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Abstract
In this paper, we are concerned with the inverse spectral problems for differential
pencils defined on [0,π ] with an interior discontinuity. We prove that two potential
functions are determined uniquely by one spectrum and a set of values of
eigenfunctions at some interior point b ∈ (0,π ) in the situation of b = π /2 and
b �= π /2. For the latter, we need the knowledge of a part of the second spectrum.
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1 Introduction
We consider the quadratic pencils of Sturm–Liouville operator L(p, q; h, H ; a) of the form

Ly := –y′′ +
[
2λp(x) + q(x)

]
y = λ2y, x ∈ [0,π/2) ∪ (π/2,π ], (1.1)

with the boundary conditions

⎧
⎨

⎩
y′(0) – hy(0) = 0,

y′(π ) + Hy(π ) = 0,
(1.2)

and with the discontinuous conditions
⎧
⎨

⎩
y(π/2 + 0) = ay(π/2 – 0),

y′(π/2 + 0) = a–1y′(π/2 – 0),
(1.3)

where λ is the spectral parameter, p(x) ∈ W 1
2 [0,π ], q(x) ∈ L2(0,π ) are real-valued func-

tions, h, H ∈R, and a ∈ R
+/{1}.

Differential equations with potentials depending nonlinearly on the spectral parameter
appear frequently in various models of classical mechanics and quantum (see [5–7, 11, 18,
22] and the references therein). For instance, the evolution equations which are used to
model interactions between colliding relativistic spineless particles can be reduced to the
form (1.1), here the parameter λ2 can be regarded as the energy of this system (see [5, 11,
18]).
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Boundary value problems with discontinuity inside the interval often appear in mathe-
matics, physics, geophysics, mechanics, and other branches of natural properties (see [1,
3, 4, 8, 10, 13–17, 20] and the references therein). The well-known work [4] is the first re-
sult about discontinuous inverse eigenvalue problems for the Sturm–Liouville problems,
i.e., p(x) ≡ 0 in (1.1). Direct and inverse problems for differential pencils with impulse on
a finite interval have been investigated in [2].

Inverse spectral problems consist in recovering operators from their spectral character-
istics. The interior spectral data used for reconstructing the differential operators contains
the known eigenvalues and some information on eigenfunctions at some interior point in
the defined interval. The similar problems for the Sturm–Liouville operators and differ-
ential pencils were considered in [12, 19, 21].

The aim of this paper is to recover the pencils L(p, q; h, H ; a) uniquely from some eigen-
values and information on eigenfunctions at the interior point b ∈ (0,π ). As far as we
know, the inverse problem for interior spectra data of quadratic pencils with impulse has
not been considered before. Note that the obtained results here are new and they are a
generalization of the well-known one for the classical Sturm–Liouville operator, which
was studied in [12], for a special case that p(x) ≡ 0 and a = 1. The results in this paper are
also a generalization of theorems in [21], where the authors considered the special case
that a = 1 and assumed either p(x) or q(x) is known a priori, which is unnecessary. The
technique we used is similar to those used in [12, 19, 21].

2 Main results
It is known [2] that the spectrum of the pencils L(p, q; h, H ; a) consists of simple, real eigen-
values λn, n ∈ Z under the additional assumption that

∫ π

0

{∣∣y′(x)
∣∣2 + q(x)

∣∣y(x)
∣∣2}dx > 0

for all y(x) ∈ W 2
2 [0,π/2) ∪ (π/2,π ] such that y(x) �= 0 and y′(0)y(0) – y′(π )y(π ) = 0. The

sequence {λn}∞–∞ satisfies the classical asymptotic form [2]

λn = n +
ω

π
+ O

(
1
n

)
, |n| → ∞, (2.1)

where

ω =
∫ π

0
p(t) dt + (–1)n arcsin A,

A =
a – a–1

a + a–1 sin

(∫ π

π/2
p(t) dt

)
.

Denote by yn(x) the eigenfunction corresponding to the eigenvalue λn. Together with
L(p, q; h, H ; a), let us consider another differential pencil L̃(p̃, q̃; h̃, H̃ ; a) of the same form
but with different coefficients (p̃(x), q̃(x); h̃, H̃). It is assumed in what follows that if a certain
symbol δ denotes an object related to L, then δ̃ will denote an analogous object related to L̃.

The main results of this paper are as follows.
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Theorem 2.1 If, for any n ∈ Z,

λn = λ̃n,
y′(π/2 – 0,λn)
y(π/2 – 0,λn)

=
ỹ′(π/2 – 0,λn)
ỹ(π/2 – 0,λn)

, (2.2)

then p(x) = p̃(x) on [0,π ], q(x) = q̃(x) a.e. on [0,π ], and h = h̃, H = H̃ .

Remark 2.2 Note that if y(x) and z(x) are two continuously differentiable functions on
[0,π/2) ∪ (π/2,π ] and satisfy the same discontinuous condition (1.3), then a direct calcu-
lation yields that

(
y′z – yz′)(π/2 – 0) =

(
y′z – yz′)(π/2 + 0).

Thus, we can replace the condition y′(π/2 – 0,λn)/y(π/2 – 0,λn) = ỹ′(π/2 – 0,λn)/ỹ(π/2 –
0,λn) by y′(π/2 + 0,λn)/y(π/2 + 0,λn) = ỹ′(π/2 + 0,λn)/ỹ(π/2 + 0,λn) in Theorem 2.1.

For the case b �= π/2, the uniqueness of (p, q; h, H) can be obtained from a part of the
second spectrum. We denote by μn the eigenvalues of the pencils L(p, q; h, H1; a), H1 �= H ,
H1 ∈R. Let l(n), r(n) be sequences of integers with the properties

l(n) =
n
σ1

(1 + ε1,n), 0 < σ1 ≤ 1, ε1,n → 0, (2.3)

r(n) =
n
σ2

(1 + ε2,n), 0 < σ2 ≤ 1, ε2,n → 0. (2.4)

Theorem 2.3 Let l(n), r(n), and b ∈ (π/2,π ) be such that

σ1 >
2b
π

– 1, σ2 > 2 –
2b
π

. (2.5)

If, for any n ∈ Z,

λn = λ̃n, μl(n) = μ̃l(n),
y′(b,λr(n))
y(b,λr(n))

=
ỹ′(b,λr(n))
ỹ(b,λr(n))

, (2.6)

then p(x) = p̃(x) on [0,π ], q(x) = q̃(x) a.e. on [0,π ], and h = h̃, H = H̃ .

