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1 Introduction
In this paper, we investigate the following mixed fractional differential system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dβ1 (ϕp1 (cDα1 u(t))) + f1(t, u(t), v(t)) = 0,

Dβ2 (ϕp2 (cDα2 v(t))) + f2(t, u(t), v(t)) = 0, 0 < t < 1,

u′(0) = u′′(0) = · · · = u(n–1)(0) = 0, u(1) = μ1
∫ 1

0 a(s)v(s) dA1(s),

v′(0) = v′′(0) = · · · = v(m–1)(0) = 0, v(1) = μ2
∫ 1

0 b(s)u(s) dA2(s),
cDα1 u(0) = 0, cDα1 u(1) = ε1

cDα1 u(η1),
cDα2 v(0) = 0, cDα2 v(1) = ε2

cDα2 v(η2),

(1.1)

where 1 < βi ≤ 2, 1 ≤ n – 1 < α1 ≤ n, 1 ≤ m – 1 < α2 ≤ m, n, m ≥ 2, Dβi is the Riemann–
Liouville derivative operator, cDαi is the Caputo derivative. μi > 0 is a constant, ηi ∈ (0, 1),
εi > 0 and satisfies 1–ε

pi–1
i ηβi–1 > 0, ϕpi is the Laplacian operator defined by ϕpi (s) = |s|pi–2s,

(ϕpi )–1 = ϕqi ,
1
pi

+ 1
qi

= 1, pi > 1,
∫ 1

0 a(s)v(s) dA1(s),
∫ 1

0 b(s)u(s) dA2(s) denote the Riemann–
Stieltjes integrals with a signed measure, that is Ai : [0, 1] → [0, +∞) is the function of
bounded variation. a, b : [0, 1] → [0, +∞) are continuous, fi : [0, 1] × [0, +∞) × [0, +∞) →
[0, +∞) is a continuous function, i = 1, 2.

Compared with the integer order systems, fractional differential systems are regarded
as a better tool in the description of some problems in science and engineering. Arafal et
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al. [1] presented a fractional order model for infection of CD4+T cells:

⎧
⎪⎪⎨

⎪⎪⎩

Dα1 (T) = s – KVT – dT + bI,

Dα2 (I) = KVT – (b + δ)I,

Dα3 (V ) = NδI – cV ,

where α1,α2,α3 > 0. In the mathematical context, many mathematicians and applied schol-
ars have studied the fractional differential equation or system in recent years [2–15]. In
addition, by applying the functional analysis methods such as the lower and upper solu-
tions, monotone iterative techniques, fractional integro-differential equations or singular
equations are researched by Dumitru et al. [16], Denton et al. [17], Lyons and Neugebauer
[18], Ambrosio [19], Zhou and Qiao [20]. There are also related books [21, 22].

Cabada and Wang in [23] studied the following factional differential equation:

⎧
⎨

⎩

Dαu(t) + f (t, u(t)) = 0, 0 < t < 1,

u(1) = u′(0) = 0, u(1) = λ
∫ 1

0 u(s) dA(s),
(1.2)

where 2 < α ≤ 3, 0 < λ, λ �= α, Dα is the Caputo fractional derivative, and f : [0, 1] ×
[0, +∞) → [0, +∞) is a continuous function. By the use of Guo–Krasnosel’skii fixed point
theorem, the authors in [23] obtained the positive solution to Eq. (1.2). Cabada and Wang
also discussed the solution of Eq. (1.2) when Dα is the Riemann–Liouville fractional
derivative [24].

The p-Laplacian equation is the second order quasilinear differential operator, it arises
in the modeling of various physical and natural phenomena. Fractional differential equa-
tion with p-Laplacian operator can describe the nonlinear phenomena in non-Newtonian
fluids and establishes complex process models; for some related articles, see [25–31]. Via
variational methods, Li and Wei [32] dealt with fractional p-Laplacian equations, the exis-
tence and multiplicity of nontrivial solutions were obtained. Wu et al. [33] researched the
following fractional differential turbulent flow model and obtained the iterative solutions
of the equation:

⎧
⎨

⎩

–Dα(ϕp(–Dγ u(t))) = g(t)h(u), 0 < t < 1,

u(0) = 0, Dγ u(0) = Dγ u(1) = 0, u(1) =
∫ 1

0 u(s) dA(s),
(1.3)

where 1 < α, γ ≤ 2, Dα , Dγ are the Riemann–Liouville fractional derivatives, h : [0, +∞) →
[0, +∞) is a continuous and increasing function.

