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Abstract
This paper is devoted to modifying the Schrödinger-type identity related to singular
boundary value problem in (Zhang et al. in Bound. Value Probl. 2018:135, 2018). We
also present some mathematical consequences of the method, including a stability
result. The main technical tools used to develop the mathematical analysis are local
and global bifurcation, monotonicity techniques, fixed point theory in b-metric
spaces in (Liu et al. in Bull. Aust. Math. Soc. 94(1):121–130, 2016) and the maximum
principle approach with respect to the Schrödinger operator in (Fan et al. in Math.
Appl. 31(1):42–48, 2018). As an application, the uniqueness of solutions for singular
boundary value problem for the Schrödinger equation is proved.
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1 Introduction
In this paper we consider a singular boundary value problem with mixed boundary con-
ditions and spatial heterogeneities given by (see [4–6])

–�f = χ f in ,ג

f = 0 on �1,

∂f + V (t)f = χω(t)uq on �2, q > 1,

(1)

where:
(i) ג = (0, W ) × (0, w) is a bounded rectangular domain in R2, ג represents a porous

medium, with Lipschitz boundary ג∂ = �1 ∪�2 where

�2 =
({0} × [0, w]

) ∪ (
[0, W ] × {w}) ∪ ({W } × [0, w]

)

is the part in contact with air or covered by fluid and

�1 = [0, W ] × {0}

is the impervious part of .ג∂ Let P = ×ג (0, M), where M > 0;
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(ii) –� stands for the minus Laplacian operator, χ is a function of the variable t
satisfying

c1 ≤ χ (t) ≤ c2 a.e. t ∈ (0, W ) (2)

for two positive constants c1 and c2 and ω(t) satisfies

0 ≤ ω(t) ≤ 1 a.e. t ∈ ;ג (3)

(iii) the spatial heterogeneities on the boundary come given by the potentials
V , b ∈ C(�2), where b > 0 on �2 and V possesses arbitrary sign in each point x ∈ �2;

(iv) ∂f (x) stands for the outer normal derivative of f at t ∈ �2.
In 2008, Polidoro and Ragusa in [7] proved a Harnack inequality for the positive so-

lutions of ultraparabolic equations of the type Lf + Vf = 0, where L is a linear second
order hypoelliptic operator and V belongs to a class of functions of Stummel-Kato type.
They also obtained the existence of a Green function and an uniqueness result for the
Cauchy–Dirichlet problem. In 2016, Guariglia and Silvestrov in [8] described a wavelet ex-
pansion theory for positive definite distributions over the real line and define a fractional
derivative operator for complex functions in the distribution sense. In 2017, Goubet and
Hamraoui in [9] investigated both numerically and theoretically the influence of a defect
on the blow-up of radial solutions to a cubic NLS equation in dimension 2. Colorado in
[10] showed the existence of positive bound and ground states for a system of coupled
nonlinear Schrödinger–Korteweg–de Vries equations. In 2018, Khader and Adel in [11]
introduced a study of the convergence analysis and error estimation of the obtained ap-
proximation solution. The FLDE is reduced to a system of algebraic equations with the
help of the properties of wavelets polynomials. Rybalko in [12] studied an initial value
problem for the one-dimensional non-stationary linear Schrödinger equation with a point
singular potential. Zhang and Gu in [13] considered a three components system of non-
linear Schrödinger equations related to the Raman amplification in a plasma. In 2019,
Scapellato in [14] showed some regularity properties of solutions to the elliptic equations
on Herz spaces with two variable exponents. Meng in [15, 16] discussed the application
of the new criteria for minimally thin sets with respect to the Schrödinger operator to an
approximate solution of singular Schrödinger-type boundary value problems.

The classical Randon transform (see [17]) is defined by the Cauchy principal value of
the singular integral. In 2018, Zhang et al. in [1] established the Schrödinger-type identity
and applied it to a Schrödinger integral equation and then gave three examples where
the kernel function is a Green’s function for a two-order system of Schrödinger integral
equations.