3 Preliminaries
We shall first mention some results which will be needed later.

Let the function ϕ(x,λ) be the solution of equation (1.1) with the initial-valued condi-
tions

ϕ(0,λ) = 1, ϕ′(0,λ) = h, (3.1)

and the discontinuity conditions (1.3). It is shown in [2] that there exist functions A(x, t)
and B(x, t) whose first order partial derivatives are summable on [0,π ] for each x ∈ [0,π ]
such that

ϕ(x,λ) = ϕ0(x,λ) +
∫ x

0
A(x, t) cosλt dt +

∫ x

0
B(x, t) sinλt dt, (3.2)



Guo et al. Boundary Value Problems        (2019) 2019:151 Page 4 of 21

where

ϕ0(x,λ) =

⎧
⎨

⎩
cos(λx – β+(x)), x ∈ (0, π

2 ),

α+ cos(λx – β+(x)) + α– cos(λ(π – x) + β–(x)), x ∈ ( π
2 ,π ),

(3.3)

and

α± =
1
2
(
a ± a–1), β+(x) =

∫ x

0
p(t) dt, β–(x) =

∫ x

π/2
p(t) dt. (3.4)

It follows from (3.2) and (3.3) that the characteristic function of the pencil L(p, q; h, H ; a)
can be reduced to �(λ), where

�(λ) = ϕ′(π ,λ) + Hϕ(π ,λ)

= λ
[
α– sin

(
β–(π )

)
– α+ sin

(
λπ – β+(π )

)]
+ O

(
e| Imλ|π)

. (3.5)

Denote by Gδ = {λ : |λ – n – ω/π | ≥ δ, n ∈ Z} with fixed δ > 0. Then there exists a constant
Cδ > 0 such that

∣
∣�(λ)

∣
∣ ≥ Cδ|λ| exp

(| Imλ|π)
for λ ∈ Gδ . (3.6)

Moreover, for the solutions ϕ(x,λ) and ϕ̃(x,λ) of the operators L and L̃, respectively, using
(3.2)–(3.4), and by extending the range of A(x, t), Ã(x, t) evenly with respect to the argu-
ment t and B(x, t), B̃(x, t) oddly with respect to the argument t, and by some straightfor-
ward calculations, we infer that there exist functions R1(x, t) and R2(x, t) whose first order
partial derivatives are summable on [0,π ] for each x ∈ [0,π ] such that, for 0 < x < π/2,

ϕ(x,λ)ϕ̃(x,λ) =
1
2
[
cos

(
2λx – θ+

1 (x)
)

+ cos
(
θ–

1 (x)
)]

+
∫ x

0

[
R1(x, t)e2iλt + R2(x, t)e–2iλt]dt, (3.7)

and for π/2 < x < π ,

ϕ(x,λ)ϕ̃(x,λ) =
(α+)2

2
[
cos

(
2λx – θ+

1 (x)
)

+ cos
(
θ–

1 (x)
)]

+
(α–)2

2
[
cos

(
2λ(π – x) + θ+

2 (x)
)

+ cos
(
θ–

2 (x)
)]

+
α+α–

2
[
cos

(
λ(2x – π ) – β+(x) – β̃–(x)

)
+ cos

(
λπ – β+(x) + β̃–(x)

)]

+
α+α–

2
[
cos

(
λ(2x – π ) – β–(x) – β̃+(x)

)
+ cos

(
λπ + β–(x) – β̃+(x)

)]

+
∫ x

0

[
R1(x, t)e2iλt + R2(x, t)e–2iλt]dt, (3.8)

where

θ±
1 (x) = β+(x) ± β̃+(x), θ±

2 (x) = β–(x) ± β̃–(x). (3.9)
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4 Proof of Theorem 2.1
In this section, we give the proof of Theorem 2.1.

Proof of Theorem 2.1 Let ϕ(x,λ) be the solution of equation (1.1) satisfying the initial-
valued conditions (3.1) and the discontinuity conditions (1.3). Let ϕ̃(x,λ) be the solution
of the equation

–ϕ̃′′(x,λ) +
[
2λp̃(x) + q̃(x)

]
ϕ̃(x,λ) = λ2ϕ̃(x,λ) (4.1)

with the initial-valued conditions

ϕ̃(0,λ) = 1, ϕ̃′(0,λ) = h̃ (4.2)

and the discontinuity conditions (1.3). Multiplying (1.1) by ϕ̃(x,λ) and (4.1) by ϕ(x,λ),
respectively, and subtracting, we get

d
dx

[
ϕ̃(x,λ)ϕ′(x,λ) – ϕ̃′(x,λ)ϕ(x,λ)

]
=

[
2λ(p – p̃)(x) + (q – q̃)(x)

]
ϕ(x,λ)ϕ̃(x,λ). (4.3)

Integrating the above equality from 0 to π/2 with respect to x, using the initial conditions
at x = 0, we have

∫ π/2

0

[
2λ(p – p̃) + (q – q̃)

]
(ϕϕ̃)(x,λ) dx + (h – h̃)

= ϕ̃

(
π

2
– 0,λ

)
ϕ′

(
π

2
– 0,λ

)
– ϕ̃′

(
π

2
– 0,λ

)
ϕ

(
π

2
– 0,λ

)
.

Denote

P(x) = p(x) – p̃(x), Q(x) = q(x) – q̃(x)

and

H(λ) = h – h̃ + 2λ

∫ π/2

0
P(x)(ϕϕ̃)(x,λ) dx +

∫ π/2

0
Q(x)(ϕϕ̃)(x,λ) dx. (4.4)

It follows from (3.2)–(3.3) and (3.7) that H(λ) is an entire function of exponential type,
and there are some positive constants C1 and C2 such that

∣∣H(λ)
∣∣ ≤ (

C1 + C2|λ|) exp
(| Imλ|π)

for all λ ∈C. (4.5)

From assumption (2.2) we have

ϕ̃

(
π

2
– 0,λn

)
ϕ′

(
π

2
– 0,λn

)
– ϕ̃′

(
π

2
– 0,λn

)
ϕ

(
π

2
– 0,λn

)
= 0,

which means

H(λn) = 0, n ∈ Z. (4.6)
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Define

W (λ) =
H(λ)
�(λ)

, (4.7)

which is an entire function from the above arguments, and it follows from (3.6) and (4.5)
that

W (λ) = O(1)

for sufficiently large |λ|, λ ∈ Gδ . Thus, by Liouville’s theorem [9], we obtain for all λ ∈ C

that

W (λ) = C,

where C is a constant, this together with (4.7) further gives that

H(λ) = C�(λ) for all λ ∈C. (4.8)

Let us show that the constant C = 0. Based on (4.7) and (3.5), we can rewrite the equation
H(λ) = C�(λ) in the form

h – h̃ + 2λ

∫ π/2

0
P(x)(ϕϕ̃)(x,λ) dx +

∫ π/2

0
Q(x)(ϕϕ̃)(x,λ) dx

= Cλ
[
α– sin

(
β–(π )

)
– α+ sin

(
λπ – β+(π )

)]
+ O

(
e| Imλ|π)

,

that is,

h – h̃
λ

+ 2
∫ π/2

0
P(x)(ϕϕ̃)(x,λ) dx +

∫ π/2

0

Q(x)
λ

(ϕϕ̃)(x,λ) dx

= C
[
α– sin

(
β–(π )

)
– α+ sin

(
λπ – β+(π )

)]
+ O

(
e| Imλ|π

λ

)
.

