1, or r = η + 1 and μ is large enough. When D(u) = 1, S(u) = χu, f (u) =
γ u – μu2, g(u) = u, Osaki et al. [14] proved the solutions of (1.3) are globally bounded in
two space dimension regardless of the size of μ > 0. Later, Winkler [33] found that model
(1.3) possesses a global solution that is bounded under the condition n ≤ 3,Ω convex, and
μ > 0 sufficiently large.

When the second PDE in (1.3) is replaced by 0 = �v – 1
|Ω|

∫

Ω
u + u and D(u) = 1, S(u) =

χu, f (u) = γ u – μur , in (1.3) for all u ≥ 0 with some χ > 0, γ ∈ R, μ ≥ 0, r ≥ 1, Winkler
[34] found that model (1.3) possesses a local-in-time solution of (1.3) that blows up in
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finite time for r < 3
2 + 1

2n–2 in dimension n ≥ 5. When the second PDE in (1.3) is replaced
by 0 = �v – v + u and D(u) = 1, S(u) = u, f (u) = γ u – μur , g(u) = u in (1.3) for all u ≥ 0 with
some γ ∈ R, μ ≥ 0, r ≥ 1, Winkler [36] shown that model (1.3) possesses a corresponding
solution of (1.3) blows up in finite time for r < 7

6 in dimension n = 3, 4 or for r < 1 + 1
2n–2 in

dimension n ≥ 5. When the second PDE in (1.3) is replaced by 0 = �v – 1
|Ω|

∫

Ω
g(u) + g(u)

and D(u) = 1, S(u) = u, f (u) = 0, g(u) = uη in (1.3) for all u ≥ 0 with some η > 0, Winkler
[35] proved the global boundedness of solutions when 0 < η < 2

n . Moreover, it is presented
in [35] that if Ω is a ball and then there exists initial data such that the corresponding
radially symmetric solution blows up in finite time if η > 2

n , hence η = 2
n is critical. In

addition, for the studies on the parabolic-elliptic version, we suggest the reader to read
the recent papers [7, 12, 38, 45].

Motivated the above papers, we consider the boundedness of solutions to the following
quasilinear chemotaxis–haptotaxis model of parabolic–parabolic–ODE type:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut = ∇ · (D(u)∇u) – χ∇ · (u∇v)

– ξ∇ · (u∇w) + μu(1 – ur–1 – w), x ∈ Ω , t > 0,

vt = �v – v + uη, x ∈ Ω , t > 0,

wt = –vw, x ∈ Ω , t > 0,

D(u) ∂u
∂ν

– χu ∂v
∂ν

– ξu ∂w
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω , t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω ,

(1.4)

under zero-flux boundary conditions in a smooth bounded domain Ω ⊂ R
n(n ≥ 2), with

parameters r ≥ 2, η ∈ (0, 1] and the parameters χ > 0, ξ > 0, μ > 0. This paper mainly
aims to understand the competition among the nonlinear diffusion, the haptotaxis, the
nonlinear logistic source and the nonlinear production.

The functions u0, v0, w0 are supposed to satisfy the smoothness assumptions

⎧
⎪⎪⎨

⎪⎪⎩

u0 ∈ C(Ω̄) with u0 ≥ 0 in Ω and u0 �= 0,

v0 ∈ W 1,∞(Ω) with v0 ≥ 0 in Ω ,

w0 ∈ C2+ϑ (Ω̄) for some ϑ ∈ (0, 1) with w0 ≥ 0 in Ω̄ and ∂w0
∂ν

= 0 on ∂Ω .

(1.5)

We furthermore assume that

D ∈ C2([0,∞)
)
, D(0) > 0 (1.6)

and

D(u) ≥ δu–α for all u ≥ 0 (1.7)

with some α ∈R and δ > 0.
The main result of this paper reads as follows.

Theorem 1.1 Let n ≥ 2, χ > 0, ξ > 0, μ > 0, r ≥ 2 and η ∈ (0, 1], and let D be a function
satisfying (1.6) and (1.7) with α < n+2–2nη

2+n . Then, for any initial data fulfilling (1.5), the
problem (1.4) admits a unique classical solution which is global and bounded in Ω × (0,∞).
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Remark 1.1
(i) From our results, it is worth to point out that the nonlinear production affect the

nonlinear diffusion to guarantee the global boundedness of the solution to (1.4).
(ii) Obviously, since (1.6) and (1.7) are equivalent to D(u) ≥ δ(u + 1)–α , for r = 2 and

η = 1, Theorem 1.1 agrees with Wang [28, 29], who proved the boundedness of the
solutions in the case n ≥ 2.