In this paper, we shall use this identity to study the problem (1) with a power nonlinearity
and an exponential nonlinearity both of which are singular as the solutions approaches 0.
The results from previous applications are generalized and extended. In our approach,
the problem is considered as a system of coupled Schrödinger boundary value problems
on two half-lines. This system can exhibit different qualitative behaviors depending on
the value of the vaccination-isolation reproductive number. Following the ideas of this
method, we studied the existence and the behavior of periodic solutions of a generalized
model with general heterogeneous coefficients, by using a continuation theorem based on
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coincidence degree theory. Regarding existence of a solution of the problem (1) with re-
spect to the Schrödinger operator was obtained in [2] by applying the maximum principle
approach for a two-order system of Schrödinger operator in [18–22]. The regularity of the
solution of the problem (1) with respect to a two-order system of Schrödinger operator
was also discussed in [23], where it was proved that ω ∈ C0([0, T]; Lp(ג)) for all p ∈ [1, +∞)
in both classes of free boundary problem of types (see [6])

div
(
χ (t)∇f + H(t)ω

)
– ωs

and

div
(
χ (t)∇f + H(t)ω

)
– (f + ω)s,

and that f ∈ C0([0, M]; Lp(ג)) for all p ∈ [1, 2] in the second class.

2 A modified Schrödinger-type identity
For simplicity we shall denote the solution of (1) as (f ,ω).

Lemma 2.1 Let

Σ1 = �1 × (0, M), Σ2 = �2 × (0, M), Σ3 = Σ2 ∩ {φ > 0}

and

Σ4 = Σ2 ∩ {φ = 0}.

(i) Let ε > 0, k ≥ 0 and ς ∈ D(R2 × (0, M)) such that ς ≥ 0, ς = 0 on Σ3. Then

∫

P
χ (t1)(ft2 + ω)

(
min

(
(f – k)+

ε
,ς

))

t2

dt ds = 0. (4)

(ii) Let ς = 0 on Σ2. Then

∫

P
χ (t1)(ft2 + ω)

(
min

(
(k – u)+

ε
,ς

)
– min

(
k
ε

,ς
))

t2

dt ds = 0. (5)

Proof Let ψ be a measure function satisfying

d
(
supp(ψ),Σ2

)
> 0

and

supp(ψ) ⊂R
2 × (0, M).

Then we know that

(t, s) 
→ ±ψ(t, t – κ)

vanishes on Σ2 for any κ ∈ (–κ0,κ0), where κ0 > 0.
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So

∫

P

[
χ (t1)(ft2 + ω)ψt2 (t, s – κ) + (1 – ω)ψs(t, s – κ))

]
dt ds = 0,

which yields

∫

P
χ (t1)(ft2 + ω)ψt2 (t, s – κ) dt ds =

∂

∂κ

(∫

P

(
1 – ω(t, t + κ)

)
ψ(t, s) dt ds

)
. (6)

Equation (6) still holds for any ψ ∈ L2(0, T ; H1(ג)), where ψ = 0 on Σ2 and ψ = 0 on
×ג ((0,κ0) ∪ (M – κ0, M)).

So

ς ∈ D
(
R

2 × (κ0, M – κ0)
)
,

which shows that ς ≥ 0, ς = 0 on Σ3.
Set

ψ = min

(
(f – k)+

ε
,ς

)
.

Then (6) also gives

∫

P
χ (t1)(ft2 + ω)

(
min

(
(f – k)+

ε
,ς

))

t2

(t, s – κ) dt ds

=
∂

∂κ

(∫

P

(
1 – ω(t, t + κ)

)
min

(
(f – k)+

ε
,ς

)
(t, s) dt ds

)
:= G ′(κ) (7)

for any κ ∈ (–κ0,κ0), where

G(κ) =
∫

P

(
1 – ω(t, t + κ)

)
min

(
(f – k)+

ε
,ς

)
(t, s) dt ds.

So

G(κ) ≥ 0 = G(0)

for any κ ∈ (–κ0,κ0).
By applying (7), we know that (4) holds for ς ∈ D(R2 × (0, M)) such that ς ≥ 0, ς = 0 on

Σ3.
If we put ς = 0 on Σ2 and set

ψ = min

(
(k – u)+

ε
,ς

)
– min

(
k
ε

,ς
)

,
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then (6) also yields

∫

P
χ (t1)(ft2 + ω)

(
min

(
(k – u)+

ε
,ς

)
– min

(
k
ε

,ς
))

t2

(t, s – κ) dt ds

=
∂

∂κ

(∫

P

(
1 – ω(t, t + κ)

)
(

min

(
(k – u)+

ε
,ς

)
– min

(
k
ε

,ς
))

(t, s) dt ds
)

:= K′(κ) (8)

for any κ ∈ (–κ0,κ0), where

K(κ) =
∫

P

(
1 – ω(t, t + κ)

)
(

min

(
(k – u)+

ε
,ς

)
– min

(
k
ε

,ς
))

(t, s) dt ds.