By use of Riemann–Lebesgue lemma [9], we see that the limit of the left-hand side of the
above equality exists as λ → ∞, λ ∈ R. Thus we obtain that C = 0. So we have from (4.8)
that

H(λ) = 0 for all λ ∈C. (4.9)

Substituting (3.7) into (4.4), we get

H(λ) = h – h̃ + 2λ

∫ π/2

0
P(x)(ϕϕ̃)(x,λ) dx +

∫ π/2

0
Q(x)(ϕϕ̃)(x,λ) dx

= h – h̃ +
1
2

∫ π/2

0
Q(x)

[
cos

(
2λx – θ+

1 (x)
)

+ cos
(
θ–

1 (x)
)]

dx

+
∫ π/2

0
Q(x)

∫ x

0

[
R1(x, t)e2iλt + R2(x, t)e–2iλt]dt dx
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+ λ

∫ π/2

0
P(x)

[
cos

(
2λx – θ+

1 (x)
)

+ cos
(
θ–

1 (x)
)]

dx

+ 2λ

∫ π/2

0
P(x)

∫ x

0

[
R1(x, t)e2iλt + R2(x, t)e–2iλt]dt dx

= h – h̃ +
1
2

∫ π/2

0
Q(x) cos

(
θ–

1 (x)
)

dx + λ

∫ π/2

0
P(x) cos

(
θ–

1 (x)
)

dx

+
1
2

∫ π/2

0
Q1(t)e2iλt dt +

1
2

∫ π/2

0
Q2(t)e–2iλt dt

+ λ

∫ π/2

0
P1(t)e2iλt dt + λ

∫ π/2

0
P2(t)e–2iλt dt,

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Q1(t) = 1
2 Q(t)e–iθ+

1 (t) + 2
∫ π/2

t Q(x)R1(x, t) dx,

Q2(t) = 1
2 Q(t)eiθ+

1 (t) + 2
∫ π/2

t Q(x)R2(x, t) dx,

P1(t) = 1
2 P(t)e–iθ+

1 (t) + 2
∫ π/2

t P(x)R1(x, t) dx,

P2(t) = 1
2 P(t)eiθ+

1 (t) + 2
∫ π/2

t P(x)R2(x, t) dx.

(4.10)

Moreover, by use of the Riemann–Lebesgue lemma as λ → ∞, λ ∈ R, we obtain from the
fact H(λ) ≡ 0 that

∫ π/2

0
P(x) cos

(
θ–

1 (x)
)

dx = 0.

Thus, the function H(λ) can be reduced as

H(λ) = h – h̃ +
1
2

∫ π/2

0
Q(x) cos

(
θ–

1 (x)
)

dx

+
1
2

∫ π/2

0
Q1(t)e2iλt dt +

1
2

∫ π/2

0
Q2(t)e–2iλt dt

+ λ

∫ π/2

0
P1(t)e2iλt dt + λ

∫ π/2

0
P2(t)e–2iλt dt. (4.11)

Integrating by parts in (4.11), we have from (4.10) that

H(λ) = h – h̃ +
1
2

∫ π/2

0
Q(x) cos

(
θ–

1 (x)
)

dx

+
1
2

∫ π/2

0
Q1(t)e2iλt dt +

1
2

∫ π/2

0
Q2(t)e–2iλt dt

+
1
2

P
(

π

2

)
sin

(
λπ – θ+

1

(
π

2

))
+

i
2
(
P1(0) – P2(0)

)

+
i
2

∫ π/2

0
P′

1(t)e2iλt dt –
i
2

∫ π/2

0
P′

2(t)e–2iλt dt.
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Again, by use of the Riemann–Lebesgue lemma as λ → ∞, λ ∈R, we obtain from the fact
H(λ) ≡ 0 that

P
(

π

2

)
= 0, (4.12)

h – h̃ +
1
2

∫ π/2

0
Q(x) cos

(
θ–

1 (x)
)

dx +
i
2
(
P1(0) – P2(0)

)
= 0, (4.13)

and

∫ π/2

0

[
Q1(t) + iP′

1(t)
]
e2iλt dt +

∫ π/2

0

[
Q2(t) – iP′

2(t)
]
e–2iλt dt = 0. (4.14)

Because the exponential system {(e2iλt , e–2iλt)T : λ ∈ R} is complete in (L2(0,π/2))2, conse-
quently,

Q1(t) + iP′
1(t) = 0 = Q2(t) – iP′

2(t) for t ∈ (0,π/2). (4.15)

Substituting (4.10) into (4.15), together with (4.12), we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(t)e–iθ+
1 (t) + [(θ+

1 (t))′e–iθ+
1 (t) – 4iR1(t, t)]P(t) + ie–iθ+

1 (t)P′(t)

+ 4
∫ π/2

t Q(x)R1(x, t) dx + 4i
∫ π/2

t P(x) ∂
∂t R1(x, t) dx = 0,

Q(t)eiθ+
1 (t) + [(θ+

1 (t))′eiθ+
1 (t) + 4iR2(t, t)]P(t) – ieiθ+

1 (t)P′(t)

+ 4
∫ π/2

t Q(x)R2(x, t) dx – 4i
∫ π/2

t P(x) ∂
∂t R2(x, t) dx = 0,

P(t) +
∫ π/2

t P′(x) dx = 0.

(4.16)

Define

F(t) =
(
Q(t), P(t), P′(t)

)T ,

K1(t) =

⎛

⎜
⎝

e–iθ+
1 (t) (θ+

1 (t))′e–iθ+
1 (t) – 4iR1(t, t) ie–iθ+

1 (t)

eiθ+
1 (t) (θ+

1 (t))′eiθ+
1 (t) + 4iR2(t, t) –ieiθ+

1 (t)

0 1 0

⎞

⎟
⎠ ,

and

K2(x, t) =

⎛

⎜
⎝

4R1(x, t) 4i ∂
∂t R1(x, t) 0

4R2(x, t) –4i ∂
∂t R2(x, t) 0

0 0 1

⎞

⎟
⎠ .