This paper is structured as follows. In Sect. 2, we collect basic facts which will be used
later. Section 3 is devoted to proving global existence and boundedness by using some Lp-
estimate techniques and Moser–Alikakos iteration (see e.g. [1] and Lemma A.1 in [22]).

2 Preliminaries
We first state one result concerning local-in-time existence of a classical solution to model
(1.4).

Lemma 2.1 Let χ > 0, ξ > 0 and μ > 0, and assume that u0, v0 and w0 satisfy (1.5). Then
the problem (1.4) admits a unique classical solution

⎧
⎪⎪⎨

⎪⎪⎩

u ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)),

v ∈ C0(Ω̄ × [0, Tmax)) ∩ C2,1(Ω̄ × (0, Tmax)),

w ∈ C2,1(Ω̄ × (0, Tmax)),

(2.1)

with u ≥ 0, v ≥ 0 and 0 ≤ w ≤ ‖w0‖L∞(Ω) for all (x, t) ∈ Ω × [0, Tmax), where Tmax denotes
the maximal existence time. In addition, if Tmax < +∞, then

∥
∥u(·, t)

∥
∥

L∞(Ω) → ∞ as t ↗ Tmax. (2.2)

Proof The local-in-time existence of classical solution to model (1.4) is well established by
a fixed point theorem in the context of chemotaxis–haptotaxis systems. By the maximum
principle, it is easy to obtain u ≥ 0 and v ≥ 0 for all (x, t) ∈ Ω × [0, Tmax). Integrating
the third equation in (1.4), it follows from (1.5) and v ≥ 0 that 0 ≤ w ≤ ‖w0‖L∞(Ω) for
all (x, t) ∈ Ω × [0, Tmax). The proof is quite standard, for details, we refer the reader to
[46]. �

For reference, we begin with Young’s inequality, which states, for any positive numbers
p and q with 1

p + 1
q = 1, that

ab ≤ ap

p
+

bq

q
, ∀a, b ≥ 0.

This immediately yields the so-called Young inequality with ε.

Lemma 2.2 (Young’s inequality with ε) Let p and q be two given positive numbers with
1
p + 1

q = 1. Then, for any ε > 0,

ab ≤ εap +
bq

(εp)
q
p q

, ∀a, b ≥ 0. (2.3)
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In the proof of main result, we will frequently use the following version of the Gagliardo–
Nirenberg inequality, for detail we refer to the reader to [10].

Lemma 2.3 (Gagliardo–Nirenberg inequality) Let Ω ⊂R
n be a bounded smooth domain

and r ≥ 1, 0 < q ≤ p ≤ ∞, s > 0 be such that

1
r

≤ 1
n

+
1
p

.

Then there exists c > 0 such that

‖u‖Lp(Ω) ≤ c
(‖∇u‖a

Lr (Ω)‖u‖1–a
Lq(Ω) + ‖u‖Ls(Ω)

)
for all u ∈ W 1,r(Ω) ∩ Lq(Ω),

where

a =
1
q – 1

p
1
q + 1

n – 1
r

.

Proof This can be found in [10, Lemma 2.3]. �

The following lemma provides the basic estimates of solutions to (1.4).

Lemma 2.4 Let (u, v, w) be the solution of (1.4). Then there exists C > 0 depending on
n,‖v0‖L1(Ω) and ‖u0‖L1(Ω) such that

∥
∥u(·, t)

∥
∥

L1(Ω) ≤ C,
∥
∥v(·, t)

∥
∥

L1(Ω) ≤ C,
∥
∥∇v(·, t)

∥
∥

L2(Ω) ≤ C for all t ∈ (0, Tmax).
(2.4)

Proof (i) Integrating the first equation in (1.4) with respect to x ∈ Ω , we have

d
dt

∫

Ω

u ≤ μ

∫

Ω

u – μ

∫

Ω

ur .