So

K(κ) ≤ 0 = K(0)

for all κ ∈ (–κ0,κ0).
By applying (8), we know that (5) holds for ς ∈ D(R2 × (0, M)) such that ς ≥ 0, ς = 0 on

Σ2. �

3 Uniqueness of the solution
In this section, we shall state and prove our main result: the solution of problem (1) is
unique. Let us assume that

χ ∈ C1([0, W ]
)
. (9)

Now, we can state our uniqueness theorem.

Theorem 3.1 The solution of the problem (1) associated with the initial data ω0 is unique.

Proof Let (f1,ω1) and (f2,ω2) be two solutions of the problem (1) satisfying

ω1(t, 0) = ω2(t, 0) = ω0(t)

a.e. in .ג
Set

v = (f1 – f2)+

and

γ =
(
1 – ω2(t, s)

)
ω{f1>f2} +

((
1 – ω2(t, s)

)
+

(
1 – f2t2 (t, s)

))
ω{f1>0}.

It follows that
∫

P
ιχ (t1)(vt2 + γ )ςt2 dt ds ≤ 0 (10)

from Lemma 2.1.
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Let

ε0 = d
(
supp(ς ), ג∂

)

and

Aε0 =
{

t ∈R
2/d(t, (ג∂ > ε0

}
.

Note that the function χ admits an extension to R from (9), still denoted by χ , such that
χ ∈ C1(R,R) (see [24]).

It follows that
∫

R2×(0,M)
ιχ (t1)(vεt2 + γε)ςt2 dt ds

=
∫

R2×(0,M)
ι

{∫

R2

(
vt2 (t – x, s) + γ (t – x, s)

)
ρε(y) dy

}
χ (t1)ςt2 (t1, t2) dt ds

=
∫

R2
ρε(y)

{∫

R2×(0,M)
ι
(
vt2 (t – x, s) + γ (t – x, s)

)
χ (t1)ςt2 (t1, t2) dt ds

}
dy

=
∫

B(0,ε)
ρε(y)

{∫

P
ι
(
vz2 (z, s) + γ (z, s)

)(
χ (z1 + x1)ς (z + y)

)
z2

dz ds
}

dy

=
∫

B(0,ε)
ρε(y)

{∫

P
ιχ (z1)

(
vz2 (z, s) + γ (z, s)

)(χ (z1 + x1)ς (z + y)
χ (z1)

)

z2

dz ds
}

dy

from Fubini’s theorem, where ε ∈ (0, ε0
2 ), ρε ∈ D(R2) with

supp(ρε) ⊂ B(0, ε)

and fε = ρε ∗ f .
Note that

z 
→ χ (z1 + x1)ς (z + y)
χ (z1)

is nonnegative for all y ∈ B(0, ε) and belongs to C1
.(ג)0

Since (10) holds for 0 ≤ ϕ ∈ C1
,(ג)0 we have

∫

R2×(0,M)
ιχ (t1)(vεt2 + γε)ςt2 dt ds ≤ 0,

which yields

–
∫

Aε0 ×(0,M)
ιχ (t1)vεςt2t2 dt ds +

∫

Aε0 ×(0,M)
ιχ (t1)γεςt2 dt ds ≤ 0,

ς ∈ D(ג),ς ≥ 0, d
(
supp(ς ), ג∂

)
= ε0 > 0, ∀ι ∈ D(0, M), ι ≥ 0.

(11)

Put

αε(t) = χ (t1)
∫ M

0
ιvε ds,

and suppose that there exists t0 ∈Aε0 ∩ ג and ε1 ∈ (0, ε0
2 ) such that αε1 (t0) > 0.
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Since αε1 is continuous and Aε0 ∩ ג is an open set,

B(t0, r) ⊂Aε0 ∩ ג

and αε1 (t) > 0 for all t ∈ B(t0, r), where r > 0.
It follows that

∫ M

0
ιvε1 ds > 0

in B(t0, r) from (2).
Let us consider the following Dirichlet problem associated to a linear second order par-

tial differential equation:

–
1

αε1 (t)
ςt1t1 – ςt2t2 +

∫ M
0 ιγε1 ds

∫ M
0 ιvε1 ds

ςt2 =
1

αε1 (t)
in B(t0, r),

ς = 0 on ∂
(
B(t0, r)

)
,

(12)

which yields

–
2∑

i,j=1

aε1ij(t)ςtitj + βε1 (t)ςt2 =
1

αε1 (t)
in B(t0, r),

ς = 0 on ∂
(
B(t0, r)

)
,

where

aε111(t) =
1

αε1 (t)
, aε112(t) = aε121(t) = 0, aε122(t) = 1,

βε1 (t) =
∫ M

0 ιγε1 ds
∫ M

0 ιvε1 ds
.