Fractional differential systems with p-Laplacian operators have also attracted tremen-
dous attention [34–40]. Among them, applying the monotone iterative approach, the au-
thors in [34] got the extremal solutions of the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα1
0+ (ϕp1 (Dβ1

0+ u(t))) = f1(t, v(t)),

Dα2
0+ (ϕp2 (Dβ2

0+ v(t))) = f2(t, u(t)), 0 < t < 1,

u(0) = Dβ1
0+ u(0) = 0, Dγ1

0+ u(1) =
∑m–2

j=1 a1jDγ1
0+ u(ηj) = 0,

v(0) = Dβ2
0+ v(0) = 0, Dγ2

0+ v(1) =
∑m–2

j=1 a2jDγ2
0+ v(ηj) = 0,

(1.4)
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where 0 < αi, γi ≤ 1, 1 < βi ≤ 2, Dαi
0+ , Dβi

0+ Dγi
0+ are the Riemann–Liouville fractional deriva-

tives, i = 1, 2.
Inspired by the above articles, in this article we discuss the mixed fractional differen-

tial system with p-Laplacian operators under integral boundary value conditions. To the
best of our knowledge, there is very little research on mixed fractional differential sys-
tems, especially if the system has p-Laplacian operators. Through the application of the
Guo–Krasnosel’skii fixed point theorem, the existence of multiple positive solutions of the
system is achieved.

2 Preliminaries and lemmas
Definition 2.1 ([41, 42]) The Caputo fractional order derivative of order α > 0, n – 1 < α <
n, n ∈N is defined as

cDαu(t) =
1

Γ (n – α)

∫ t

0
(t – s)n–α–1u(n)(s) ds,

where u ∈ Cn(J ,R), R = (–∞, +∞), N denotes the natural number set, n = [α] + 1, and [α]
denotes the integer part of α.

Definition 2.2 ([41, 42]) Let α > 0 and let u be piecewise continuous on (0, +∞) and in-
tegrable on any finite subinterval of [0, +∞). Then, for t > 0, we call

Iαu(t) =
1

Γ (α)

∫ t

0
(t – s)α–1u(s) ds

the Riemann–Liouville fractional integral of u of order α.

Lemma 2.1 ([41, 42]) Let n – 1 < α ≤ n, u ∈ Cn[0, 1]. Then

Iα
(cDαu

)
(t) = u(t) + c0 + c1t + c2t2 + · · · + cn–1tn–1,

where ci ∈R (i = 1, 2, . . . , n – 1), n is the smallest integer greater than or equal to α.

Let ϕp1 (cDα1
0+ u(t)) = u(t), ϕp2 (cDα2

0+ v(t)) = v(t), then u(0) = 0, u(1) = ε
p1–1
1 u(η1), v(0) = 0,

v(1) = ε
p2–1
2 v(η2), we now consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ1 u(t) + y1(t) = 0, Dβ2 v(t) + y2(t) = 0, 0 < t < 1,

u(0) = v(0) = 0, u(1) = ε
p1–1
1 u(η1),

v(1) = ε
p2–1
2 v(η2).

(2.1)

Similar to [43], if yi ∈ C[0, 1], then the system (2.1) has a unique solution,

⎧
⎨

⎩

u(t) =
∫ 1

0 H1(t, s)y1(s) ds,

v(t) =
∫ 1

0 H2(t, s)y2(s) ds,
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where

Hi(t, s) = hi(t, s) +
ε

pi–1
i tβi–1

1 – ε
pi–1
i ηiβi–1

,

hi(t, s) =

⎧
⎨

⎩

(t(1–s))βi–1–(t–s)βi–1

Γ (βi)
, 0 ≤ s ≤ t ≤ 1,

(t(1–s))βi–1

Γ (βi)
, 0 ≤ t ≤ s ≤ 1.

(2.2)

For yi ∈ C[0, 1], consider the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dβ1 (ϕp1 (cDα1 u(t))) + y1(t) = 0, Dβ2 (ϕp2 (cDα2 v(t))) + y2(t) = 0, 0 < t < 1,

u′(0) = u′′(0) = · · · = u(n–1)(0) = 0, u(1) = μ1
∫ 1

0 a(s)v(s) dA1(s),

v′(0) = v′′(0) = · · · = v(m–1)(0) = 0, v(1) = μ2
∫ 1

0 b(s)u(s) dA2(s),
cDα1 u(0) = 0, cDα1 u(1) = ε1

cDα1 u(η1),
cDα2 v(0) = 0, cDα2 v(1) = ε2

cDα2 v(η2).

(2.3)

Through calculation, we conclude that system (2.3) is equal to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDα1 u(t) + ϕq1 (
∫ 1

0 H1(t, s)y1(s) ds) = 0,
cDα2 v(t) + ϕq2 (

∫ 1
0 H2(t, s)y2(s) ds) = 0, 0 < t < 1,

u′(0) = u′′(0) = · · · = u(n–1)(0) = 0, u(1) = μ1
∫ 1

0 a(s)v(s) dA1(s),

v′(0) = v′′(0) = · · · = v(m–1)(0) = 0, v(1) = μ2
∫ 1

0 b(s)u(s) dA2(s).

Lemma 2.2 was obtained by the author herself and her collaborator in [44]

Lemma 2.2 Assume the following condition (H0) holds.
(H0)

k1 =
∫ 1

0
a(s) dA1(s) > 0, k2 =

∫ 1

0
b(s) dA2(s) > 0, 1 – μ1μ2k1k2 > 0.

