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1 Introduction
Let J= (0, W) x (0, w) be a bounded rectangular domain in R?, which represents a porous
medium with Lipschitz boundary a3 = 71; U T,, where

T = ({0} x [0,w]) U ([0, W] x {w}) U ({W} x [0, W])
is the part in contact with air or covered by fluid, and
1 = [0, W] x {0}
is the impervious part of 3]. Let P = J x (0, M), where M > 0. Let ¢ be a nonnegative

Lipschitz function defined in the closure of P, which we denote by P.
Define

21 ="h x (0,M), Xy =" x (0, M), X3 =2y N{¢ >0}
and

Zi= N {¢p =0}
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Let x be a function of the variable ¢ satisfying
< x(t)<cy, aete(0,W), (1.1)

for two positive constants ¢; and ¢, and let wy be a function of the variable ¢ satisfying
(see [3,4])

0<wo(t) <1, aetel (1.2)

The governing equation in terms of the deflection function f(¢) is the elliptic boundary
value problem with respect to the Schrédinger operator (see [2, 5, 9, 11, 16, 24]): Find
(f,w) € L*(0, T; H*(J)) x L*®(P) such that

f>00<w<1l, fl-w)=0 ae.inP,

f = ¢ on 22)
/ [ (), + @)1y — .| i ds < / (s (t,0)dt,
P J

YceHY(P), ¢=0 onZXs,
¢>0 onky,

c(t,M)=0 forae.tel

For the existence of a solution of problem (1.3) in the homogeneous case, we refer to [10]
and [19] in the incompressible and compressible cases, respectively. For the heterogeneous
case, we refer to [6] in a more general framework under Assumptions (1.1) and (1.2) for
both incompressible and compressible cases. For the incompressible case with nonlinear
Darcy’s law, we refer to [18] for Dirichlet, Neumann, and generalized boundary condi-
tions. Extensions to the quasilinear and incompressible case were obtained in [10, 18] in
both homogeneous and nonhomogeneous frameworks. Meng [20] was able to extend the
above regularity result to a more general framework under weaker assumptions on the
data. The uniqueness of a solution for a homogeneous dam with general geometry was
established by the method of doubling variables in [8, 24], but it is not obvious whether it
works in the heterogeneous situation. Extensions to the Schrédinger operator modeling
incompressible fluid flow governed by the nonlinear Darcy law with Dirichlet or Neumann
boundary conditions were obtained in [15, 20], respectively.

On the other hand, the following boundary value problem with respect to the Schrédin-
ger operator corresponding to (1.3) is given by [7, 14, 18, 29, 33, 36]:

f>00<w<1l, u(l-w)=0 inP,
x &)y, + @)y, —ws=0 inP,
u=¢ on s,

(1.4)
C()(,O) = o ln j;
x(@)(f, +@)-v=0 on X,

X)), +@)-v <0 on X,
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Regarding the existence of a solution of the problem with respect to the Schrodinger op-
erator (1.4), we refer to [15] and [37], respectively, for the evolutionary dam problem with
homogeneous coefficients and for a class of free boundary problem with nonlocal bound-
ary condition in heterogeneous domain. The regularity of the solution of the problem with
nonlocal boundary condition was discussed in [40] (also see, e.g., [13, 32]), where it was
proved that w € C°([0, T];L#(J)) for all p € [1, +00) in the free boundary problems with

respect to the Schrodinger operator of types
diV(X(t)Vf + ’H(t)w) — wy
and

div(x(t)Vf + H(t)w) —(f +w)s,

and that f € C°([0, M]; L7(J)) for all p € [1,2] in the second-order class.

The uniqueness of a solution of the Schrodinger equation in the homogeneous case for
both incompressible and compressible fluids was obtained in [20] by using the method of
doubling variables. In the case of a rectangular dam wet at the bottom and dry near to the
top, the uniqueness was obtained in [17] and [35] by the fixed point theory (as one of the
main tools in this subject; see [21, 25]) with respect to the Schrédinger operator, respec-
tively, in homogeneous and heterogeneous porous media (see [28]). For the evolution free
boundary problem in theory of the Schrodinger equation, we refer to [8, 15].