Note that (aε1ij(t))ij is strictly elliptic in B(t0, r) with a positive constant

min

(
1

maxt∈B(t0,r) αε1 (t)
, 1

)

and the coefficients 1
αε1

, βε1 are in C1(B(t0, r)). So, by the regularity theory (see [25] for
example), the problem (12) has a unique solution ς̂ ∈ C2(B(t0, r)).

Moreover, since the function in the right side of the first equation of (12) satisfies 1
αε1

> 0
in B(t0, r), we have ς̂ ≥ 0 in B(t0, r) from the maximum principle (see [26]).

So (11) yields

∫

Aε0 ×(0,M)

{
–ιχ (t1)vες̂t2t2 + ιχ (t1)γες̂t2

}
dt ds ≤ 0,

where ε ∈ (0, ε0
2 ).



He and Pang Boundary Value Problems        (2019) 2019:147 Page 8 of 20

It follows that

–ς̂t1t1 – αε1 (t)ς̂t2t2 + χ (t1)ς̂t2

∫ M

0
ιγε1 ds = 1

and
∫

B(t0,r)×(0,M)

{
–ιχ (t1)vε1 ς̂t2t2 + ιχ (t1)γε1 ς̂t2

}
dt ds

=
∫

B(t0,r)
ς̂t1t1 dt +

∫

B(t0,r)
dt

=
∫

ג

ς̂t1t1 dt +
∫

B(t0,r)
dt

from (12), which gives that

∫

Aε0 ×(0,M)

{
–ιχ (t1)vε1 ς̂t2t2 + ιχ (t1)γε1 ς̂t2

}
dt ds =

∣∣B(t0, r)
∣∣ > 0.

So

αε(t) = χ (t1)
∫ M

0
ι(t)vε(t, s) ds ≤ 0,

where ε ∈ (0, ε0
2 ) and t ∈Aε0 ∩ ,ג which yields

∫

(Aε0 (M,0)×(ג∩
ι(t)vε(t, s) dt ds ≤ 0,

for any ε ∈ (0, ε0
2 ).

By passing to the limit as ε → 0, we obtain

0 ≤
∫

(Aε0 (M,0)×(ג∩
ι(t)(f1 – f2)+(t, s) dt ds ≤ 0

and
∫

P
ι(t)(f1 – f2)+(t, s) dt ds = 0.

Notice that

ι(f1 – f2)+ = 0 a.e. in P

for all 0 ≤ ι ∈ D(0, M), which gives that

f1 = f2 := u a.e. in P. (13)

Next we prove

ω1 = ω2 a.e. in P. (14)



He and Pang Boundary Value Problems        (2019) 2019:147 Page 9 of 20

Put

ι(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2( t
σ

)2 if t ∈ [0, σ
2 ],

1 – 2(1 – t
σ

)2 if t ∈ ( σ
2 ,σ ],

1 if t ∈ (σ , s – σ ],

1 – 2(1 – s–t
σ

)2 if t ∈ (s – σ , s – σ
2 ],

2( s–t
σ

)2 if t ∈ (s – σ
2 , s],

where σ > 0 and s ∈ (0, M].
Note that ι ∈ C1([0, s]) and

ι′(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

4 t
σ 2 if t ∈ [0, σ

2 ],
4
σ

(1 – t
σ

) if t ∈ ( σ
2 ,σ ],

0 if t ∈ (σ , s – σ ],

– 4
σ

(1 – s–t
σ

) if t ∈ (s – σ , s – σ
2 ],

– 4
σ

( s–t
σ

) if t ∈ (s – σ
2 , s].