Equation (4.16) can readily be reduced to a vector form

K1(t)F(t) +
∫ π/2

t
K2(x, t)F(x) dx = 0 for t ∈ (0,π/2). (4.17)

Because det K1(t) = 2i �= 0, (4.17) can be rewritten as

F(t) +
∫ π/2

t
K–1

1 (t)K2(x, t)F(x) dx = 0 for t ∈ (0,π/2).
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This is a homogeneous Volterra integral equation and the kernel function is K–1
1 (t)K2(x, t),

its solution is identically zero. Thus, we have

F(t) = 0 a.e. on [0,π/2],

which yields that

Q(t) = 0 = P(t) a.e. on [0,π/2].

Therefore, we obtain

p(x) = p̃(x) on [0,π/2], q(x) = q̃(x) a.e. on [0,π/2].

Moreover, from (4.10) and (4.13), it is obvious that

h = h̃.

To prove that

p(x) = p̃(x) on [π/2,π ], q(x) = q̃(x) a.e. on [π/2,π ], H = H̃ , (4.18)

we should repeat the earlier argument for the supplementary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–y′′ + [2λp1(x) + q1(x)]y = λ2y, x ∈ [0,π/2) ∪ (π/2,π ],

y′(0) – Hy(0) = 0,

y′(π ) + hy(π ) = 0,

y(π/2 + 0) = a–1y(π/2 – 0),

y′(π/2 + 0) = ay′(π/2 – 0),

where q1(x) = q(π – x) and p1(x) = p(π – x). Thus, we obtain Q(π – t) = 0 = P(π – t) a.e. on
[0,π/2], and H = H̃ , that is, (4.18) holds. The proof is complete. �

5 Proof of Theorem 2.3
To prove Theorem 2.3, we need the following lemma.

Lemma 5.1 Let m(n) be a sequence of integers such that

m(n) =
n
σ

(1 + εn), 0 < σ ≤ 1, εn → 0. (5.1)

(i) Let b ∈ (0,π/2) satisfy σ > 2b/π . If, for any n ∈ Z,

λm(n) = λ̃m(n),
y′(b,λm(n))
y(b,λm(n))

=
ỹ′(b,λm(n))
ỹ(b,λm(n))

, (5.2)

then p(x) = p̃(x) on [0, b], q(x) = q̃(x) a.e. on [0, b], and h = h̃.
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(ii) Let b ∈ (π/2,π ) satisfy σ > 2 – 2b/π . If, for any n ∈ Z,

λm(n) = λ̃m(n),
y′(b,λm(n))
y(b,λm(n))

=
ỹ′(b,λm(n))
ỹ(b,λm(n))

, (5.3)

then p(x) = p̃(x) on [b,π ], q(x) = q̃(x) a.e. on [b,π ], and H = H̃ .

Proof (i) Integrating equation (4.3) from 0 to b with respect to x, using the initial condi-
tions at x = 0, we obtain

∫ b

0

[
2λ(p – p̃) + (q – q̃)

]
(ϕϕ̃)(x,λ) dx + (h – h̃) = ϕ̃(b,λ)ϕ′(b,λ) – ϕ̃′(b,λ)ϕ(b,λ).

Define

H1(λ) = h – h̃ + 2λ

∫ b

0
(p – p̃)(x)(ϕϕ̃)(x,λ) dx +

∫ b

0
(q – q̃)(x)(ϕϕ̃)(x,λ) dx. (5.4)

From assumption (5.2) we have

ϕ̃(b,λm(n))ϕ′(b,λm(n)) – ϕ̃′(b,λm(n))ϕ(b,λm(n)) = 0,

which means

H1(λm(n)) = 0, n ∈ Z. (5.5)

Next, we shall show that H1(λ) ≡ 0 on the whole λ-plane. From (5.4) and (3.7) one has

∣
∣H1(λ)

∣
∣ ≤ (C1 + C2r)e2br| sin θ | (5.6)

for some positive constants C1 and C2, where λ = reiθ . Moreover, we see that the entire
function H1(λ) is a function of exponential type ≤ 2b. Define the indicator of function
H1(λ) by

h(θ ) = lim sup
r→∞

ln |H1(reiθ )|
r

. (5.7)

One obtains the following estimate from (5.6) and (5.7):

h(θ ) ≤ 2b| sin θ |.

Let us denote by n(r) the number of zeros of H1(λ) in the disk |λ| ≤ r. From equation
(5.5), the assumption of this lemma, and the known asymptotic expression (2.1) of the
eigenvalues λn, we have the following estimate for the number of zeros of H1(λ) in the
disk |λ| ≤ r:

n(r) = 1 + 2
[
σ r

(
1 + ε(r)

)]
= 2σ r

(
1 + ε(r)

)
.
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Here ε(r) → 0 for r → ∞ and [x] is the integer part of x. It follows that in the case under
consideration

lim
r→∞

n(r)
r

= 2σ >
4b
π

=
b
π

∫ 2π

0
| sin θ |dθ ≥ 1

2π

∫ 2π

0
h(θ ) dθ . (5.8)

To complete the proof, we have to recall the following theorem [9, p. 173]: The set of zeros
of every entire function of the exponential type, not identically zero, satisfy the inequality

lim inf
r→∞

n(r)
r

≤ 1
2π

∫ 2π

0
h(θ ) dθ . (5.9)

Inequalities (5.8) and (5.9) imply that H1(λ) ≡ 0 on the whole λ-plane. As already men-
tioned, if H1(λ) ≡ 0, then repeating the last part of the proof of Theorem 2.1 (from (4.9)
to (4.18)), we have that the conclusion of this lemma is true.

(ii) To prove that

p(x) = p̃(x) on [b,π ], q(x) = q̃(x) a.e. on [b,π ], H = H̃ ,

we will consider the supplementary problem L̂
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–y′′ + [2λp1(x) + q1(x)]y = λ2y, x ∈ [0,π/2) ∪ (π/2,π ],

y′(0) – Hy(0) = 0,

y′(π ) + hy(π ) = 0,

y(π/2 + 0) = a–1y(π/2 – 0),

y′(π/2 + 0) = ay′(π/2 – 0),

where q1(x) = q(π – x) and p1(x) = p(π – x). A direct calculation implies that ŷn(x) := yn(π –
x) is the solution to the supplementary problem L̂ and ŷn(π – b) = yn(b). Note that π – b ∈
(0,π/2). Thus, the assumption conditions for L̂ in case (i) are still satisfied. Repeating the
above arguments, we can obtain the proof of this lemma. �

Now we can give the proof of Theorem 2.3.

