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Abstract
This paper is concerned with homogenization of p-Laplace equations with rapidly
oscillating periodic coefficients. The main difficulty of this work is due to the
nonlinear structure in this field concerning p-Laplace equations itself. Utilizing the
layer and co-layer type estimates as well as homogenization techniques, we establish
the desired error estimates. As a consequence, we obtain the rates of convergence for
solutions inW1,p

0 as well as Lp. Meanwhile, our convergence rate results do not involve
the higher derivatives any more. This may be viewed as rather surprising. The novelty
of this work is that it seems to find a new analysis method in quantitative
homogenization.
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1 Introduction
In this paper, we shall establish the rates of convergence for p-Laplace equations with
rapidly oscillating periodic coefficients. More precisely, let Ω be a bounded Lipschitz do-
main in R

n. Suppose that uε ∈ W 1,p(Ω), for any 1 ≤ p < ∞, is a weak solution to the fol-
lowing problem:

⎧
⎨

⎩

Lεuε = – div(A(x/ε)|�uε|p–2�uε) = F in Ω ,

uε = f on ∂Ω .
(1.1)

Throughout this paper, the summation convention is used. We assume that the matrix
A(y) = (aij(y)) with 1 ≤ i, j ≤ n, is real, bounded measurable, and satisfies the following
conditions.

• Periodicity conditions: for any y ∈R
n and Y = [0, 1)n �R

n/Zn,

A(y + Y ) = A(y). (1.2)

• Coerciveness and growth conditions: there exists a λ > 0, for any y ∈R
n and ξ , ξ ′ ∈R

n,

λ
(|ξ | +

∣
∣ξ ′∣∣)p–2∣∣ξ – ξ ′∣∣2 ≤ 〈

A(y)|ξ |p–2ξ – A(y)
∣
∣ξ ′∣∣p–2

ξ ′, ξ – ξ ′〉

≤ 1
λ

(|ξ | +
∣
∣ξ ′∣∣)p–2∣∣ξ – ξ ′∣∣2. (1.3)
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• Smoothness conditions: with 1/p + 1/p′ = 1,

F ∈ W –1,p′ (Ω), f ∈ W 1,p(∂Ω). (1.4)

It is well known that the solution uε ⇀ u0 weakly in W 1,p(Ω), as ε → 0, where u0 is the
solution to the homogenized problem

⎧
⎨

⎩

L0u0 = – div(Q|�u0|p–2�u0) = F in Ω ,

u0 = f on ∂Ω .
(1.5)

The Q is a constant matrix, defined by

Q =
∫

Y

[
A(y)

∣
∣�χ (y) + 1

∣
∣p–2(�χ (y) + 1

)]
dy, (1.6)

where the corrector χ (y) satisfies the following cell problem:

⎧
⎨

⎩

div[A(y)|�χ (y) + 1|p–2(�χ + 1)] = 0 in Y ,
∫

Y χ (y) dy = 0.
(1.7)

Recently, there has been published much classical work about convergence of solutions
for linear operators in homogenization with the various settings. In 2011, Gérard and Mas-
moudi [4] obtained the L2 convergence rate for the boundary layers Neumann problems.
In 2012, Kenig, Lin and Shen [7] obtained L2 as well as H 1

2 convergence rates for the elliptic
oscillating operators. In 2013, Aleksanyan, Shahgholian and Sjölin [1, 2] proved pointwise
as well as Lp estimates for fixed operators and oscillating Dirichlet boundary data. In 2014,
Kenig, Lin and Shen [8] established W k,p convergence rates, via the asymptotic behavior
of the Green or Neumann functions. In 2015, the first author [24] obtained the pointwise
as well as W 1,p convergence rates for fixed operators and oscillating Neumann boundary
data. In 2015, Gu [5] also proved convergence rates in L2 and H1 for linear Stokes sys-
tems. In 2016, Shen [18] proved the L2 convergence rate for the mixed Dirichlet–Neumann
boundary value problems. In 2018, Niu and Xu [11] got the L2 convergence rate for 2mth-
order equations with periodic oscillating coefficients.