Note that ςι2 ∈ H1(P), ςι2 = 0 on ×ג∂ (0, M) and

(
ςι2)(t, 0) =

(
ςι2)(t, M) = 0 a.e. in .ג

Choosing ±ςι2 as test functions for (1) (see [27] for example), we obtain

∫

(s,0)×ג

[
χ (t1)(ft2 + ω1)ςt2 ι

2 – 2ω1ιι
′ς

]
dt ds = 0, (15)

∫

(s,0)×ג

[
χ (t1)(ft2 + ω2)ςt2 ι

2 – 2ω2ιι
′ς

]
dt ds = 0. (16)

It follows from (16) and (15) that

0 =
∫

(s,0)×ג
χ (t1)(ω1 – ω2)ςt2 ι

2 dt ds –
∫

(s,0)×ג
2(ω1 – ω2)ιι′ς dt ds

:= R1
σ – R2

σ . (17)

By using the Lebesgue theorem to R1
σ (see [28]), we have

lim
σ→0

R1
σ =

∫

(s,0)×ג
χ (t1)(ω1 – ω2)ςt2 dt ds. (18)

We now estimate R2
σ . We know that

∣∣R2
σ

∣∣ = 2
∣
∣∣
∣

∫

ג

∫ σ

0
χ (t1)(ω1 – ω2)ιι′ς dt ds +

∫

ג

∫ s

s–σ

χ (t1)(ω1 – ω2)ιι′ς dt ds
∣
∣∣
∣

≤ C
{∫ σ

0

(∫

ג

|ω1 – ω2|dt
)

ι
∣
∣ι′

∣
∣ds ds +

∫ s

s–σ

(∫

ג

|ω1 – ω2|dt
)

ι
∣
∣ι′

∣
∣ds

}

:= C
(
R2,1

σ + R2,2
σ

)
(19)
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from the definition of ι′, where

C = sup
(t1,t2)∈ג

∣∣χ (t1)ς (t1, t2)
∣∣.

We have

ω1 – ω2 ∈ C0([0, M]; L1(ג)
)

(see [29, Proposition 2.1]), ι ∈ C0([0, s]), ι(0) = 0 and ι is uniformly bounded independently
of σ .

Notice that

t 
→
(∫

ג

|ω1 – ω2|dt
)

ι

is right-continuous and vanishes at 0.
So

lim
σ→0

R2,1
σ = 0. (20)

Similarly,

lim
σ→0

R2,2
σ = 0. (21)

By letting σ → 0 in (19) and applying (20)–(21), we obtain

lim
σ→0

R2
σ = 0. (22)

Combining (17), (18) and (22), we obtain

0 =
∫ s

0

∫

ג

χ (t1)(ω1 – ω2)ςt2 dt ds := F(s), (23)

where s ∈ [0, M].
Since

∫

ג

χ (t1)(ω1 – ω2)ςt2 dt

is continuous on [0, M] (see [30]), we deduce that

F ′(s) = 0

for all s ∈ [0, M] from (23).
So

∫

ג

χ (t1)(ω1 – ω2)(·, s)ςt2 dt = 0 ∀t ∈ [0, M],∀ς ∈ D(ג), (24)
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which yields

∫

R2
χ (t1)

(
(ω1 – ω2)(·, s)

)
ε
ςt2 dt = 0. (25)

If we choose

min

(
((ω1 – ω2)(·, s))+

ε

σ
, 1

)
ς

as the test functions in (25), then we have

0 =
∫

R2
χ (t1)

(
(ω1 – ω2)(·, s)

)
ε
ςt2 min

(
((ω1 – ω2)(·, s))+

ε

σ
, 1

)
dt

+
∫

R2
χ (t1)

(
(ω1 – ω2)(·, s)

)
ε

min

(
((ω1 – ω2)(·, s))+

ε

σ
, 1

)

t2

ς dt

:= S1
σ + S2

σ . (26)

By applying the Lebesgue theorem to S1
σ , we obtain

lim
σ→0

S1
σ =

∫

ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε
ςt2 dt (27)

and

S2
σ =

1
2σ

∫

R2
χ (t1)

{
min

((
(ω1 – ω2)(·, s)

)+
ε
,σ

)2}
t2
ς dt

= –
1

2σ

∫

R2
χ (t1)ςt2 min

((
(ω1 – ω2)(·, s)

)+
ε
,σ

)2 dt,

which yield

lim
σ→0

S2
σ = 0. (28)

Put

�ג := ∪ג {
x ∈R

N \ ג : dist(t,�1) < �
}

,

and let (δ0,ω0) and (δ�,ω�) be the principal eigenvalue associated to –� operator in the
domains ג and �ג , respectively (see [31]).

It is obvious that

‖ω0‖L∞(ג) = 1, ‖ω�‖L∞(ג�) = 1.