Then

d
dt

∫

Ω

u +
∫

Ω

u ≤ (μ + 1)
∫

Ω

u – μ

∫

Ω

ur , (2.5)

since w ≥ 0 by Lemma 2.1. Moreover, by Young’s inequality (2.3), we get

d
dt

∫

Ω

u +
∫

Ω

u ≤ C̃1,

where C̃1 > 0, as all subsequently appearing constants C̃2 > 0 and C̃3 > 0 are depending on
n,‖v0‖L1(Ω) and ‖u0‖L1(Ω).

Upon ODE comparison, we can prove that ‖u(·, t)‖L1(Ω) ≤ C.
(ii) Integrating the second equation in (1.4) with respect to x ∈ Ω yields

d
dt

∫

Ω

v +
∫

Ω

v =
∫

Ω

uη.
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Moreover, if η ∈ (0, 1), by Young’s inequality(2.3), we get

∫

Ω

uη ≤
∫

Ω

u + (1 – η)|Ω| ≤ C̃2.

If η = 1, we get

d
dt

∫

Ω

v +
∫

Ω

v =
∫

Ω

u ≤ C.

In summary, upon ODE comparison, we can prove ‖v(·, t)‖L1(Ω) ≤ C.
(iii) Multiplying the second equation in (1.4) by –�v and integrating over Ω , and using

Young’s inequality, we find

1
2

d
dt

∫

Ω

|∇v|2 +
∫

Ω

|�v|2 +
∫

Ω

|∇v|2 = –
∫

Ω

uη�v ≤
∫

Ω

|�v|2 +
1
4

∫

Ω

u2η

and thus

d
dt

∫

Ω

|∇v|2 + 2
∫

Ω

|∇v|2 ≤ 1
2

∫

Ω

u2η.

Combining this with (2.5), we obtain

d
dt

∫

Ω

(|∇v|2 + u
)

+ 2
∫

Ω

(|∇v|2 + u
) ≤ 1

2

∫

Ω

u2η + (μ + 2)
∫

Ω

u – μ

∫

Ω

ur .

Moreover, by Young’s inequality (2.3), we get

d
dt

∫

Ω

(|∇v|2 + u
)

+ 2
∫

Ω

(|∇v|2 + u
) ≤ C̃3.

Upon ODE comparison, we can prove ‖∇v(·, t)‖L2(Ω) ≤ C. �

Lemma 2.5 Let (u, v, w) be the classical solution of (1.4) in Ω × (0, Tmax). Then, for any
k > 1,

–
∫

Ω

uk–1∇ · (u∇w) ≤ c1

(∫

Ω

uk +
∫

Ω

ukv + k
∫

Ω

uk–1|∇u|
)

(2.6)

with constant c1 > 0 independent of k.

Proof Firstly, we follow the well-known precedent in [18] and give the estimate for �w.
Since the third equation in (1.4) is an ODE, we have

w(x, t) = w0(x)e–
∫ t

0 v(x,s) ds,

∇w(x, t) = ∇w0(x)e–
∫ t

0 v(x,s) ds – w0(x)e–
∫ t

0 v(x,s) ds
∫ t

0
∇v(x, s) ds,

(2.7)
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as well as

�w(x, t) = �w0(x)e–
∫ t

0 v(x,s) ds – 2e–
∫ t

0 v(x,s) ds∇w0(x) ·
∫ t

0
∇v(x, s) ds

+ w0(x)e–
∫ t

0 v(x,s) ds ·
∣
∣
∣
∣

∫ t

0
∇v(x, s) ds

∣
∣
∣
∣

2

– w0(x)e–
∫ t

0 v(x,s) ds
∫ t

0
�v(x, s) ds

and

�w(x, t) ≥ �w0(x)e–
∫ t

0 v(x,s) ds – 2e–
∫ t

0 v(x,s) ds∇w0(x) ·
∫ t

0
∇v(x, s) ds

– w0(x)e–
∫ t

0 v(x,s) ds
∫ t

0
�v(x, s) ds. (2.8)

Note that ∂w0
∂ν

= 0 and ∂v
∂ν

= 0, (2.7) shows that ∂w
∂ν

= 0. Therefore, the zero-flux boundary
condition in (1.4) becomes

∂u
∂ν

=
∂v
∂ν

=
∂w
∂ν

= 0, x ∈ ∂Ω , t > 0.