Proof of Theorem 2.3 Firstly, let us note that based on the condition

λr(n) = λ̃r(n),
ϕ′(b,λr(n))
ϕ(b,λr(n))

=
ϕ̃′(b,λr(n))
ϕ̃(b,λr(n))

, (5.10)

it follows from Lemma 5.1 that p(x) = p̃(x) on [b,π ], q(x) = q̃(x) a.e. on [b,π ], and H = H̃ .
Thus it needs to be proved that p(x) = p̃(x) on [0, b], q(x) = q̃(x) a.e. on [0, b], and h = h̃.

For the case of b ∈ (π/2,π ), integrating equation (4.3) from 0 to b with respect to x, using
the initial conditions at x = 0, we obtain

H2(λ) := (h – h̃) +
∫ b

0

[
2λ(p – p̃) + (q – q̃)

]
(ϕϕ̃)(x,λ) dx

= ϕ̃(b,λ)ϕ′(b,λ) – ϕ̃′(b,λ)ϕ(b,λ)

+
[
ϕ̃(x,λ)ϕ′(x,λ) – ϕ̃′(x,λ)ϕ(x,λ)

]∣∣π/2–0
π/2+0. (5.11)

We will finish the remainder of the proof by the following three steps.
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Step 1: To prove that H2(λ) ≡ 0 for λ ∈ C. Since H = H̃ , we get that the eigenfunctions
ϕ(x,λn) and ϕ̃(x,λn) satisfy the same boundary condition at x = π , we have from the con-
clusion of p(x) = p̃(x) on [b,π ], q(x) = q̃(x) a.e. on [b,π ] that

ϕ(x,λn) = γnϕ̃(x,λn) on [b,π ], n ∈ Z, (5.12)

where γn are constants. Since the functions ϕ(x,λn) and ϕ̃(x,λn) satisfy the same discon-
tinuous conditions at x = π/2 (see (1.3)), we infer by a direct calculation that

[
ϕ̃ϕ′ – ϕ̃′ϕ

]
(π/2 + 0,λn) =

[
ϕ̃ϕ′ – ϕ̃′ϕ

]
(π/2 – 0,λn).

Hence we obtain from (5.11) and (5.12) that

H2(λn) = 0, n ∈ Z. (5.13)

Moreover, for the same reason, we also obtain that H2(μl(n)) = 0, n ∈ Z. According to the
asymptotic expression for eigenvalues λn and μn, see (2.1), counting the number of λn and
μn located inside the disc of radius r, we obtain 1 + 2[r + O(1)] of λ′

ns and 1 + 2[σ1r + O(1)]
of μ′

ns. Hence the total number of λ′
ns and μ′

ns in the disc is

n(r) = 2 + 2
[
r(σ1 + 1) + O(1)

]

and

lim
r→∞

n(r)
r

= 2(σ1 + 1). (5.14)

Repeating the last part of the proof of (i) of Lemma 5.1, with the help of the condition
σ1 > 2b/π – 1, we have that inequality (5.9) does not hold, which means H2(λ) ≡ 0 on the
whole λ-plane.

Step 2: To obtain the integral equation (5.30). We have from (3.7), (3.8), and (5.11)

H2(λ) = (h – h̃) + 2λ

∫ b

0
P(x)(ϕϕ̃)(x,λ) dx +

∫ b

0
Q(x)(ϕϕ̃)(x,λ) dx

= h – h̃ +
1
2

∫ π/2

0
Q(x) cos

(
θ–

1 (x)
)

dx +
(α+)2

2

∫ b

π/2
Q(x) cos

(
θ–

1 (x)
)

dx

+
(α–)2

2

∫ b

π/2
Q(x) cos

(
θ–

2 (x)
)

dx + λ
(
α–)2

∫ b

π/2
P(x) cos

(
θ–

2 (x)
)

dx

+
α+α–

2

∫ b

π/2
Q(x)

[
cos

(
λπ – β+(x) + β̃–(x)

)
+ cos

(
λπ – β̃+(x) + β–(x)

)]
dx

+ λ

∫ π/2

0
P(x) cos

(
θ–

1 (x)
)

dx + λ
(
α+)2

∫ b

π/2
P(x) cos

(
θ–

1 (x)
)

dx

+ λα+α–
∫ b

π/2
P(x)

[
cos

(
λπ – β+(x) + β̃–(x)

)
+ cos

(
λπ – β̃+(x) + β–(x)

)]
dx

+
∫ π/2

0

[
f1(x)e2iλx + f2(x)e–2iλx]dx
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+
(
α+)2

∫ b

π/2

[
f1(x)e2iλx + f2(x)e–2iλx]dx

+
∫ b

π/2

[
f3(x)e2iλ(π–x) + f4(x)e–2iλ(π–x)]dx

+
∫ b

π/2

[(
f5(x) + f7(x)

)
e2iλ(x–π/2) +

(
f6(x) + f8(x)

)
e–2iλ(x–π/2)]dx

+
∫ b

0
e2iλt

∫ b

t
Q(x)R1(x, t) dx dt +

∫ b

0
e–2iλt

∫ b

t
Q(x)R2(x, t) dx dt

+ 2λ

∫ π/2

0

[
g1(x)e2iλx + g2(x)e–2iλx]dx

+ 2λ
(
α+)2

∫ b

π/2

[
g1(x)e2iλx + g2(x)e–2iλx]dx

+ 2λ

∫ b

π/2

[
g3(x)e2iλ(π–x) + g4(x)e–2iλ(π–x)]dx

+ 2λ

∫ b

π/2

[(
g5(x) + g7(x)

)
e2iλ(x–π/2) +

(
g6(x) + g8(x)