The nonlinear operators case in homogenization have also been studied extensively. Piat
and Deferanceschi [15] have obtained convergence weakly in W 1,p for the quasi-linear
monotone operator. Pastukhova [14] considered nonlinear equations of monotone type
with multiscale coefficients, and established the L2 convergence rate. Recently, Wang, Xu
and Zhao [21] studied the quasilinear elliptic equations and obtained an error estimate in
L2. We refer the reader to see [3, 6, 10, 16, 23] and their references for more results about
nonlinear problems in homogenization.

The motivation for studying this paper is inspired by the problems raised by Wang, Xu
and Zhao in [22] for the p-Laplace type equations. The aim of the paper is to obtain the
accurate convergence rates of solutions for the classical p-Laplace equations with rapidly
oscillating periodic coefficients. Thanks to the layer and co-layer type estimates, we could
handle the different ingredients in the integral by energy methods. The similar procedures
could be found in [9] or [12], which were used to analyze the spatial and mechanical prop-
erties for solutions of reflecting the microstructure of the materials.
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The following are the main results of this paper.

Theorem 1 Let Ω be a bounded Lipschitz domain in R
n. Suppose that uε ∈ W 1,p(Ω) and

u0 ∈ W 1,q(Ω), with q > p ≥ 4, are the weak solutions of the problems (1.1) and (1.5), respec-
tively. Then, under the assumptions (1.2)–(1.4), there exists a constant C such that

∥
∥uε – u0 – εχTε(ηε�u0)

∥
∥

W 1,p
0 (Ω) ≤ Cε

1
p – 1

q ‖�u0‖Lq(Ω),

where Tε is the smoothing operator, and ηε is a cut-off function.

Theorem 2 Under the same conditions as Theorem 1, then there exists a constant C, with
some q > p ≥ 4, such that

‖uε – u0‖Lp(Ω) ≤ Cε
1
p – 1

q ‖�u0‖Lq(Ω).

The astute reader may have already noticed that our convergence rate result in Theo-
rem 1, which do not involve the higher derivatives any more. This may be viewed as rather
surprising, even though in the linear case. The novelty of this work is that it seems to find
a new analysis method, which depends on the layer and co-layer type estimates, in quan-
titative homogenization. To the best of our knowledge, there are few contributions in the
field concerning p-Laplace equations in homogenization.

The rest of the paper is organized as follows. Section 2 contains some basic notations
and useful propositions which will play crucial roles to obtain convergence rates. In Sect. 3,
we show that the solution uε of p-Laplace equations is convergent to the solution u0 of the
corresponding homogenized problems, this is based on the energy method as well as using
homogenization tools.

2 Preliminaries
We begin by specifying our notations.

Let Br(x) denote an open ball with center x and radius r. Ωε = {x ∈ Ω : dist(x, ∂Ω) > ε},
we also call it the co-layer part of Ω , associated with so-called layer part is denoted by
Ω \Ωε . Set ηε ∈ C∞

0 (Ω) is a cut-off function, satisfying ηε = 1 in Ωε , ηε = 0 outside Ωε and
|�ηε| ≤ C/ε. In the whole paper, we use C to denote positive constant which may vary in
different formulas.

Proposition 2.1 Let F = (F1, F2, . . . , Fn) ∈ Lp(Y ). Suppose that
∫

Y Fj(y) dy = 0 and div F(y) =
0 in Y . Then there exists Φij ∈ W 1,p(Y ) such that Φij = –Φji and Fj = ∂Φij

∂yi
.

This proposition is well known. It is called the technique of flux correctors. The linear
operator case is well known (see for example [7], Lemma 3.1). Let fj ∈ W 2,p(Y ) be the
solution to the cell problem 
fj = Fj in Y. Then we could define Φij(y) = ∂

∂yi
[fj(y)]– ∂

∂yj
[fi(y)].