Hence, for any k ≥ 1, integrating by parts and using (2.8), we obtain

–
∫

Ω

uk–1∇ · (u∇w) dx

= (k – 1)
∫

Ω

uk–1∇u · ∇w dx

= –
k – 1

k

∫

Ω

uk�w dx

≤ k – 1
k

∫

Ω

uk
(

–�w0(x)e–
∫ t

0 v(x,s) ds + 2e–
∫ t

0 v(x,s) ds∇w0(x) ·
∫ t

0
∇v(x, s) ds

+ w0(x)e–
∫ t

0 v(x,s) ds
∫ t

0
�v(x, s) ds

)

dx

=: J1 + J2 + J3, (2.9)

where

J1 = –
k – 1

k

∫

Ω

uk�w0(x)e–
∫ t

0 v(x,s) ds dx,

J2 =
2(k – 1)

k

∫

Ω

uke–
∫ t

0 v(x,s) ds∇w0(x) ·
∫ t

0
∇v(x, s) ds dx

and

J3 =
k – 1

k

∫

Ω

ukw0(x)e–
∫ t

0 v(x,s) ds
∫ t

0
�v(x, s) ds dx.

Now, since v ≥ 0 leads to

–�w0(x)e–
∫ t

0 v(x,s) ds ≤ ‖�w0‖L∞(Ω) for all (x, t) ∈ Ω × (0, Tmax),
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we have

J1 ≤ ‖�w0‖L∞(Ω)

∫

Ω

uk dx, (2.10)

J2 = –
2(k – 1)

k

∫

Ω

uk∇e–
∫ t

0 v(x,s) ds · ∇w0(x) dx

= 2(k – 1)
∫

Ω

uk–1∇u · ∇w0(x)e–
∫ t

0 v(x,s) ds dx

+
2(k – 1)

k

∫

Ω

uk�w0(x)e–
∫ t

0 v(x,s) ds dx

≤ c1k
∫

Ω

uk–1|∇u|dx + c1

∫

Ω

uk dx, (2.11)

and

J3 =
k – 1

k

∫

Ω

ukw0(x)e–
∫ t

0 v(x,s) ds
∫ t

0

(
vs(x, s) + v(x, s) – uη(x, s)

)
ds dx

≤ k – 1
k

∫

Ω

ukw0(x)e–
∫ t

0 v(x,s) ds
(

v(x, s) – v0(x) +
∫ t

0
v(x, s) ds

)

dx

≤ c1

∫

Ω

ukv dx + c1

∫

Ω

uk dx (2.12)

for all (x, t) ∈ Ω × (0, Tmax), where we have used the facts that ze–z ≤ 1
e for all z ∈ R and

0 < e–
∫ t

0 v(x,s) ds ≤ 1 thanks to v ≥ 0. Inserting (2.10)–(2.12) into (2.9) yields

–
∫

Ω

uk–1∇ · (u∇w) dx ≤ c1

∫

Ω

uk dx + c1

∫

Ω

ukv dx + c1k
∫

Ω

uk–1|∇u|dx. �

Lemma 2.6 Let n ≥ 2, η ∈ (0, 1], α < n+2–2nη

2+n , θ1 = 2(k+1)
1–α

, θ2 = 2(k+1)(m–1)
k–2η+1 and κi =

m
2 – m

θi
m
2 – 1

2 + 1
n

,
i = 1, 2. Then, for all sufficiently large k > 1, there exists a large m > 1 such that the following
inequalities are valid:

θi > 2, m >
n – 2

2n
θi, 2m > max{θiκi, k + 1} for i = 1, 2. (2.13)

Proof Since 2m > θiκi is equivalent to m > θi
2 – 2

n , it is sufficient to show that if α < n+2–2nη

2+n ,
then, for all sufficiently large k > 1, there exists a large m > 1 satisfying m > θi

2 – 2
n (i = 1, 2)

and 2m > k + 1, which can be achieved by the fact that m > θi
2 – 2

n (i = 1, 2) is equivalent to
k+1
1–α

– 2
n < m < (k+1)(n+2)

2nη
– 2

n . �

3 Proof of Theorem 1.1
In this section, we are going to establish an iteration step to develop the main ingredient
of our result. The iteration depends on a series of a priori estimates. Firstly, based on the
estimates in Lemma 2.3, we use test function arguments to derive the bound of u in Lk(Ω)
and ∇v in L2m(Ω) for all sufficiently large k, m > 1, which is the main step towards our
proof of Theorem 1.1.
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Lemma 3.1 Assume that D satisfies (1.6) and (1.7) with α < n+2–2nη