By the definitions of ω0 and ω� , we obtain

ω0(t) = 0, ∂ω0(t) < 0,
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where t ∈ ג∂ = �0 ∪�1, and

ω�(t) > 0, (29)

where t ∈ �1.
Put

η0(t) := –∂ω0(t) > 0 ∀t ∈ ,ג∂ (30)

η0 := min
t∈�1

η0(t) > 0, η̄0 :=
∥
∥η0(t)

∥
∥

L∞(�1), (31)

b̄ :=
∥
∥ω(t)

∥
∥

L∞(�1) > 0, χ :=
∥
∥χ (t)

∥
∥

L∞(�1) ≥ 0. (32)

Put

0 < ε <
η0

1 + χ
(33)

and

0 <
1
k0

< η0 – ε(1 + χ ), (34)

respectively.
It is well known that

δ� < δ0, (35)

where � > 0.
So

lim
�↓0

δ� = δ0. (36)

Combining (31), (35) and (36), there exists �0 > 0 satisfying

δ1 < δ� < δ0, (37)

where � ∈ (0,�0].
Thanks to the regularity of ω� and ω0, there exists �1 ∈ (0,�0] satisfying

∂ω�(t) ≤ ∂ω0(t) + ε, (38)

ω�(t) ≤ ω0(t) + ε = ε, (39)

where � ∈ (0,�1] and t ∈ �1.
Let x̄� ∈ �1 satisfy

ω�(x̄�) = ‖ω�‖L∞(�1). (40)
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It follows that there exists z̄ ∈ �1 satisfying

ω�(x̄�) = ‖ω�‖L∞(�1) = η0(z̄)� + o(�) (41)

from (39) and (40).
Put

g� := C(�)ω�, (42)

where

C = C(�) :=
1

(k0b̄γ̃ )
1

q–1 (η̄0�)
q

q–1
> 0. (43)

There exists �2 ∈ (0,�1] such that

f� := g�|̄ג = C(�)ω�|̄ג

is a positive strict subsolution of (1) for each � ∈ (0,�2] and λ ∈ (δ�, δ0).
It follows that

(–� – λ)f� = C(�)
(
δ� – λ

)
ω� < 0 (44)

for each � ∈ (0,�1] and λ ∈ (δ�, δ0).
It follows that

(
∂ + χ (t)

)
f�(t) + γ̃ ω(t)f q

� (t)

= C
(
∂ω�(t) + χ (t)ω�(t) + γ̃ ω(t)Cq–1ωq

�(t)
)

≤ C
(
∂ω0(t) + ε(1 + χ ) + γ̃ b̄Cq–1ωq

�(y�)
)

= C
(
–η0(t) + ε(1 + χ ) + γ̃ b̄Cq–1(η0(z0)� + o(�)

)q)

≤ C
(
–η0 + ε(1 + χ ) + γ̃ b̄Cq–1(η̄0� + o(�)

)q)

= C
(
–η0 + ε(1 + χ ) + γ̃ b̄Cq–1(η̄q

0�
q + o

(
�q)))

= C
(

–η0 + ε(1 + χ ) +
1
k0

+
1

k0η̄
q
0

o(�q)
�q

)

from (30), (31), (32), (38), (39), (40), (41) and (43), which, together with (34), shows that
there exists �2 ∈ (0,�1] such that

(
∂ + χ (t)

)
f�(t) + γ̃ ω(t)f q

� (t) ≤ C
(

–η0 + ε(1 + χ ) +
1
k0

+
1

k0η̄
q
0

o(�q)
�q

)
< 0

for each � ∈ (0,�2] and t ∈ �1.
And hence

∂f� + χ (t)f� + γ̃ ω(t)f q
� < 0, (45)

where t ∈ �1 and � ∈ (0,�2].
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So

f�|�0 = C(�)ω�|�0 = 0. (46)

Combining (44), (45) and (46), we have

(–� – λ)f� < 0 in ,ג

f� = 0 on �0,

∂f� + χ (t)f� + γ̃ ω(t)f q
� < 0 on �1

(47)

for � ∈ (0,�2] and λ ∈ (δ�, δ0).
It follows from (29) that there exists ỹ� ∈ �1 satisfying

min
t∈�1

ω�(t) = ω�(ỹ�) > 0 (48)

for each � ∈ (0,�2] and there exists z ∈ �1 satisfying

ω�(ỹ�) = η0(z)� + o(�). (49)

Combining (48) and (49), we obtain

f�(t) = Cω�(t) ≥ Cω�(ỹ�) =
η0(z)� + o(�)

(k0b̄γ̃ )
1

q–1 (η̄0�)
q

q–1
≥ η0� + o(�)