From an energy estimate, we may get the desired properties.
Recently, the smoothing operator was introduced by Suslina in [19, 20]. Meanwhile, ap-

plying the smoothing operator to get error estimates was first established by Shen in [17].
Next, we will introduce the smoothing operator and its properties. This work is to ex-
tend the usage of smoothing operator to the case of p-Laplace equations, of independent
interest itself.
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Definition 2.2 Fix ψ ∈ C∞
0 (B1(0)) such that ψ ≥ 0 and

∫

Rn ψ dx = 1. Define operator Tε

on L2 as

Tε(u)(x) = u ∗ ψε =
∫

Rn
u(x – y)ψε(y) dy,

where ψε(x) = ε–nψ(x/ε). We call it the smoothing operator.

Proposition 2.3 Let u0 ∈ W 1,p(Ω) and a periodic function f ∈ Lp(Y ), for some 1 < p < ∞.
Then we have

∥
∥f (·/ε)Tε(u0)

∥
∥

Lp(Ω) ≤ C‖f ‖Lp(Y )‖u0‖Lp(Ω)

and

∥
∥u0 – Tε(�u0)

∥
∥

Lp(Ωε ) ≤ Cε‖�u0‖Lp(Ωε).

These estimates could be proved by Fubini’s theorem and Hölder’s inequality. We refer
the reader to [13, 17] or [18] for the detailed proof.

The main interest of the present work is to attempt to find a new approach to analyzing
the error estimates for homogenization problems. Fortunately, it may be a new way to
derive rates of convergence, via the co-layer and layer type estimates.

Proposition 2.4 (Co-layer and layer type estimates) If u0 ∈ W 1,p(Ω) for some q > p > 1,
then we have estimates

∫

Ω\Ωε

|�u0|p dx ≤ Cε
1– p

q

(∫

Ω

|�u0|q dx
) p

q
,

∫

Ωε

∣
∣�2u0

∣
∣2| ·�u0|p–2 dx ≤ Cε

–1– p
q

(∫

Ω

|�u0|q dx
) p

q
,

and

∫

Ωε

∣
∣�2u0

∣
∣p dx ≤ Cε

1– p
q –p

(∫

Ω

|�u0|q dx
) p

q
.

These estimates will play crucial roles to obtain convergence rates in the present paper,
and they also do not involve the higher derivatives any more. These estimates could be
derived by regularity estimates, and they may be found in [22].

3 Proofs of theorems
The goal of this section is to establish W 1,p

0 and Lp convergence rates of solutions for the
p-Laplace equations in homogenization.

Set the first-order approximation term

vε = u0 + εχTε(ηε�u0).
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We find that

�vε = �u0 + �χTε(ηε�u0) + εχTε

(
ηε�2u0

)
+ εχTε(�ηε�u0).

In view of the fact that, for any ϕ ∈ C∞
0 (Ω),

∫

Ω

A(x/ε)|�uε|p–2�uε ·�ϕ dx =
∫

Ω

Q|�u0|p–2�u0 ·�ϕ dx,

we obtain
∫

Ω

[
A(x/ε)|�uε|p–2�uε – A(x/ε)|�vε|p–2�vε

] ·�ϕ dx

=
∫

Ω

[
Q|�u0|p–2�u0 – Q

∣
∣Tε(ηε�u0)

∣
∣p–2Tε(ηε�u0)

] ·�ϕ dx

+
∫

Ω

[
Q

∣
∣Tε(ηε�u0)

∣
∣p–2Tε(ηε�u0) – A(x/ε)

∣
∣Tε(ηε�u0)

∣
∣p–2

· Tε(ηε�u0)|�χ + 1|p–2(�χ + 1)
] ·�ϕ dx

+
∫

Ω

[
A(x/ε)