2+n . Then, for all large
numbers m > 2, k > 1 as provided by Lemma 2.6, there exists C > 0 such that

∥
∥u(·, t)

∥
∥

Lk (Ω) ≤ C,
∥
∥∇v(·, t)

∥
∥

L2m ≤ C for all t ∈ (0, Tmax). (3.1)

Proof Multiplying the first equation in (1.4) by kuk–1 and integrating over Ω , we get

d
dt

‖u‖k
Lk (Ω) + k(k – 1)

∫

Ω

uk–2D(u)|∇u|2 + kμ

∫

Ω

uk+r–1

≤ –kχ

∫

Ω

∇ · (u∇v)uk–1 – kξ

∫

Ω

∇ · (u∇w)uk–1 + kμ

∫

Ω

uk . (3.2)

By (1.7), we have

δk(k – 1)
∫

Ω

uk–2–α|∇u|2 ≤ k(k – 1)
∫

Ω

uk–2D(u)|∇u|2. (3.3)

By Young’s inequality, the first item on the right side of the inequality (3.2) becomes

– kχ

∫

Ω

∇ · (u∇v)uk–1

= kχ

∫

Ω

u∇v · ∇uk–1

= k(k – 1)χ
∫

Ω

uk–1∇u · ∇v

≤ δk(k – 1)
2

∫

Ω

uk–2–α|∇u|2 +
χ2k(k – 1)

2δ

∫

Ω

uk+α|∇v|2. (3.4)

The second item of the right side of the inequality (3.2), combining with (2.6), yields

– kξ

∫

Ω

uk–1∇ · (u∇w) ≤ c1kξ

∫

Ω

uk + c1kξ

∫

Ω

ukv + c1k2ξ

∫

Ω

uk–1|∇u|

≤ c1kξ

∫

Ω

uk + c1kξ

∫

Ω

ukv +
δk(k – 1)

4

∫

Ω

uk–2–α|∇u|2 +
c2

1ξ
2k3

δ(k – 1)

∫

Ω

uk+α . (3.5)

Hence, inserting (3.3)–(3.5) into (3.2) yields

d
dt

‖u‖k
Lk (Ω) +

δk(k – 1)
4

∫

Ω

uk–2–α|∇u|2 + kμ

∫

Ω

uk+r–1

≤ χ2k(k – 1)
2δ

∫

Ω

uk+α|∇v|2 + c1kξ

∫

Ω

uk + c1kξ

∫

Ω

ukv

+
c2

1ξ
2k3

δ(k – 1)

∫

Ω

uk+α + kμ

∫

Ω

uk . (3.6)

Removing the nonnegative number on the left of the inequality (3.6), we have

d
dt

‖u‖k
Lk (Ω) + kμ

∫

Ω

uk+r–1 ≤ χ2k(k – 1)
2δ

∫

Ω

uk+α|∇v|2 + c1kξ

∫

Ω

uk + c1kξ

∫

Ω

ukv

+
c2

1ξ
2k3

δ(k – 1)

∫

Ω

uk+α + kμ

∫

Ω

uk .
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Furthermore, using Young’s inequality, we can find

d
dt

‖u‖k
Lk (Ω) + c2

∫

Ω

uk+1 ≤ χ2k(k – 1)
2δ

∫

Ω

uk+α|∇v|2 + c2

∫

Ω

vk+1 + c2, (3.7)

where c2 > 0, as all subsequently appearing constants c3, c4, . . . , c16 possibly depend on k,
m, μ, ξ , r, η, |Ω| and δ.

Differentiating the second equation in (1.4), we obtain

d
dt

|∇v|2 = 2∇v · ∇�v – 2|∇v|2 + 2∇uη · ∇v,

and hence, according to the identity

�|∇v|2 = 2∇v · ∇�v + 2
∣
∣D2v

∣
∣2,

we obtain

d
dt

|∇v|2 = �|∇v|2 – 2
∣
∣D2v

∣
∣2 + 2∇uη · ∇v.