Let hi ∈ C(0, 1) ∩ L(0, 1) (i = 1, 2), then the system with the coupled boundary conditions

⎧
⎪⎪⎨

⎪⎪⎩

cDα1 u(t) + h1(t) = 0, cDα2 v(t) + h2(t) = 0, 0 < t < 1,

u′(0) = u′′(0) = · · · = u(n–1)(0) = 0, u(1) = μ1
∫ 1

0 a(s)v(s) dA1(s),

v′(0) = v′′(0) = · · · = v(m–1)(0) = 0, v(1) = μ2
∫ 1

0 b(s)u(s) dA2(s),

(2.4)

has a unique integral representation,

⎧
⎨

⎩

u(t) =
∫ 1

0 K1(t, s)h1(s) ds +
∫ 1

0 H1(t, s)h2(s) ds,

v(t) =
∫ 1

0 K2(t, s)h2(s) ds +
∫ 1

0 H2(t, s)h1(s) ds,
(2.5)
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where

K1(t, s) =
μ1μ2k1

1 – μ1μ2k1k2

∫ 1

0
G1(t, s)b(t) dA2(t) + G1(t, s),

H1(t, s) =
μ1

1 – μ1μ2k1k2

∫ 1

0
G2(t, s)a(t) dA1(t),

K2(t, s) =
μ2μ1k2

1 – μ1μ2k1k2

∫ 1

0
G2(t, s)a(t) dA1(t) + G2(t, s),

H2(t, s) =
μ2

1 – μ1μ2k1k2

∫ 1

0
G1(t, s)b(t) dA2(t),

(2.6)

and

Gi(t, s) =

⎧
⎨

⎩

(1–s)αi–1–(t–s)αi–1

Γ (αi)
, 0 ≤ s ≤ t ≤ 1,

(1–s)αi–1

Γ (αi)
, 0 ≤ t ≤ s ≤ 1,

i = 1, 2. (2.7)

Lemma 2.3 The Green function Hi(t, s), Gi(t, s) (i = 1, 2) defined separately by (2.2), (2.7)
has the following properties:

(i) Hi(t, s), Gi(t, s) : [0, 1] × [0, 1] → [0, +∞) are continuous,
(ii)

(1 – s)αi–1(1 – tαi–1)
Γ (αi)

≤ Gi(t, s) ≤ (1 – s)αi–1

Γ (αi)
, t, s ∈ [0, 1].

Proof Obviously, (i) holds, we only prove (ii). From the definition of Gi(t, s), for 0 ≤ t ≤
s ≤ 1, it is obvious that (ii) holds.

For 0 ≤ s ≤ t ≤ 1, we have t – ts ≥ t – s, then

(1 – s)αi–1 – (t – s)αi–1 ≥ (1 – s)αi–1 – (t – ts)αi–1

≥ (1 – s)αi–1 – tαi–1(1 – s)αi–1

= (1 – s)αi–1(1 – tαi–1),

so, we know (1–s)αi–1(1–tαi–1)
Γ (αi)

≤ Gi(t, s). It is also defined by Gi(t, s), and we obtain Gi(t, s) ≤
(1–s)αi
Γ (αi)

. Thus, (ii) holds. The proof is completed. �

Similar to the proof in [35], Lemma 2.4 was obtained.

Lemma 2.4 For t, s ∈ [0, 1], the functions Ki(t, s) and Hi(t, s) (i = 1, 2) defined as (2.3) satisfy

K1(t, s), H2(t, s) ≤ ρ(1 – s)α1–1, K2(t, s), H1(t, s) ≤ ρ(1 – s)α2–1, (2.8)

K1(t, s), H2(t, s) ≥ �(1 – s)α1–1, K2(t, s), H1(t, s) ≥ �(1 – s)α2–1, (2.9)
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where

ρ = max

{
μ1μ2k1

Γ (α1)(1–μ1μ2k1k2)
∫ 1

0 b(t) dA2(t) + 1
Γ (α1) , μ2

Γ (α1)(1–μ1μ2k1k2)
∫ 1

0 b(t) dA2(t),
μ1μ2k2

Γ (α2)(1–μ1μ2k1k2)
∫ 1

0 a(t) dA1(t) + 1
Γ (α2) , μ1

Γ (α2)(1–μ1μ2k1k2)
∫ 1

0 a(t) dA1(t),

}

� = max

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μ1μ2k1
Γ (α1)(1–μ1μ2k1k2)

∫ 1
0 b(t)(1 – tα1–1) dA2(t),

μ2
Γ (α1)(1–μ1μ2k1k2)

∫ 1
0 b(t)(1 – tα1–1) dA2(t),

μ1μ2k2
Γ (α2)(1–μ1μ2k1k2)

∫ 1
0 a(t)(1 – tα2–1) dA1(t),

μ1
Γ (α2)(1–μ1μ2k1k2)

∫ 1
0 a(t)(1 – tα2–1) dA1(t).

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

Remark 2.1 From Lemma 2.4, for t, τ , s ∈ [0, 1], we have

Ki(t, s) ≥ ωKi(τ , s), Hi(t, s) ≥ ωHi(τ , s), i = 1, 2,

K1(t, s) ≥ ωH2(τ , s), H2(t, s) ≥ ωK1(τ , s),

K2(t, s) ≥ ωH1(τ , s), H1(t, s) ≥ ωK2(τ , s),

where ω = �

ρ
, �, ρ are defined as Lemma 2.4, 0 < ω < 1.