∣
∣Tε(ηε�u0)

∣
∣p–2Tε(ηε�u0)|�χ + 1|p–2(�χ + 1)

– A(x/ε)|�vε|p–2�vε

] ·�ϕ dx
.= I1 + I2 + I3. (3.1)

To estimate I1, we note Proposition 2.3, and Proposition 2.4 for the co-layer and layer
type estimates, showing that

|I1| ≤ C
∫

Ω

∣
∣�u0 – Tε(ηε�u0)

∣
∣
(|�u0| +

∣
∣Tε(ηε�u0)

∣
∣
)p–2 · |�ϕ|dx

≤ C
∫

Ω\Ωε

|�u0|p–1|�ϕ|dx + C
∫

Ωε

∣
∣�u0 – Tε(ηε�u0)

∣
∣|�u0|p–2|�ϕ|dx

≤ C
(∫

Ω\Ωε

|�u0|p dx
)1– 1

p
+ C

∫

Ωε

∣
∣ηε�u0 – Tε(ηε�u0)

∣
∣|�u0|p–2|�ϕ|dx

≤ C
(∫

Ω\Ωε

|�u0|p dx
)1– 1

p
+ C

(∫

Ωε

∣
∣ηε�u0 – Tε(ηε�u0)

∣
∣

p
p–1 |�u0|

p(p–2)
p–1 dx

)1– 1
p

≤ C
(∫

Ω\Ωε

|�u0|p dx
)1– 1

p
+ Cε

(∫

Ωε

∣
∣�2u0

∣
∣

p
p–1 |�u0|

p(p–2)
p–1 dx

)1–1/p

≤ C
(∫

Ω\Ωε

|�u0|p dx
)1– 1

p
+ Cε

(∫

Ωε

∣
∣�2u0

∣
∣2|�u0|p–2 dx

) 1
2
(∫

Ω

|�u0|p dx
) p–2

2p

≤ Cε
(1– 1

p )(1– p
q )

(∫

Ω

|�u0|q dx
) p–1

q
+ Cε

1
2 – p

2q

(∫

Ω

|�u0|q dx
) p

2q
(∫

Ω

|�u0|q dx
) p–2

2q

≤ Cε
1
2 (1– p

q )
(∫

Ω

|�u0|q dx
) p–1

q
(3.2)

for some q > p ≥ 2, where we have used the Hölder inequality.
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Next, we shall estimate I2. Let

F(y, ξ ) = Q
∣
∣Tε(ξ )

∣
∣p–2Tε(ξ ) – A(y)

∣
∣Tε(ξ )

∣
∣p–2Tε(ξ )

∣
∣χ (y) + 1

∣
∣p–2(�χ (y) + 1

)
.

Note that F(·, ξ ) is a periodic function with the first variable and satisfies the conditions
of Proposition 2.1. Then there exists Φ(·, ξ ), such that Φij = –Φji, and

Q
∣
∣Tε(ξ )

∣
∣p–2Tε(ξ ) – A(y)

∣
∣Tε(ξ )

∣
∣p–2Tε(ξ )

∣
∣χ (y) + 1

∣
∣p–2(�χ (y) + 1

)
= divy Φ(y, ξ ).

Thus, it gives

I2 =
∫

Ω

F(x, x/ε) ·�ϕ dx

=
∫

Ω

divy Φ(y, ξ ) ·�ϕ dx

=
∫

Ω

∂

∂yi

(
Φij(y, ξ )

) · ∂ϕ

∂xj
dx

= –
∫

Ω

∂

∂xi

(
εΦij(x, x/ε)

) · ∂ϕ

∂xj
dx +

∫

Ω

∂

∂yi

(
Φij(y, ξ )

) · ∂ϕ

∂xj
dx

+
∫

Ω

εΦij(x, x/ε) · ∂ϕ

∂xi∂xj
dx

=
∫

Ω

[
∂

∂yi

(
Φij(y, ξ )