Testing this by m|∇v|2m–2 yields

d
dt

∫

Ω

|∇v|2m + m(m – 1)
∫

Ω

|∇v|2m–4∣∣∇|∇v|2∣∣2

+ 2m
∫

Ω

|∇v|2m–2∣∣D2v
∣
∣2 + 2m

∫

Ω

|∇v|2m

≤ 2m
∫

Ω

|∇v|2m–2∇uη · ∇v + m
∫

∂Ω

∂|∇v|2
∂ν

|∇v|2m–2. (3.8)

On the other hand, based on the estimate of Mizoguchi–Souplet [13], the Gagliardo–
Nirenberg inequality and boundedness of ∇v in L2(Ω), we can conclude that

m
∫

∂Ω

∂|∇v|2
∂ν

|∇v|2m–2 ≤ c3

(∫

Ω

∣
∣∇|∇v|m∣

∣2
)b

+ c3 (3.9)

with some b ∈ (0, 1). Therefore, combining (3.8) with (3.9) and applying Young’s inequality,
we have

d
dt

∫

Ω

|∇v|2m +
m(m – 1)

2

∫

Ω

|∇v|2m–4∣∣∇|∇v|2∣∣2

+ 2m
∫

Ω

|∇v|2m–2∣∣D2v
∣
∣2 + 2m

∫

Ω

|∇v|2m

≤ 2m
∫

Ω

|∇v|2m–2∇uη · ∇v + c4 (3.10)

due to
∫

Ω
|∇v|2m–4|∇|∇v|2|2 = 4

m
∫

Ω
|∇|∇v|m|2.

Hence, due to the pointwise identities ∇|∇v|2m–2 = (m – 1)|∇v|2m–4∇|∇v|2 and |�v|2 ≤
n|D2v|2, and together with an integration by the right part in (3.10) and using Young’s
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inequality, we have

2m
∫

Ω

|∇v|2m–2∇uη · ∇v

= –2m(m – 1)
∫

Ω

uη|∇v|2m–4∇v · ∇|∇v|2 – 2m
∫

Ω

uη|∇v|2m–2�v

≤ m(m – 1)
4

∫

Ω

|∇v|2m–4∣∣∇|∇v|2∣∣2 + 4m(m – 1)
∫

Ω

u2η|∇v|2m–2

+
m
n

∫

Ω

|∇v|2m–2|�v|2 + mn
∫

Ω

u2η|∇v|2m–2

≤ m(m – 1)
4

∫

Ω

|∇v|2m–4∣∣∇|∇v|2∣∣2 +
(
4m(m – 1) + mn

)
∫

Ω

u2η|∇v|2m–2

+ m
∫

Ω

|∇v|2m–2∣∣D2v
∣
∣2. (3.11)

Hence, inserting (3.11) into (3.10) yields

d
dt

∫

Ω

|∇v|2m + (m – 1)
∫

Ω

∣
∣∇|∇v|m∣

∣2 + 2m
∫

Ω

|∇v|2m

≤ (
4m(m – 1) + mn

)
∫

Ω

u2η|∇v|2m–2 + c4. (3.12)

Hence combining (3.7) with (3.12) and using Young’s inequality, we can find

d
dt

∫

Ω

(
uk + |∇v|2m)

+ c5

∫

Ω

(∣
∣∇|∇v|m∣

∣2 + |∇v|2m)
+ c5

∫

Ω

uk+1

≤ c6

∫

Ω

uk+α|∇v|2 + c6

∫

Ω

u2η|∇v|2m–2 + c6

∫

Ω

vk+1 + c6

≤ c5

2

∫

Ω

uk+1 + c7

∫

Ω

(|∇v|θ1 + |∇v|θ2
)

+ c6

∫

Ω

vk+1 + c6 (3.13)

with θi (i = 1, 2) as shown in Lemma 2.6. According to the Gagliardo–Nirenberg inequality,
(2.4) and Lemma 2.6, we have

c7

∫

Ω

|∇v|θi = c7
∥
∥|∇v|m∥

∥
θi
m

L
θi
m

≤ c8
(∥
∥∇|∇v|m∥

∥κi
L2(Ω)

∥
∥|∇v|m∥

∥1–κi

L
2
m (Ω)

+
∥
∥|∇v|m∥

∥
L

2
m (Ω)

) θi
m

≤ c9
∥
∥∇|∇v|m∥

∥
θiκi
m

L2(Ω) + c9

≤ c5

2
∥
∥∇|∇v|m∥

∥2
L2(Ω) + c10. (3.14)