As an application of the Phragmén-Lindel6f method related to a second-order bound-
ary value problem with respect to the Schrodinger operator, in this paper, we consider
the weak formulation of an evolution dam problem with heterogeneous coefficients (1.3)
in J. We establish the uniqueness of the solution for this problem with respect to the
Schrédinger operator. This uniqueness result is new in the general framework of a het-

erogeneous and bounded rectangular domain.
2 Main result and its proof
In this section, we obtain our main results that a solution of problem with respect to the
Schrédinger operator (1.3) is unique. We assume that

x € C*([0, W). (2.1)
Theorem 2.1 Let (fi, w;) and (f>, w3) be two solutions of (1.3). Then

[ @69 A6, + (1= oxts)or

P
+ ((1 — wy(t, s)) + (1 — for, (L, s)))w{f1>0] }L§t2 dtds <0, (2.2)

where

0<ce®), 0<:e®(0,M).
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Proof Note that

(fi, 1) : (65,59 > (fi(t,5), 01(%,9)),
(forw2) : (t,8,%,9) > (fg(t,s),a)g(x,y)).

Define

t1+x1 L +Xo y+s th —x1 ty — Xy y—s
t: $X42) = ) I —a
s =L, ) (185),, (o), (aom) (5-2)
for (¢,s,%,y) € P x P, where
1 r
P16 (1) = —m(—),
o o
1 r
prar(r) = —p2<—>,
o o
1 r
P3,0(r) = —/03(—)
o o

with p1, p2, p3 € D(R), p1, p2, p3 > 0, supp(p1), supp(p2), supp(ps) C (-1,1).
So

W(', '1x)y) € Q(P), (23)
llf(t, 8 ) € :D(P): (24)

where (x,7) € P and (¢,s) € P.
Define

(fl(tx S) —f2(t,5))+
€

O (t,s,%,9) = max( , w(t,s,x,y)), (2.5)

where € is a positive real number (see [22]).

By applying the fixed point theory to (f}, w;) with k = fo(x, y) and ¢(¢,s) = 9 (¢,s,%,y) for
almost every (x,7) € P we know that

f X (tl)(fl[z + a)l)ﬂtz dt dS = O’ (26)
p
which, together with f;.(1 - w;) = 0 a.e. in P, gives that

le(tl)<maX<@»W)) = X(h)(maX((f1 ;fzynﬂ))

a.e. in P.
Meanwhile, (2.6) also yields that

/)((ﬁ)(fu2 +1)0, dtds=0
P
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and

/ X&) ey + )9, do =0,
PxP

where do = dtdsdxdy.
Now we apply the fixed point theory to (f5, w;) with

k = fi(t,s), s(x,y) = 0(t,s,%,)

to obtain that

fX(xl)(fhz +w2)(19—min(é,w>> dyds = 0.
P .

So

f X (1) (fax + w2)<z9 - min(é, w)) dydsdtds = 0.
PxP € *

By subtracting (2.8) from (2.7) we have that

/ [X (tl)f'ltz ﬁtz - X (xl)féxz ﬁxz
PxP
+ X (0)04, — w2 x (%1)V4, | do

—/ X (@01) (foxy +w2)min(f—1,¢) do = 0.
PxP € x

2

It follows from (2.3)—(2.5) that

/ X (tlmtz ﬁxz dQ = 0)
PxP
/ X (xl)_fZ?Q ﬂtz dQ = 0)
PxP
/ X (6)(y, + 84)9 do =0,
PxP
f o (x1) s, do = O,
PxP
f x(xl)vwwz)min(’i,w) do =0,
PxP € t

/ (6@, + am)mm(ﬁ, 1/f) do =0,
PxP €

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

Page 5 of 17
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Combining (2.10)—(2.15) and (2.9), we get that

fp 0@+ )= 600 + 0, )) 0 + 000
+ (x (1) — w2 x (1)) (s, + 3:,)0 | do

+ / (x(t1) = x (x1)(De, + 32, )f2) (B, + 8x2)min<é, 1//) do
PxP €

+ / (x(t1) — w2 (1)) (3, + 8x2)min<é,1/f> do =0. (2.16)
PxP
Put
t t— -
E L, Xl XES_ 0 XSS (2.17)
3 3 3 3

Note that (z,«) € P and

w w ww M M M M
6,7)e (__7_) S (——,—> X <——,—) =1 x (——,—) = Py.
3°3 3°3 33 373
We have that
/ (x(z1 + Efiry (2 + &, + T)
PxPq