)
–

∂

∂xi

(
εΦij(x, x/ε)

)
]

· ∂ϕ

∂xj
dx,

where we have used the divergence theorem and the antisymmetry of Φij.
As a result, using Proposition 2.4 again, we get

|I2| ≤ C
∫

Ω

∣
∣�yΦ(y, ξ ) – �xΦ(x, x/ε)

∣
∣ · |�ϕ|dx

≤ Cε

∫

Ωε

∣
∣Tε

(
�2u0

)∣
∣ · |�u0|p–2 · |�ϕ|dx

≤ Cε

(∫

Ω

|�u0|p dx
)1– 2

p
(∫

Ωε

∣
∣Tε

(
�2u0

)∣
∣p dx

) 1
p

≤ Cε

(∫

Ω

|�u0|q dx
) p–2

q
(∫

Ωε

∣
∣�2u0

∣
∣p dx

) 1
p

≤ Cε
1
p – 1

q

(∫

Ω

|�u0|q dx
) p–1

q
(3.3)

for some q > p.
For I3, it follows that

|I3|

≤ C
∫

Ω

∣
∣(�χ + 1)Tε(ηε�u0) – �vε

∣
∣
(∣
∣(�χ + 1)Tε(ηε�u0)

∣
∣ + |�vε|

)p–2 · |�ϕ|dx

≤ C
∫

Ω

∣
∣�u0 – Tε(ηε�u0)

∣
∣
(|�u0| +

∣
∣(�χ + 1)Tε(ηε�u0)

∣
∣
)p–2 · |�ϕ|dx
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+ C
∫

Ω

∣
∣�u0 – Tε(ηε�u0)

∣
∣

· (∣∣�χTε(ηε�u0)
∣
∣ +

∣
∣εχTε

(
ηε�2u0

)∣
∣ +

∣
∣εχTε(�ηε�u0)

∣
∣
)p–2|�ϕ|dx

+ C
∫

Ω

∣
∣εχTε

(
ηε�2u0

)
+ εχTε(�ηε�u0)

∣
∣
(∣
∣(�χ + 1)Tε(ηε�u0)

∣
∣ + |�vε|

)p–2

· |�ϕ|dx
.= I31 + I32 + I33. (3.4)

Here, we divide the estimate into three ingredients.
Similar to the estimate of I1, we have

|I31| ≤ C
(∫

Ω\Ωε

|�u0|p dx
)1– 1

p
+ Cε

(∫

Ωε

∣
∣�2u0

∣
∣2|�u0|p–2 dx

) 1
2
(∫

Ω

|�u0|p dx
) p–2

2p

≤ Cε
1
2 (1– p

q )
(∫

Ω

|�u0|q dx
) p–1

q
. (3.5)

Next, we proceed to deal with I32:

|I32| ≤ C
∫

Ω

∣
∣�u0 – Tε(ηε�u0)

∣
∣
(∣
∣Tε(ηε�u0)

∣
∣ +

∣
∣εTε(�ηε�u0)

∣
∣
)p–2|�ϕ|dx

+ C
∫

Ω

∣
∣�u0 – Tε(ηε�u0)

∣
∣
∣
∣εχTε

(
ηε�2u0

)∣
∣p–2|�ϕ|dx

≤ C
∫

Ω\Ωε

|�u0|p–1|�ϕ|dx + C
∫

Ωε

∣
∣�u0 – Tε(ηε�u0)