(k0b̄γ̃ )
1

q–1 (η̄0�)
q

q–1

for each t ∈ �1 and � ∈ (0,�2], which yields

lim inf
�↓0

f�(t) ≥ lim
�↓0

η0� + o(�)

k
1

q–1
0 γ̃

1
q–1 b̄

1
q–1 η̄

q
q–1
0 �

q
q–1

= lim
�↓0

η0

k
1

q–1
0 γ̃

1
q–1 b̄

1
q–1 η̄

q
q–1
0 �

1
q–1

= ∞

uniformly on �1.
Passing to the limit as δ → 0 in (26) and using (27)–(28), we have

∫

ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε
ςt2 dt = 0. (50)

If we choose t2ς as a test function in (50), then we have

∫

ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε
ς dt +

∫

ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε
t2ςt2 dt = 0,

∀t ∈ [0, M],∀ς ∈ D(ג),ς ≥ 0, d
(
supp(ς ), ג∂

)
= ε0.

(51)
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Define the following functions h and g in (t1
1 , t2

1) (resp. (t1
2 , t2

2)):

h(t1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2( t1–t1
1

δ
)2 if t1 ∈ [t1

1 , t1
1 + δ

2 ],

1 – 2(1 – t1–t1
1

δ
)2 if t1 ∈ (t1

1 + δ
2 , t1

1 + δ],

1 if t1 ∈ (t1
1 + δ, t2

1 – δ],

1 – 2(1 – t2
1–t1
δ

)2 if t1 ∈ (t2
1 – δ, t2

1 – δ
2 ],

2( t2
1 –t1
δ

)2 if t1 ∈ (t2
1 – δ

2 , t2
1],

and

g(t2) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

2( t2–t1
2

δ
)2 if t2 ∈ [t1

2 , t1
2 + δ

2 ],

1 – 2(1 – t2–t1
2

δ
)2 if t2 ∈ (t1

2 + δ
2 , t1

2 + δ],

1 if t2 ∈ (t1
2 + δ, t2

2 – δ],

1 – 2(1 – t2
2 –t2
δ

)2 if t2 ∈ (t2
2 – δ, t2

2 – δ
2 ],

2( t2
2 –t2
δ

)2 if t2 ∈ (t2
2 – δ

2 , t2
2],

respectively (see [25]), where t1
1 , t2

1 ∈ (0, W ) and t1
2 , t2

2 ∈ (0, w) satisfying that t1
1 < t2

1 , t1
2 < t2

2 ,

d
(
0, t1

1
)

= d
(
0, t1

2
)

= d
(
L, t2

1
)

= d
(
l, t2

2
)

= ε0

and δ is a positive real number.
We have

h
(
t1
1
)

= h
(
t2
1
)

= g
(
t1
2
)

= g
(
t2
2
)

= 0,

h ∈ C2([t1
1 , t2

1
])

, g ∈ C2([t1
2 , t2

2
])

,

and h, g ≥ 0.
If we set

ε0ג =
(
t1
1 , t2

1
) × (

t1
2 , t2

2
)
,

then we see that hg2 ∈ C2(1,2ג) and hg2 ≥ 0.
Let us extend hg2 outside ε0ג by 0 and still denote by hg2 this function. We obtain

0 =
∫

ε0ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε
hg2 dt

+ 2
∫

ε0ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε
t2hgg′ dt

:= N 1
δ + N 2

δ (52)

by choosing ς = hg2 as a test function in (51).
We have

lim
δ→0

N 1
δ =

∫

ε0ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε

dt (53)
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and

∣∣N 2
δ

∣∣ = 2
∣
∣∣
∣

∫ t2
1

t1
1

∫ t1
2 +δ

t1
2

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε
t2hgg′ dt

+
∫ t2

1

t1
1

∫ t2
2

t2
2 –δ

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε
t2hgg′ dt

∣∣∣
∣

≤ C
{∫ t2

1

t1
1

∫ t1
2 +δ

t1
2

(
(ω1 – ω2)(·, s)

)+
ε
g
∣
∣g ′∣∣dt

+
∫ t2

1

t1
1

∫ t2
2

t2
2 –δ

(
(ω1 – ω2)(·, s)

)+
ε
g
∣
∣g ′∣∣dt

}

:= C
(
N 2,1

δ + N 2,2
δ

)
, (54)

where

C = sup
(t1,t2)∈ג

(
χ (t1)t2h(t1)

)
.