)
e–2iλ(x–π/2)]dx

+ 2λ

∫ b

0
e2iλt

∫ b

t
P(x)R1(x, t) dx dt + 2λ

∫ b

0
e–2iλt

∫ b

t
P(x)R2(x, t) dx dt,

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) = Q(x)
4 e–iθ+

1 (x),

f2(x) = Q(x)
4 eiθ+

1 (x),

f3(x) = (α–)2

4 Q(x)eiθ+
2 (x),

f4(x) = (α–)2

4 Q(x)e–iθ+
2 (x),

f5(x) = α+α–

4 Q(x)e–i(β+(x)+β̃–(x)),

f6(x) = α+α–

4 Q(x)ei(β+(x)+β̃–(x)),

f7(x) = α+α–

4 Q(x)e–i(β̃+(x)+β–(x)),

f8(x) = α+α–

4 Q(x)ei(β̃+(x)+β–(x));

(5.15)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

g1(x) = P(x)
4 e–iθ+

1 (x),

g2(x) = P(x)
4 eiθ+

1 (x),

g3(x) = (α–)2

4 P(x)eiθ+
2 (x),

g4(x) = (α–)2

4 P(x)e–iθ+
2 (x),

g5(x) = α+α–

4 P(x)e–i(β+(x)+β̃–(x)),

g6(x) = α+α–

4 P(x)ei(β+(x)+β̃–(x)),

g7(x) = α+α–

4 P(x)e–i(β̃+(x)+β–(x)),

g8(x) = α+α–

4 P(x)ei(β̃+(x)+β–(x)).

(5.16)
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Moreover, from H2(λ) ≡ 0 on the whole λ-plane and by use of the Riemann–Lebesgue
lemma as λ → ∞ for λ ∈ R, we obtain that

∫ π/2

0
P(x) cos

(
θ–

1 (x)
)

dx +
(
α+)2

∫ b

π/2
P(x) cos

(
θ–

1 (x)
)

dx

+
(
α–)2

∫ b

π/2
P(x) cos

(
θ–

2 (x)
)

dx = 0,

and

∫ b

π/2
P(x)

[
cos

(
β+(x) – β̃–(x)

)
+ cos

(
β̃+(x) – β–(x)

)]
dx = 0,

∫ b

π/2
P(x)

[
sin

(
β+(x) – β̃–(x)

)
+ sin

(
β̃+(x) – β–(x)

)]
dx = 0.

Hence, the function H2(λ) can be rewritten as

H2(λ) = h – h̃ +
1
2

∫ π/2

0
Q(x) cos

(
θ–

1 (x)
)

dx +
(α+)2

2

∫ b

π/2
Q(x) cos

(
θ–

1 (x)
)

dx

+
α+α–

2

∫ b

π/2
Q(x)

[
cos

(
λπ – β+(x) + β̃–(x)

)
+ cos

(
λπ – β̃+(x) + β–(x)

)]
dx

+
(α–)2

2

∫ b

π/2
Q(x) cos

(
θ–

2 (x)
)

dx +
∫ π/2

0

[
f1(x)e2iλx + f2(x)e–2iλx]dx

+
(
α+)2

∫ b

π/2

[
f1(x)e2iλx + f2(x)e–2iλx]dx

+
∫ b

π/2

[
f3(x)e2iλ(π–x) + f4(x)e–2iλ(π–x)]dx

+
∫ b

π/2

[(
f5(x) + f7(x)

)
e2iλ(x–π/2) +

(
f6(x) + f8(x)

)
e–2iλ(x–π/2)]dx

+
∫ b

0
e2iλt

∫ b

t
Q(x)R1(x, t) dx dt +

∫ b

0
e–2iλt

∫ b

t
Q(x)R2(x, t) dx dt

+ 2λ

∫ π/2

0

[
g1(x)e2iλx + g2(x)e–2iλx]dx

+ 2λ
(
α+)2

∫ b

π/2

[
g1(x)e2iλx + g2(x)e–2iλx]dx

+ 2λ

∫ b

π/2

[
g3(x)e2iλ(π–x) + g4(x)e–2iλ(π–x)]dx

+ 2λ

∫ b

π/2

[(
g5(x) + g7(x)

)
e2iλ(x–π/2) +

(
g6(x) + g8(x)

)
e–2iλ(x–π/2)]dx

+ 2λ

∫ b

0
e2iλt

∫ b

t
P(x)R1(x, t) dx dt

+ 2λ

∫ b

0
e–2iλt

∫ b

t
P(x)R2(x, t) dx dt. (5.17)
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Specifically, with variable substitution, we can rewrite the integration of the functions fj(x)
for j = 3, 8 and gk(x) for k = 3, 8, such as

⎧
⎨

⎩

∫ b
π/2 f3(x)e2iλ(π–x) dx =

∫ π/2
π–b f3(π – x)e2iλx dx;

∫ b
π/2 f5(x)e2iλ(x–π/2) dx =

∫ b–π/2
0 f5(x + π

2 )e2iλx dx.
(5.18)

Thus equations (5.17)–(5.18) imply that

H2(λ) = h – h̃ +
1
2

∫ π/2

0
Q(x) cos

(
θ–

1 (x)
)

dx +
(α+)2

2

∫ b

π/2
Q(x) cos

(
θ–

1 (x)
)

dx

+
α+α–

2

∫ b

π/2
Q(x)

[
cos

(
λπ – β+(x) + β̃–(x)

)
+ cos

(
λπ – β̃+(x) + β–(x)

)]
dx

+
(α–)2

2

∫ b

π/2
Q(x) cos

(
θ–

2 (x)
)

dx +
∫ b

0

[
F1(x)e2iλx + F2(x)e–2iλx]dx

+
∫ b

0
e2iλx

∫ b

x
Q(t)R1(t, x) dt dx +

∫ b

0
e–2iλx

∫ b

x
Q(t)R2(t, x) dt dx

+ 2λ

∫ b

0

[
G1(x)e2iλx + G2(x)e–2iλx]dx

+ 2λ

∫ b

0
e2iλx

∫ b

x
P(t)R1(t, x) dt dx + 2λ

∫ b

0
e–2iλx

∫ b

x
P(t)R2(t, x) dt dx, (5.19)

where Fj(x) and Gj(x) for j = 1, 2 have the following form: If π/2 < b < 3π/4

F1(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) + f5(π/2 + x) + f7(π/2 + x), x ∈ [0, b – π/2],

f1(x), x ∈ [b – π/2,π – b],

f1(x) + f3(π – x), x ∈ [π – b,π/2],

(α+)2f1(x), x ∈ [π/2, b];

(5.20)

F2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f2(x) + f6(π/2 + x) + f8(π/2 + x), x ∈ [0, b – π/2],

f2(x), x ∈ [b – π/2,π – b],

f2(x) + f4(π – x), x ∈ [π – b,π/2],

(α+)2f2(x), x ∈ [π/2, b];

(5.21)

G1(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g1(x) + g5(π/2 + x) + g7(π/2 + x), x ∈ [0, b – π/2],

g1(x), x ∈ [b – π/2,π – b],

g1(x) + g3(π – x), x ∈ [π – b,π/2],

(α+)2g1(x), x ∈ [π/2, b];

(5.22)

G2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g2(x) + g6(π/2 + x) + g8(π/2 + x), x ∈ [0, b – π/2],

g2(x), x ∈ [b – π/2,π – b],

g2(x) + g4(π – x), x ∈ [π – b,π/2],

(α+)2g2(x), x ∈ [π/2, b].