∣
∣|�u0|p–2|�ϕ|dx

+ C
∫

Ωε

|�u0| ·
∣
∣εχTε

(
ηε�2u0

)∣
∣p–2|�ϕ|dx

≤ Cε
1
2 (1– p

q )
(∫

Ω

|�u0|q dx
) p–1

q
+

(∫

Ω

|�u0|q dx
) 1

q
(∫

Ωε

∣
∣εχTε

(
ηε�2u0

)∣
∣p dx

)1– 2
p

≤ Cε
1
2 (1– p

q )
(∫

Ω

|�u0|q dx
) p–1

q
+

(∫

Ω

|�u0|q dx
) 1

q
ε

(1– p
q )(1– 2

p )
(∫

Ω

|�u0

)

|q dx)
p–2

q

≤ Cε
1
2 (1– p

q )
(∫

Ω

|�u0|q dx
) p–1

q
, (3.6)

for some q > p ≥ 4, where we have used Proposition 2.3 and Proposition 2.4.
Last, it remains to handle I33:

|I33| ≤ Cε

∫

Ωε

∣
∣Tε

(
�2u0

)
+ Tε(�u0)

∣
∣ · |�u0|p–2|�ϕ|dx

+ Cεp–1
∫

Ωε

∣
∣Tε

(
�2u0

)
+ Tε(�u0)

∣
∣p–1|�ϕ|dx

≤ Cε

(∫

Ω

|�u0|p dx
)1– 2

p
(∫

Ωε

∣
∣Tε

(
�2u0

)
+ Tε(�u0)

∣
∣p dx

) 1
p

+ Cεp–1
(∫

Ωε

(∣
∣Tε

(
�2u0

)∣
∣ +

∣
∣Tε(�u0)

∣
∣
)p dx

)1– 1
p
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≤ Cε

(∫

Ω

|�u0|q dx
) p–2

q
[(∫

Ω

|�u0|q dx
) 1

q
+

(∫

Ωε

∣
∣�2u0

∣
∣p dx

) 1
p
]

+ Cεp–1
(∫

Ω

|�u0|q dx
) p–1

q
+ Cεp–1

(∫

Ωε

∣
∣�2u0

∣
∣p dx

)1– 1
p

≤ C
(
ε + ε

1
p – 1

q + εp–1 + ε
(p–1)( 1

p – 1
q ))

(∫

Ω

|�u0|q dx
) p–1

q

≤ Cε
1
p – 1

q

(∫

Ω

|�u0|q dx
) p–1

q
, (3.7)

for some q > p ≥ 4.
This, together with (3.1)–(3.7), shows that, for some q > p ≥ 4,

∣
∣
∣
∣

∫

Ω

[
A(x/ε)|�uε|p–2�uε – A(x/ε)|�vε|p–2�vε

] ·�ϕ dx
∣
∣
∣
∣

≤ Cε
1
p – 1

q

(∫

Ω

|�u0|q dx
) p–1

q
. (3.8)

Then let ϕ = vε = uε – u0 – εχTε(ηε�u0). It gives

∥
∥�

[
uε – u0 – εχTε(ηε�u0)

]∥
∥p–1

Lp(Ω)

≤ C
∣
∣
∣
∣

∫

Ω

[
A(x/ε)|�uε|p–2�uε – A(x/ε)|�vε|p–2�vε

] ·�ϕ dx
∣
∣
∣
∣

≤ Cε
1
p – 1

q

(∫

Ω

|�u0|q dx
) p–1

q
.

In view of the fact that Tε(ηε�u0) = 0 in the Ω \Ωε and the Poincaré inequality, this com-
pletes the proof of Theorem 1.

It follows from Theorem 1 and Proposition 2.3, together with Minkowski’s inequality,
that

‖uε – u0‖Lp(Ω) ≤ Cε
∥
∥χTε(ηε�u0)

∥
∥

Lp(Ω) + Cε
1
p – 1

q ‖�u0‖Lq(Ω)

≤ Cε‖�u0‖Lp(Ω) + Cε
1
p – 1

q ‖�u0‖Lq(Ω)

≤ Cε
1
p – 1

q ‖�u0‖Lq(Ω), (3.9)

with q > p ≥ 4.
This completes the proof of Theorem 2.
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