Let X = C[0, 1] × C[0, 1], then X is a Banach space with the norm

∥
∥(u, v)

∥
∥ = max

{‖u‖,‖v‖}, ‖u‖ = max
t∈[0,1]

∣
∣u(t)

∣
∣, ‖v‖ = max

t∈[0,1]

∣
∣v(t)

∣
∣.

Let

K =
{

(u, v) ∈ X : u(t) ≥ ω
∥
∥(u, v)

∥
∥, v(t) ≥ ω

∥
∥(u, v)

∥
∥, t ∈ [0, 1]

}
,

where ω is defined as Remark 2.1. It is easy to see that K is a positive cone in X. For any
(u, v) ∈ K , we can define an integral operator T : K → X by

T(u, v)(t) =
(
T1(u, v)(t), T2(u, v)(t)

)
, 0 ≤ t ≤ 1,

T1(u, v)(t) =
∫ 1

0
K1(t, s)ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
H1(t, s)ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds, 0 ≤ t ≤ 1,

T2(u, v)(t) =
∫ 1

0
K2(t, s)ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
H2(t, s)ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds, 0 ≤ t ≤ 1.

(2.10)

We know that (u, v) is a positive solutions of system (1.1) if and only if (u, v) is a fixed point
of T in K .

Lemma 2.5 T : X → X is a completely continuous operator and T(K) ⊆ K .
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Proof By a routine discussion, we see that T : X → X is well defined, so we only prove
T(K) ⊆ K . For any (u, v) ∈ K , 0 ≤ t, t′ ≤ 1, by Remark 2.1, we have

T1(u, v)(t) =
∫ 1

0
K1(t, s)ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
H1(t, s)ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1

0
ωK1

(
t′, s

)
ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
ωH1

(
t′, s

)
ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ ω

(∫ 1

0
K1

(
t′, s

)
ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
H1

(
t′, s

)
ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds
)

≥ ωT1(u, v)
(
t′), (2.11)

T1(u, v)(t) ≥
∫ 1

0
ωH2

(
t′, s

)
ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
ωK2

(
t′, s

)
(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥ ω

(∫ 1

0
H2

(
t′, s

)
ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
K2

(
t′, s

)
(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

))

≥ ωT2(u, v)
(
t′). (2.12)

So we have

T1(u, v)(t) ≥ ω
∥
∥T1(u, v)

∥
∥, T1(u, v)(t) ≥ ω

∥
∥T2(u, v)

∥
∥,

i.e.,

T1(u, v)(t) ≥ ω
∥
∥
(
T1(u, v), T2(u, v)

)∥
∥.

In the same way as (2.11) and (2.12), we can prove that

T2(u, v)(t) ≥ ω
∥
∥
(
T1(u, v), T2(u, v)

)∥
∥.

Therefore, we have T(K) ⊆ K .
According to the Ascoli–Arzela theorem, we see that T : K → K is completely continu-

ous. The proof is completed. �

Lemma 2.6 ([45]) Let K be a positive cone in a Banach space E, Ω1 and Ω2 are bounded
open sets in E, θ ∈ Ω1, Ω1 ⊂ Ω2, T : K ∩ Ω2\Ω1 → K is a completely continuous operator.
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If the following conditions are satisfied:

‖Tx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω1, ‖Tx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω2,

or

‖Tx‖ ≥ ‖x‖, ∀x ∈ K ∩ ∂Ω1, ‖Tx‖ ≤ ‖x‖, ∀x ∈ K ∩ ∂Ω2,

then T has at least one fixed point in K ∩ (Ω2\Ω1).

3 Main results
Denote

f10 = lim inf
x→0+

inf
t∈[a,b]⊂(0,1)

y∈[0,+∞)

f1(t, x, y)
ϕp1 (x)

, f 0
1 = lim sup

x→0+
sup

t∈[0,1]
y∈[0,+∞)

f1(t, x, y)
ϕp1 (x)

,

f20 = lim inf
y→0+

inf
t∈[a,b]⊂(0,1)

x∈[0,+∞)

f2(t, x, y)
ϕp2 (y)

, f 0
2 = lim sup

y→0+
sup

t∈[0,1]
x∈[0,+∞)

f2(t, x, y)
ϕp2 (y)

,

f1∞ = lim inf
x→+∞ inf

t∈[a,b]⊂(0,1)
y∈[0,+∞)

f1(t, x, y)
ϕp1 (x)

, f ∞
1 = lim sup

x→+∞
sup

t∈[0,1]
y∈[0,+∞)

f1(t, x, y)
ϕp1 (x)

,

f2∞ = lim inf
y→+∞ inf

t∈[a,b]⊂(0,1)
x∈[0,+∞)

f2(t, x, y)
ϕp2 (y)

, f ∞
2 = lim sup

y→+∞
sup

t∈[0,1]
x∈[0,+∞)

f2(t, x, y)
ϕp2 (y)

,

Li =
(

1
2

∫ 1

0
ρ(1 – s)αi–1ϕqi

(∫ 1

0
Hi(s, τ ) dτ

)

ds
)–1

,

li =
(

1
2

∫ 1

0
�(1 – s)αi–1ϕqi

(∫ b

a
Hi(s, τ ) dτ

)

ds
)–1

, i = 1, 2.