(5.23)
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If 3π/4 ≤ b < π

F1(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f1(x) + f5(π/2 + x) + f7(π/2 + x), x ∈ [0,π – b],

f1(x) + f3(π – x) + f5(π/2 + x) + f7(π/2 + x), x ∈ [π – b, b – π/2],

f1(x) + f3(π – x), x ∈ [b – π/2,π/2],

(α+)2f1(x), x ∈ [π/2, b];

(5.24)

F2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f2(x) + f6(π/2 + x) + f8(π/2 + x), x ∈ [0,π – b],

f2(x) + f4(π – x) + f6(π/2 + x) + f8(π/2 + x), x ∈ [π – b, b – π/2],

f2(x) + f4(π – x), x ∈ [b – π/2,π/2],

(α+)2f2(x), x ∈ [π/2, b];

(5.25)

G1(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g1(x) + g5(π/2 + x) + g7(π/2 + x), x ∈ [0,π – b],

g1(x) + g3(π – x) + g5(π/2 + x) + g7(π/2 + x), x ∈ [π – b, b – π/2],

g1(x) + g3(π – x), x ∈ [b – π/2,π/2],

(α+)2g1(x), x ∈ [π/2, b];

(5.26)

G2(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

g2(x) + g6(π/2 + x) + g8(π/2 + x), x ∈ [0,π – b],

g2(x) + g4(π – x) + g6(π/2 + x) + g8(π/2 + x)], x ∈ [π – b, b – π/2],

g2(x) + g4(π – x), x ∈ [b – π/2,π/2],

(α+)2g2(x), x ∈ [π/2, b].

(5.27)

Integrating by parts in (5.19), we have

H2(λ) = h – h̃ +
1
2

∫ π/2

0
Q(x) cos

(
θ–

1 (x)
)

dx +
(α+)2

2

∫ b

π/2
Q(x) cos

(
θ–

1 (x)
)

dx

+
α+α–

2

∫ b

π/2
Q(x)

[
cos

(
λπ – β+(x) + β̃–(x)

)
+ cos

(
λπ – β̃+(x) + β–(x)

)]
dx

+
(α–)2

2

∫ b

π/2
Q(x) cos

(
θ–

2 (x)
)

dx +
∫ b

0

[
F1(x)e2iλx + F2(x)e–2iλx]dx

+
∫ b

0
e2iλx

∫ b

x
Q(t)R1(t, x) dt dx +

∫ b

0
e–2iλx

∫ b

x
Q(t)R2(t, x) dt dx

+ i
[
G1(0) – G2(0)

]
+ i

[
G2(b)e–2iλb – G1(b)e2iλb]

+ i
∫ b

0
P(x)

[
R1(x, 0) – R2(x, 0)

]
dx + i

∫ b

0

[
G′

1(x)e2iλx – G′
2(x)e–2iλx]dx

+ i
∫ b

0
e2iλx

[∫ b

x
P(t)

∂

∂x
R1(t, x) dt – P(x)R1(x, x)

]
dx

– i
∫ b

0
e–2iλx

[∫ b

x
P(t)

∂

∂x
R2(t, x) dt – P(x)R2(x, x)

]
dx.

Moreover, from H2(λ) ≡ 0 on the whole λ-plane and by use of the Riemann–Lebesgue
lemma as λ → ∞ for λ ∈ R, we obtain that

G2(b) = G1(b) = 0, (5.28)
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and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

h – h̃ + i[G2(0) – G1(0)] + 1
2
∫ π/2

0 Q(x) cos(θ–
1 (x)) dx

+ i
∫ b

0 P(x)[R1(x, 0) – R2(x, 0)] dx + (α+)2

2
∫ b
π/2 Q(x) cos(θ–

1 (x)) dx

+ (α–)2

2
∫ b
π/2 Q(x) cos(θ–

2 (x)) dx = 0,
∫ b
π/2 Q(x)[cos(β+(x) – β̃–(x)) + cos(β̃+(x) – β–(x))] dx = 0,

∫ b
π/2 Q(x)[sin(β+(x) – β̃–(x)) + sin(β̃+(x) – β–(x))] dx = 0.

(5.29)

Hence, H2(λ) can be rewritten as

H2(λ) =
∫ b

0

[
F1(x)e2iλx + F2(x)e–2iλx]dx +

∫ b

0
e2iλx

∫ b

x
Q(t)R1(t, x) dt dx

+
∫ b

0
e–2iλx

∫ b

x
Q(t)R2(t, x) dt dx + i

∫ b

0

[
G′

1(x)e2iλx – G′
2(x)e–2iλx]dx

+ i
∫ b

0
e2iλx

[∫ b

x
P(t)

∂

∂x
R1(t, x) dt – P(x)R1(x, x)

]
dx

– i
∫ b

0
e–2iλx

[∫ b

x
P(t)

∂

∂x
R2(t, x) dt – P(x)R2(x, x)

]
dx. (5.30)

Step 3: To prove that

F(x) =
(
Q(x), P(x), P′(x)

)T = 0, x ∈ [0, b].

Since H2(λ) = 0, it follows from (5.30) and the completeness of the vector functions
{(e2iλx, e–2iλx)T : λ ∈R} in (L2(0, b))2 that, for x ∈ [0, b],

F1(x) +
∫ b

x
Q(t)R1(t, x) dt + iG′

1(x) – iP(x)R1(x, x) + i
∫ b

x
P(t)

∂

∂x
R1(t, x) dt = 0 (5.31)

and

F2(x) +
∫ b

x
Q(t)R2(t, x) dt – iG′

2(x) + iP(x)R2(x, x) – i
∫ b

x
P(t)

∂

∂x
R2(t, x) dt = 0. (5.32)

Specially, according to the definitions of G1(x) and G2(x) (see (5.22) and (5.23), or (5.26)
and (5.27)), we infer from (5.28) that

P(b) = 0. (5.33)

The forms of Fj(x) and Gj(x) for j = 1, 2 will help us to obtain that F(x) = 0 on [0, b]. We
only consider the case 3π/4 ≤ b < π , the other case π/2 < b < 3π/4 can be treated similarly.
According to (5.24)–(5.27), we see from (5.31)–(5.32) that, for x ∈ [π/2, b],