Since the function

t2 
→
(∫ t2

1

t1
1

(
(ω1 – ω2)(·, s)

)+
ε

dt1

)
g

is right-continuous and vanishes at t1
2 , uniformly bounded independently of δ and |g ′| ∼ 1

δ
,

we know that

lim
δ→0

N 2,1
δ = 0. (55)

Similarly

lim
δ→0

N 2,2
δ = 0. (56)

It follows from (55)–(56) that

lim
δ→0

N 2
δ = 0 (57)

by letting δ → 0 in (54).
Similarly, it follows from (53) and (57) that

∫

ε0ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+
ε

dt = 0 (58)

by passing to the limit as δ → 0 in (52), where t ∈ [0, M].
Finally, it follows that

∫

ε0ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+ dt = 0

by letting ε → 0 in (58), where t ∈ [0, M].
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So
∫

ג

χ (t1)
(
(ω1 – ω2)(·, s)

)+ dt = 0,

where t ∈ [0, M], which yields

χ (t1)
(
(ω1 – ω2)(·, s)

)+ = 0 a.e. in ג

for all t ∈ [0, M].
Thanks to (2), we deduce that

(
(ω1 – ω2)(·, s)

)+ = 0 a.e. in ג

for all t ∈ [0, M] (see [32]).
So

ω1 ≤ ω2 a.e. in P.

By exchanging the roles of ω1 and ω2, we obtain

ω2 ≤ ω1 a.e. in P.

We conclude that

ω2 = ω1 a.e. in P.

Hence, (14) holds. If we combine (13) and (14), we see that the solution of problem (1)
associated with the initial data ω0 is unique. �

4 Examples
In this section, two boundary value problems involving nonlocal integral boundary con-
ditions will be tested by using the present method.

Example 4.1 Consider the boundary value problem

(cD5/2 + 3cD3/2 + 2cD1/2)x(t) =
A√

t2 + 49

(
cos x + tan–1 t

)
, 0 < t < 1, (59)

x(0) = 0, x(1/3) = 0, x(1) =
∫ 1/5

0
x(s) ds. (60)

Here, δ = 1/2, σ = 3/5, ξ = 1/3, p2 = 1, p1 = 3, p0 = 2, λ = 1, A is a positive constant and

f (t, x) =
A√

t2 + 49

(
cos x + tan–1 t

)
.

Clearly the constants p2, p1, and p0 satisfy the condition of Lemma 2.1, and

∣∣f (t, x) – f (t, y)
∣∣ ≤ A|x – y|/7,
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where � = A/7. Using the given values, we find α ≈ 0.44269 and α1 ≈ 0.21725, It is easy to
check that

∣
∣f (t, x)

∣
∣ ≤ A(2 + π )

2
√

t2 + 49
= θ (t)

and �α1 < 1 when A < 32.22094. As all the conditions of Theorem 3.1 are satisfied the
problem (59)–(60) has at least one solution on [0, 1]. On the other hand, �α < 1 whenever
A < 15.81242 and thus there exists a unique solution for the problem (59)–(60) on [0, 1]
by Theorem 3.1.

Example 4.2 Consider the boundary value problem

(cD5/2 + 3cD3/2 + 2cD1/2)x(t) =
1

4π
sin (2πx) +

|x|2
1 + |x|2 , 0 < t < 1, (61)

x(0) = 0, x(1/3) = 0, x(1) =
∫ 1/5

0
x(s) ds. (62)

Here, δ = 1/2, σ = 3/5, ξ = 1/3, p2
1 – 4p2p0 = 1 > 0, λ = 1, and

f (t, x) =
1

4π
sin (2πx) +

|x|2
1 + |x|2 .

Clearly

∣∣f (t, x)
∣∣ ≤

∣
∣∣
∣

1
4π

sin (2πx) +
|x|2

1 + |x|2
∣
∣∣
∣ ≤ 1

2
‖x‖ + 1,

where g(t) = 1, ψ(‖x‖) = 1
2‖x‖ + 1.

Then, by using the condition (A4), we find that K > 0.56853 (we have used α = 0.44269).
Thus, the conclusion of Theorem 3.1 applies to problem (61)–(62).

5 Conclusion
This paper was devoted to modifying the Schrödinger-type identity related to the sin-
gular boundary value problem. We also presented some mathematical consequences of
the method including a stability result. The main technical tools used to develop the
mathematical analysis are local and global bifurcation, monotonicity techniques, fixed
point theory in b-metric spaces and the maximum principle approach with respect to the
Schrödinger operator. As an application, the uniqueness of solutions for singular bound-
ary value problem for the Schrödinger equation was proved.
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