In what follows, we list the conditions to be used later:
(H1) fi0 ∈ (ϕpi (

li
ω

), +∞], fi∞ ∈ (ϕpi (
li
ω

), +∞].
(H2) f 0

i ∈ [0,ϕpi (Li)), f ∞
i ∈ [0,ϕpi (Li)).

(H3) There exist constants di ∈ (0, Li) and r1 > 0, such that

fi(t, x, y) ≤ ϕpi (dir1), 0 ≤ t ≤ 1, 0 ≤ x, y ≤ r1.

(H4) There exist constants d∗
i ∈ (li, +∞) and R1 > 0, [a, b] ⊂ (0, 1), such that

fi(t, x, y) ≥ ϕpi

(
d∗

i R1
)
, a ≤ t ≤ b,ωR1 ≤ x, y ≤ R1.

Theorem 3.1 Assume that (H0), (H1), (H3) hold, then system (1.1) has at least two positive
solutions (u1, v1) and (u2, v2) such that 0 < ‖(u1, v1)‖ < r1 < ‖(u2, v2)‖.

Proof (I) By (H3), there exist constants di ∈ (0, Li) and r1 > 0, such that

fi(t, x, y) ≤ ϕpi (dir1), 0 ≤ t ≤ 1, 0 ≤ x, y ≤ r1. (3.1)
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Let Kr1 = {(u, v) ∈ K : ‖(u, v)‖ < r1}. For any (u, v) ∈ ∂Kr1 , by the definition of ‖ · ‖, we know
that

u(t) ≤ ∣
∣u(t)

∣
∣ ≤ ‖u‖ ≤ ∥

∥(u, v)
∥
∥ ≤ r1,

v(t) ≤ ∣
∣v(t)

∣
∣ ≤ ‖v‖ ≤ ∥

∥(u, v)
∥
∥ ≤ r1, 0 ≤ t ≤ 1.

(3.2)

Thus, for any (u, v) ∈ ∂Kr1 , by (3.1) and (3.2), we can obtain

fi
(
t, u(t), v(t)

) ≤ ϕpi (dir1), 0 ≤ t ≤ 1. (3.3)

Hence, for any (u, v) ∈ ∂Kr1 , by Lemmas 2.3, 2.4 and (3.3), we have

T1(u, v)(t) =
∫ 1

0
K1(t, s)ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
H1(t, s)ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )ϕp1 (d1r1) dτ

)

ds

+
∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )ϕp2 (d2r1) dτ

)

ds

≤ r1

(

L1

∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ ) dτ

)

ds

+ L2

∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ ) dτ

)

ds
)

= r1 =
∥
∥(u, v)

∥
∥. (3.4)

Similar to (3.4), for any (u, v) ∈ ∂Kr1 , we also have

∥
∥T2(u, v)

∥
∥ ≤ r1 =

∥
∥(u, v)

∥
∥.

Consequently

∥
∥T(u, v)

∥
∥ = max

{∥
∥T1(u, v)

∥
∥,

∥
∥T2(u, v)

∥
∥
} ≤ r1 =

∥
∥(u, v)

∥
∥, (u, v) ∈ ∂Kr1 . (3.5)

(II) With the first inequality of (H1), fi0 ∈ (ϕpi (
li
ω

), +∞], there exists a real number r ∈
(0, r1), such that

f1(t, x, y) ≤ ϕp1 (x)ϕp1

(
l1

ω

)

, a ≤ t ≤ b, 0 ≤ x ≤ r, y ≥ 0,

f2(t, x, y) ≤ ϕp2 (y)ϕp2

(
l2

ω

)

, a ≤ t ≤ b, 0 ≤ y ≤ r, x ≥ 0.
(3.6)
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Let Kr = {(u, v) ∈ K : ‖(u, v)‖ < r}. For any (u, v) ∈ ∂Kr ,

r =
∥
∥(u, v)

∥
∥ ≥ u(t) ≥ ω

∥
∥(u, v)

∥
∥ ≥ ωr,

r =
∥
∥(u, v)

∥
∥ ≥ v(t) ≥ ω

∥
∥(u, v)

∥
∥ ≥ ωr, 0 ≤ t ≤ 1.

(3.7)

By Lemmas 2.3, 2.4 and (3.6), (3.7), we have

T1(u, v)(t) =
∫ 1

0
K1(t, s)ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
H1(t, s)ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1

0
�(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
�(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1

0
�(1 – s)α1–1ϕq1

(∫ b

a
H1(s, τ )ϕp1

(
u(τ )

)
ϕp1

(
l1

ω

)

dτ

)

ds

+
∫ 1

0
�(1 – s)α2–1ϕq2

(∫ b

a
H2(s, τ )ϕp2

(
v(τ )

)
ϕp2

(
l2

ω

)

dτ

)

ds

≥ r
(

l1

∫ 1

0
�(1 – s)α1–1ϕq1

(∫ b

a
H1(s, τ ) dτ

)

ds

+ l2

∫ 1

0
�(1 – s)α2–1ϕq2

(∫ b

a
H2(s, τ ) dτ

)

ds
)