(
α+)2f1(x) +

∫ b

x
Q(t)R1(t, x) dt + i

(
α+)2g ′

1(x) – iP(x)R1(x, x)

+ i
∫ b

x
P(t)

∂

∂x
R1(t, x) dt = 0
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and

(
α+)2f2(x) +

∫ b

x
Q(t)R2(t, x) dt – i

(
α+)2g ′

2(x) + iP(x)R2(x, x)

– i
∫ b

x
P(t)

∂

∂x
R2(t, x) dt = 0,

which together with (5.15)–(5.16) further give that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(α+)2Q(x)e–iθ+
1 (x) + [(α+)2(θ+

1 (x))′e–iθ+
1 (x) – 4iR1(x, x)]P(x)

+ i(α+)2P′(x)e–iθ+
1 (x) + 4

∫ b
x Q(t)R1(t, x) dt + 4i

∫ b
x P(t) ∂

∂x R1(t, x) dt = 0,

(α+)2Q(x)eiθ+
1 (x) + [(α+)2(θ+

1 (x))′eiθ+
1 (x) + 4iR2(x, x)]P(x)

– i(α+)2P′(x)eiθ+
1 (x) + 4

∫ b
x Q(t)R2(t, x) dt – 4i

∫ b
x P(t) ∂

∂x R2(t, x) dt = 0.

(5.34)

Define

K1(x) =

⎛

⎜
⎝

(α+)2e–iθ+
1 (x) (α+)2(θ+

1 (x))′e–iθ+
1 (x) – 4iR1(x, x) i(α+)2e–iθ+

1 (x)

(α+)2eiθ+
1 (x) (α+)2(θ+

1 (x))′eiθ+
1 (x) + 4iR2(x, x) –i(α+)2eiθ+

1 (x)

0 1 0

⎞

⎟
⎠

and

K2(t, x) =

⎛

⎜
⎝

4R1(t, x) 4i ∂
∂x R1(t, x) 0

4R2(t, x) –4i ∂
∂x R2(t, x) 0

0 0 1

⎞

⎟
⎠ . (5.35)

Equations (5.34) and (5.33) can readily be reduced to a vector form

K1(x)F(x) +
∫ b

x
K2(t, x)F(t) dt = 0 for x ∈ [π/2, b]. (5.36)

Because det K1(x) = 2i(α+)4 �= 0, (5.36) can be rewritten as

F(x) +
∫ b

x
K–1

1 (x)K2(t, x)F(t) dt = 0 for x ∈ [π/2, b].

This is a homogeneous Volterra integral equation and the kernel function is K–1
1 (x)K2(t, x),

its solution is identically zero. Thus, we have

F(x) = 0 a.e. on x ∈ [π/2, b].

When x ∈ [b–π/2,π/2], it follows that π –x ∈ [π/2, 3π/2–b]. Thus f3(π –x) = f4(π –x) =
g3(π –x) = g4(π –x) = 0 for almost all x ∈ [b–π/2,π/2]. Based on (5.24)–(5.27) and (5.15)–
(5.16), and further F(x) = 0 for all x ∈ [π/2, b], we have from (5.31)–(5.32) that

K1(x)F(x) +
∫ π/2

x
K2(t, x)F(t) dt = 0 for x ∈ [b – π/2,π/2], (5.37)
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where K2(t, x) is defined as (5.35) and

K1(x) =

⎛

⎜
⎝

e–iθ+
1 (x) (θ+

1 (x))′e–iθ+
1 (x) – 4iR1(x, x) ie–iθ+

1 (x)

eiθ+
1 (x) (θ+

1 (x))′eiθ+
1 (x) + 4iR2(x, x) –ieiθ+

1 (x)

0 1 0

⎞

⎟
⎠ . (5.38)

Because of det K1(x) = 2i �= 0, (5.37) and the kernel function K–1
1 (x)K2(t, x) imply

F(x) = 0 a.e. on x ∈ [b – π/2,π/2].

When x ∈ [π – b, b – π/2], it follows that x + π/2,π – x ∈ [3π/2 – b, b] ⊂ [b – π/2, b].
Thus f3(π – x) = f4(π – x) = 0 = fj(x + π/2) and g3(π – x) = g4(π – x) = 0 = gj(x + π/2) for all
x ∈ [π – b, b – π/2] and j = 5, 8. By (5.24)–(5.27) and (5.15)–(5.16), and further F(x) = 0 for
x ∈ [b – π/2, b], we have also from (5.31)–(5.32) that

K1(x)F(x) +
∫ b–π/2

x
K2(t, x)F(t) dt = 0 for x ∈ [π – b, b – π/2],

where K1(x) is defined as (5.38) and K2(t, x) is defined as (5.35). The above equation and
the kernel function K–1

1 (x)K2(t, x) imply that

F(x) = 0 a.e. on x ∈ [π – b, b – π/2].

When x ∈ [0,π – b], it follows that x + π/2 ∈ [π/2, 3π/2 – b]. Thus fj(x + π/2) = gj(x +
π/2) = 0 for x ∈ [0,π – b] and j = 5, 8. By virtue of (5.24)–(5.27) and (5.15)–(5.16), and
further F(x) = 0 for x ∈ [π – b, b], we have also from (5.31)–(5.32) that

K1(x)F(x) +
∫ π–b

x
K2(t, x)F(t) dt = 0 for x ∈ [0,π – b],

where K1(x) is defined as (5.38) and K2(t, x) is defined as (5.35). The above equation and
the kernel function K–1

1 (x)K2(t, x) imply that

F(x) = 0 a.e. on x ∈ [0,π – b].

Therefore, in the case 3π/4 ≤ b < π , we have F(x) = 0 on [0, b], that is, p(x) = p̃(x) on
[0, b], q(x) = q̃(x) a.e. on [0, b]. This together with (5.29) further implies

h = h̃.

Consequently, p(x) = p̃(x) on [0,π ], q(x) = q̃(x) a.e. on [0,π ], h = h̃, and H = H̃ . This com-
pletes the proof of the theorem. �

6 Conclusion
Inverse spectral problems consist in recovering operators from their spectral characteris-
tics. The interior spectral data used for reconstructing the differential operators contains
the known eigenvalues and some information on eigenfunctions at some interior point in
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the defined interval. Our research here mainly focuses on the inverse problem for interior
spectra data of quadratic pencils with impulse inside the defined interval, which has not
been considered before as far as we known. With the help of the known interior data, we
prove two uniqueness theorems for the pencils L(p, q; h, H ; a), which are the generalization
of the known results in [12] and [21].
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