Due to the boundedness of ‖v‖W 1,2(Ω) (see Lemma 2.4) and Lemma 2.6, and by the Sobolev
inequality and Young’s inequality, we can find

c6

∫

Ω

vk+1 ≤ c11‖v‖k+1
L∞(Ω) ≤ c12‖v‖k+1

Ln+1(Ω) + c12

≤ c13‖v‖k+1
L2m(Ω) + c12 ≤ c5

2

∫

Ω

|∇v|2m + c14. (3.15)
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Hence substituting (3.14) and (3.15) into (3.13) yields

d
dt

∫

Ω

(
uk + |∇v|2m)

+
c5

2

∫

Ω

(
uk+1 + |∇v|2m) ≤ c15,

by Young’s inequality, we can find

d
dt

∫

Ω

(
uk + |∇v|2m)

+
c5

2

∫

Ω

(
uk + |∇v|2m) ≤ c16

for sufficiently large k > 1, m > 1. Consequently, y(t) :=
∫

Ω
(uk + |∇v|2m) satisfies y′(t) +

c5
2 y(t) ≤ c16.

Upon an ODE comparison argument, we have y(t) ≤ max{y(0), 2c16
c5

} for all t ∈ (0, Tmax).
The proof of Lemma 3.1 is complete. �

Due to ‖u(·, t)‖Lk (Ω) ≤ C is bounded for any large k, by the fundamental estimates for
Neumann semigroup (see [8, Lemma 2.1]) or the standard regularity theory of parabolic
equation, we immediately have the following corollary.

Corollary 3.1 Let χ > 0, ξ > 0 and μ > 0, and assume that (u0, v0, w0) satisfy (1.5). Then
there exists C > 0 such that the solution (u, v, w) of (1.4) satisfies

∥
∥v(·, t)

∥
∥

W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax). (3.16)

Now we can prove our main result. The derivation of following statement can be ob-
tained by a well-established Moser–Alikakos iteration technique (see e.g. [1] and Lemma
A.1 in [22]). We choose (3.6) as a starting point for our proof.

Lemma 3.2 Under the same assumption of Lemma 3.1, there exists C > 0 such that the
solution (u, v, w) of (1.4) satisfies

∥
∥u(·, t)

∥
∥

L∞(Ω) ≤ C for all t ∈ (0, Tmax). (3.17)

Proof We begin with (3.6)

d
dt

‖u‖k
Lk (Ω) +

δk(k – 1)
4

∫

Ω

uk–2–α|∇u|2 + kμ

∫

Ω

uk+r–1

≤ χ2k(k – 1)
2δ

∫

Ω

uk+α|∇v|2 + c1kξ

∫

Ω

uk + c1kξ

∫

Ω

ukv

+
c2

1ξ
2k3

2δ(k – 1)

∫

Ω

uk+α + kμ

∫

Ω

uk ,

which, along with (3.16), implies that

d
dt

‖u‖k
Lk (Ω) +

δk(k – 1)
4

∫

Ω

uk–2–α|∇u|2 + kμ

∫

Ω

uk+r–1

≤ c17k(k – 1)
∫

Ω

uk+α + c17k
∫

Ω

uk +
c2

1ξ
2k3

2δ(k – 1)

∫

Ω

uk+α + kμ

∫

Ω

uk ,

where c17 > 0, as all subsequently appearing constants c18, c19, . . . are independent of k.
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Due to α < 1, r > 2 and u ≥ 0 and by Young’s inequality, we can find

d
dt

∫

Ω

uk + c18

∫

Ω

∣
∣∇u

k–α
2

∣
∣2 +

∫

Ω

uk ≤ c19k2
∫

Ω

uk . (3.18)

We now recursively define

k := bi =
2
s

· bi–1 + α, i ≥ 1, (3.19)

εi :=
2bi(1 – a)

s(bi – bia – α)
, i ≥ 1, (3.20)

and

Mi := sup
t∈(0,T)

∫

Ω

ubi , i ∈N. (3.21)

Note that (bi)i∈N increases and

c23 ·
(

2
s

)i

≤ bi ≤ c24 ·
(

2
s

)i

for all i ∈N, (3.22)

where we chose s ∈ (0, 2).
Now invoking the Gagliardo–Nirenberg inequality (Lemma 2.3), we find c20 > 0 inde-

pendent of k, such that

∫

Ω

ubi =
∥
∥u

bi–α
2

∥
∥

2bi
bi–α

L
2bi

bi–α

≤ c20
∥
∥∇u

bi–α
2

∥
∥

2bi
bi–α

a

L2(Ω) · ∥∥u
bi–α

2
∥
∥

2bi
bi–α

(1–a)
Ls(Ω) + c20

∥
∥u

bi–α
2

∥
∥

2bi
bi–α

Ls(Ω) (3.23)

for all t ∈ (0, Tmax), with

a =

1
s – 1

2bi
bi–α

1
s + 1

n – 1
2

=

n
s – n

2bi
bi–α

n
s + 1 – n

2
∈ (0, 1). (3.24)