= r =
∥
∥(u, v)

∥
∥. (3.8)

Therefore, we obtain

∥
∥T(u, v)

∥
∥ = max

{∥
∥T1(u, v)

∥
∥,

∥
∥T2(u, v)

∥
∥
} ≥ r =

∥
∥(u, v)

∥
∥, for any (u, v) ∈ ∂Kr . (3.9)

(III) With the second inequality of (H1), fi∞ ∈ (ϕpi (
li
ω

), +∞], there exist real numbers r∗
2 ,

r∗∗
2 , such that

f1(t, x, y) ≥ ϕp1 (x)ϕp1

(
l1

ω

)

, a ≤ t ≤ b, x ≥ r∗
2 , y ≥ 0,

f2(t, x, y) ≥ ϕp2 (y)ϕp2

(
l2

ω

)

, a ≤ t ≤ b, y ≥ r∗∗
2 , x ≥ 0.

(3.10)

Choose r2 = max{2r1, r∗
ωθ

, r∗∗
2
ωθ

}. Let Kr2 = {(u, v) ∈ K : ‖(u, v)‖ < r2}. For any (u, v) ∈ ∂Kr2 , by
the definition of ‖ · ‖, we have

r2 =
∥
∥(u, v)

∥
∥ ≥ u(t) ≥ ω

∥
∥(u, v)

∥
∥ ≥ ωr2 ≥ r∗

2 , 0 ≤ t ≤ 1,

r2 =
∥
∥(u, v)

∥
∥ ≥ v(t) ≥ ω

∥
∥(u, v)

∥
∥ ≥ ωr2 ≥ r∗∗

2 , 0 ≤ t ≤ 1.
(3.11)
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Thus, for any (u, v) ∈ ∂Kr2 , by (3.10), (3.11), we have

f1
(
t, u(t), v(t)

) ≥ ϕp1

(
u(t)

)
ϕp1

(
l1

ω

)

≥ ϕp1 (ωr2)ϕp1

(
l1

ω

)

, a ≤ t ≤ b,

f2
(
t, u(t), v(t)

) ≥ ϕp2

(
v(t)

)
ϕp2

(
l2

ω

)

≥ ϕp2 (ωr2)ϕp2

(
l2

ω

)

, a ≤ t ≤ b.
(3.12)

So, for any (u, v) ∈ ∂Kr2 , by Lemmas 2.3, 2.4 and (3.12), we know

T1(u, v)(t) ≥
∫ 1

0
�(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
�(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1

0
�(1 – s)α1–1ϕq1

(∫ b

a
H1(s, τ )ϕp1

(
u(τ )

)
ϕp1

(
l1

ω

)

dτ

)

ds

+
∫ 1

0
�(1 – s)α2–1ϕq2

(∫ b

a
H2(s, τ )ϕp2

(
v(τ )

)
ϕp2

(
l2

ω

)

dτ

)

ds

≥
∫ 1

0
�(1 – s)α1–1ϕq1

(∫ b

a
H1(s, τ )ϕp1 (ωr2)ϕp1

(
l1

ω

)

dτ

)

ds

+
∫ 1

0
�(1 – s)α2–1ϕq2

(∫ b

a
H2(s, τ )ϕp2 (ωr2)ϕp2

(
l2

ω

)

dτ

)

ds

≥ r2

(

l1

∫ 1

0
�(1 – s)α1–1ϕq1

(∫ b

a
H1(s, τ ) dτ

)

ds

+ l2

∫ 1

0
�(1 – s)α2–1ϕq2

(∫ b

a
H2(s, τ ) dτ

)

ds
)

= r2 =
∥
∥(u, v)

∥
∥. (3.13)

Hence, we obtain

∥
∥T(u, v)

∥
∥ = max

{∥
∥T1(u, v)

∥
∥,

∥
∥T2(u, v)

∥
∥
} ≥ r2 =

∥
∥(u, v)

∥
∥, for any (u, v) ∈ ∂Kr2 . (3.14)

It follows from the above discussion, (3.5), (3.9), (3.14), Lemmas 2.5, 2.6, that T has
fixed points (u1, v1) ∈ Kr2\Kr , (u2, v2) ∈ Kr\Kr1 , that is to say, system (1.1) has at least two
positive solutions (u1, v1), (u2, v2), satisfying 0 < ‖(u1, v1)‖ < r1 < ‖(u2, v2)‖. The proof is
completed. �

Theorem 3.2 Assume that (H0), (H2), (H4) hold, then system (1.1) has at least two positive
solutions (u1, v1) and (u2, v2) such that 0 < ‖(u1, v1)‖ < R1 < ‖(u2, v2)‖.

Proof (I) By (H4), there exist constants d∗
i ∈ (li, +∞) and R1 > 0, such that

fi(t, x, y) ≥ ϕpi

(
d∗

i R1
)
, a ≤ t ≤ b,ωR0 ≤ x, y ≤ R1. (3.15)
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Let KR1 = {(u, v) ∈ K : ‖(u, v)‖ < R1}. For any (u, v) ∈ ∂KR1 ,

R1 =
∥
∥(u, v)

∥
∥ ≥ u(t) ≥ ω

∥
∥(u, v)

∥
∥ ≥ ωR1,

R1 =
∥
∥(u, v)

∥
∥ ≥ v(t) ≥ ω

∥
∥(u, v)

∥
∥ ≥ ωR1, 0 ≤ t ≤ 1.