Assume bi > max{ nα
2 , α

1–a }, so we have bia
bi–α

< 1. Combining (3.18) with (3.23) and using
Young’s inequality, we obtain

d
dt

∫

Ω

ubi +
∫

Ω

ubi ≤ c21b2
i

((∫

Ω

u
s(bi–α)

2

) 2bi(1–a)
s(bi–α)

) bi–α

bi–α–bia
+ c21b2

i

(∫

Ω

u
s(bi–α)

2

) 2bi
s(bi–α)

.

To simplify this, we observe that 2bi(1–a)
s(bi–α) · bi–α

bi–α–bia
> 2bi

s(bi–α) , and thus

d
dt

∫

Ω

ubi +
∫

Ω

ubi ≤ c22b2
i

(∫

Ω

u
s(bi–α)

2

) 2bi(1–a)
s(bi–α–bia)

. (3.25)

Inserting (3.19)–(3.22) into (3.25) yields

d
dt

∫

Ω

ubi +
∫

Ω

ubi ≤ c25 ·
(

4
s2

)i

· Mεi
i–1.
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Upon invoking an ODE comparison argument, we have

Mi ≤ max

{

‖u0‖bi
L∞(Ω), c25 ·

(
4
s2

)i

· Mεi
i–1

}

.

We easily deduce from (3.19), (3.20) and (3.22) that

εi =
2bi(1 – a)

s(bi – bia – α)
=

2
s

· bi(1 – a)
bi – bia – α

=
2
s

· (1 + εi), i ≥ 1 (3.26)

holds with some εi ≥ 0 satisfying

εi =
α

bi – bia – α
≤ c26

bi
≤ c27 ·

(
s
2

)i

(3.27)

for all i ≥ 1 and appropriately large c26 > 0 and c27 > 0.
Now if ‖u0‖bi

L∞(Ω) ≥ c25 · ( 2
s )i · Mεi

i–1 for infinitely many i ≥ 1, we get (3.17) with C =
‖u0‖L∞(Ω) for all t ∈ (0, Tmax).

Otherwise

Mi ≤ c25 ·
(

4
s2

)i

· Mεi
i–1 for all i ≥ 1.

By a straightforward induction, this yields

Mi ≤ c
1+

∑i–2
j=0

∏i
l=i–j εi

25 ·
(

4
s2

)i+
∑i–2

j=0(i–j–1)·∏i
l=i–j εi

· M
∏i

l=1 εi
0

for all i ≥ 2, and hence in view of (3.22) and (3.26) we obtain

M
1
bi
i ≤ c

1
c23

( s
2 )i+ 1

c23
·∑i–2

j=0( s
2 )i–j–1·∏i

l=i–j(1+εi)
25 ×

(
4
s2

)i 1
c23

( s
2 )i+ 1

c23
·∑i–2

j=0(i–j–1)( s
2 )i–j–1·∏i

l=i–j(1+εi)

× M
1

c23
·∏i

l=1(1+εi)
0

for all i ≥ 2. Since ln(1 + z) ≤ z for z ≥ 0, from (3.27) and the fact that s < 2 we get

ln

( i∏

l=1

(1 + εi)

)

≤
i∑

l=1

εi ≤ c27

1 – s
2

,

so that using
∑i–2

j=0(i – j – 1) · ( s
2 )i–j–1 ≤ ∑∞

h=1 h( s
2 )h < ∞, from this we conclude that also in

this case ‖u(·, t)‖L∞(Ω) is bounded from above by a constant independent of t ∈ (0, Tmax).
This clearly proves (3.17). �

We are now in a position to pass to the proof of Theorem 1.1.

Proof of Theorem 1.1 First we see that boundedness of u and v follows from Lemma 3.2
and Corollary 3.1, respectively. Therefore the assertion of Theorem 1.1 is immediately
obtained from Lemma 2.1. �
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