(3.16)

Thus, for any (u, v) ∈ ∂KR1 , by Lemmas 2.3, 2.4 and (3.15), (3.16), we get

T1(u, v)(t) =
∫ 1

0
K1(t, s)ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
H1(t, s)ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1

0
�(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
�(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≥
∫ 1

0
�(1 – s)α1–1ϕq1

(∫ b

a
H1(s, τ )ϕp1

(
d∗

1R0
)

dτ

)

ds

+
∫ 1

0
�(1 – s)α2–1ϕq2

(∫ b

a
H2(s, τ )ϕp2

(
d∗

2R0
)

dτ

)

ds

≥ R1

(

l1

∫ 1

0
�(1 – s)α1–1ϕq1

(∫ b

a
H1(s, τ ) dτ

)

ds

+ l2

∫ 1

0
�(1 – s)α2–1ϕq2

(∫ b

a
H2(s, τ ) dτ

)

ds
)

= R1 =
∥
∥(u, v)

∥
∥. (3.17)

So, we have

∥
∥T(u, v)

∥
∥ = max

{∥
∥T1(u, v)

∥
∥,

∥
∥T2(u, v)

∥
∥
}

≥ R1 =
∥
∥(u, v)

∥
∥, for any (u, v) ∈ ∂KR1 . (3.18)

(II) With the first inequality of (H2), f 0
i ∈ [0,ϕpi (Li)), there exists a real number R2 ∈

(0, R1), such that

f1(t, x, y) ≤ ϕp1 (xL1) ≤ ϕp1 (R2L1), 0 ≤ t ≤ 1, 0 ≤ x ≤ R2, y ≥ 0,

f2(t, x, y) ≤ ϕp2 (yL2) ≤ ϕp2 (R2L2), 0 ≤ t ≤ 1, 0 ≤ y ≤ R2, x ≥ 0.
(3.19)

Let KR2 = {(u, v) ∈ K : ‖(u, v)‖ < R2}. For any (u, v) ∈ ∂KR2 ,

u(t) ≤ ∣
∣u(t)

∣
∣ ≤ ‖u‖ ≤ ∥

∥(u, v)
∥
∥ ≤ R2,

v(t) ≤ ∣
∣v(t)

∣
∣ ≤ ‖v‖ ≤ ∥

∥(u, v)
∥
∥ ≤ R2, 0 ≤ t ≤ 1.

(3.20)
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Therefore, for any (u, v) ∈ ∂KR2 , by Lemmas 2.3, 2.4 and (3.19), (3.20), we have

T1(u, v)(t) =
∫ 1

0
K1(t, s)ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
H1(t, s)ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )ϕp1 (R2L1) dτ

)

ds

+
∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )ϕp2 (R2L2) dτ

)

ds

≤ R2

(

L1

∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ ) dτ

)

ds

+ L2

∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ ) dτ

)

ds
)

= R2 =
∥
∥(u, v)

∥
∥. (3.21)

By a similar proof to (3.21), for any (u, v) ∈ ∂KR2 , we also have

∥
∥T2(u, v)

∥
∥ ≤ R2 =

∥
∥(u, v)

∥
∥.

Thus,

∥
∥T(u, v)

∥
∥ = max

{∥
∥T1(u, v)

∥
∥,

∥
∥T2(u, v)

∥
∥
} ≤ R2 =

∥
∥(u, v)

∥
∥, (u, v) ∈ ∂KR2 . (3.22)

(III) With the second inequality of (H2), f ∞
i ∈ [0,ϕpi (Li)), there exists R∗ > 0, such that

f1(t, x, y) ≤ ϕp1 (xL1), 0 ≤ t ≤ 1, x ≥ R∗, y ≥ 0,

f2(t, x, y) ≤ ϕp2 (yL2), 0 ≤ t ≤ 1, y ≥ R∗, x ≥ 0.
(3.23)

Now there are two situations.
Case 1. fi is bounded on [0, +∞), then we choose R > 0, such that

fi(t, x, y) ≤ ϕpi (RLi), 0 ≤ t ≤ 1, x, y ≥ 0, i = 1, 2. (3.24)

Let R3 = max{2R1, R}, KR3 = {(u, v) ∈ K : ‖(u, v)‖ < R3}. For any (u, v) ∈ ∂KR3 , we know

T1(u, v)(t) ≤
∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds
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≤
∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )ϕp1 (R3L1) dτ

)

ds

+
∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )ϕp2 (R3L2) dτ

)

ds

≤ R3

(

L1

∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ ) dτ

)

ds

+ L2

∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ ) dτ

)

ds
)

= R3 =
∥
∥(u, v)

∥
∥. (3.25)

Similar to (3.25), for any (u, v) ∈ ∂KR3 , we have

∥
∥T2(u, v)

∥
∥ ≤ R3 =

∥
∥(u, v)

∥
∥.

Thus,

∥
∥T(u, v)

∥
∥ = max

{∥
∥T1(u, v)

∥
∥,

∥
∥T2(u, v)

∥
∥
} ≤ R3 =

∥
∥(u, v)

∥
∥, (u, v) ∈ ∂KR3 . (3.26)

Case 2. f1 and f2 have at least one unbounded function, assume both f1 and f2 are un-
bounded. (If f1 or f2 is unbounded, the proof is similar.) Choose R3 = max{2R1, R∗

ω
}, such

that

fi(t, x, y) ≤ fi(t, R3, R3), 0 ≤ t ≤ 1, 0 ≤ x, y ≤ R3, i = 1, 2. (3.27)

Let KR3 = {(u, v) ∈ K : ‖(u, v)‖ < R3}. For any (u, v) ∈ ∂KR3 , by (3.24), (3.27), we have

T1(u, v)(t) ≤
∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )f1

(
τ , u(τ ), v(τ )

)
dτ

)

ds

+
∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )f2

(
τ , u(τ ), v(τ )

)
dτ

)

ds

≤
∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )f1(τ , R3, R3) dτ

)

ds

+
∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )f2(τ , R3, R3) dτ

)

ds

≤
∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ )ϕp1 (R3L1) dτ

)

ds

+
∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ )ϕp2 (R3L2) dτ

)

ds

≤ R3

(

L1

∫ 1

0
ρ(1 – s)α1–1ϕq1

(∫ 1

0
H1(s, τ ) dτ

)

ds

+ L2

∫ 1

0
ρ(1 – s)α2–1ϕq2

(∫ 1

0
H2(s, τ ) dτ

)

ds
)

= R3 =
∥
∥(u, v)

∥
∥. (3.28)
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Similar to (3.28), for any (u, v) ∈ ∂KR3 , we have

∥
∥T2(u, v)

∥
∥ ≤ R3 =

∥
∥(u, v)

∥
∥.

Thus,

∥
∥T(u, v)

∥
∥ = max

{∥
∥T1(u, v)

∥
∥,

∥
∥T2(u, v)

∥
∥
} ≤ R3 =

∥
∥(u, v)

∥
∥, (u, v) ∈ ∂KR3 . (3.29)

Through the above discussion, (3.18), (3.22), (3.26) (or (3.29)), Lemmas 2.5, 2.6, T has
fixed points (u1, v1) ∈ KR1\KR2 , (u2, v2) ∈ KR3\KR1 , that is to say, system (1.1) has at least
two positive solutions (u1, v1), (u2, v2), satisfying 0 < ‖(u1, v1)‖ < R1 < ‖(u2, v2)‖. The proof
is completed. �

4 An example
Consider the following fractional differential system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D 3
2 (cD 5

2 u(t)) + f1(t, u(t), v(t)) = 0,

D 3
2 (cD 5

2 v(t)) + f2(t, u(t), v(t)) = 0, 0 < t < 1,

u′(0) = u′′(0) = 0, v′(0) = v′′(0) = 0,

u(1) = 1
2
∫ 1

0 s2v(s) ds 1
3 , v(1) =

∫ 1
0 su(s) ds,

cD 5
2 u(0) = 0, cD 5

2 u(1) = 1
4

cDα1 u( 1
2 ),

cD 5
2 v(0) = 0, cD 5

2 v(1) = 1
4

cDα2 v( 1
2 ),

(4.1)

where β1 = β2 = 3
2 , α1 = α2 = 5

2 , μ1 = 1
2 , μ2 = 1, A1(t) = t 1

3 , A2(t) = t, ε1 = ε2 = 1
4 , η1 = η2 = 1

2 ,
a(s) = s2, b(s) = s, p1 = p2 = 2. Then we have

k1 =
∫ 1

0
a(s) dA1(s) =

∫ 1

0
s2 ds

1
3 =

1
7

> 0,

k2 =
∫ 1

0
b(s) dA2(s) =

∫ 1

0
s ds =

1
2

> 0,

1 – μ1μ2k1k2 =
27
28

> 0.

Condition (H0) holds. Through calculation, L1 = L2 = 2.43299, l1 = l2 = 6.80274, ω =
0.01953. Choose

f1(t, x, y) = 10–5(x2 + y2) cos t + 350 sin x,

f2(t, x, y) = 10–4t
(
x2 + y2) + 350 sin y,

f10 = 350 > 348.32258 = ϕp1

(
l1

ω

)

,

f20 = 350 > 348.32258 = ϕp2

(
l2

ω

)

,

f1∞ = +∞ > 348.32258 = ϕp1

(
l1

ω

)

,

f2∞ = +∞ > 348.32258 = ϕp2

(
l2

ω

)

.
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Take d1 = d2 = 2, r1 = 180, we have

f1(t, x, y) ≤ 350.648 < 360 = d1r1,

f2(t, x, y) ≤ 356.48 < 360 = d2r1, 0 ≤ t ≤ 1, 0 ≤ x, y ≤ 180.

Then, by Theorem 3.1, system (4.1) has at least two positive solutions (u1, v1) and (u2, v2)
such that 0 < ‖(u1, v1)‖ < 180 < ‖(u2, v2)‖.
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