—x(z1 = &)fory (2= &,k = 7))V dp

. f,, | xler s 8) —one £~ (a1 = )0, di
+ /Pxpl (x(z1 + &) —a(z =&,k = T)x (21 - £1))

< min('i—l,w) du

N /P et 8) —frae- £ = Tx(a - 60)

X min(é, w) du=0 (2.18)

from (2.16)—(2.17), where du = dzdx d§ dt.
Put

Loy = / (x(z1+&)fizy (2 + &,k +7)
PxPy
— x(z1 — &1)foz, (z — &, — 1))V, dzdk dé dr,

Tow = / (ke +£1) = (e — £k — (a1 — £0)) 02, dit
PxPp
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Klo= [ (xterve)-onle- e~ xlar - &)
PxPq

X min(é, W) au,
€ o

K2, = [ (x50 = foale— - thxtaa - £0)
Px Py

X min (ﬁ, W) du.
€ o
Lemma 2.2

lim <hm J. G) = | wisp x (@) (1 - wa(z,1)) 52, dzdi,

o—0

lim <11m IC )
o—0

lim <11m IC2 )

o—>0\e—0

L 50 X (Zl)(l wo(z, K))gz2 dzdk,

w50y X (21) (1 = fazy (2,6)) 62, dz dic.

@\@\m\

Proof Set
T = / (x(z1+ &) = x(z1 = &1)) Dz dp
PxPy
[ -8 - e - )0, du
PxPy
= Tow + T

Combining (2.3)-(2.5) and the fact that x(z; + &) — x(z1

we have that
Jl, =0.
So

lim (hm ‘71,0) 0.

o—>0\e—>0

Put

hm(hmj )=/tx(zl)(l—a)z(z,/c))gzzdzd/c.
P

o—0

Set

Ac= {(fl -h)" > €1ﬁ}
and

B ={0<fi—-fa <€y}

(2.19)

(2.20)

(2.21)

(2.22)

— &) does not depend on zj,

(2.23)

(2.24)

Page 7 of 17
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We know that

B P )

€

+f 21— E0)(1 = wnle = £k = 7))o, dp
=T+ T2 (2.25)

By applying (2.17) and that (1 — w;)f> = 0 and fi,, = 0 a.e. in P (see [1, 41]), we have that
2,1 _ f1t2
Ty = ; x(@1)(1- wz(x,y))? do.

By applying (2.3) and that the function (x,) — x(x1)(1 — wa(x,7)) does not depend on
t, we have that

- | x(xl)(l—m(x,y))(min(f—l,w)) do
PxP € o

- / x 1) (1 = w2(%,9)) ¥y, dt ds dy ds

€

:/ x(xl)(l—wg(x,y))<min<]i,1p>) do
PxP € t

- / 2 (e0)(L = 0n(,9) e, do
PxP
+/ x (x1)(1 = w2(%,9)) ¥, do

= / X(xl)(l - wz(x,y))wtz de.

Be

Taking into account the fact that lim._,¢ |B¢| = 0 (see [39]), we know that
lin 2 <0
which yields that

lim (lim jg;}) -0 (2.26)

o—>0\e—0

To estimate 727, we obtain that

lim (nn% ﬂf) - / X @)y (1 - 022 6)) G2yt dz dic (2.27)
o—>0\e— P
by passing to the limit as € — 0 and then as o — 0.

Hence, combining (2.26)—(2.27), we obtain (2.24) by letting ¢ — 0 and 0 — 0 in (2.25).
Now we pass successively to the limit in (2.22) as € — 0 and then as ¢ — 0, and using
(2.23)—(2.24), we obtain (2.19). Finally, arguing as in the proof (2.19), we obtain (2.20) and
(2.21). O

Page 8 of 17
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Lemma 2.3

tim (1 7.0) = [ e (o) -ite.0)’, o ded (228)

Proof Set

Ie,a=/ (x(z1+&E)fiy (2 + &k +7)
A
—x(z1 = &fory (2= &,k = 7)Yy dpa
+/ (X(Z1+§1)flzz(z+§r’(+f)
Be

(21— Efomy (2~ £k — 7)) (@) du

=T+ T2, (2.29)

Note that 72, can be rewritten as

12, = l{/ [x(z1 +Efizy (2 + &,k + T)fiy (2 + &,k + T)
€ Be
+ x(z1 =&y (2= &,k — T)for, (2 — &,k — 7,')] dzdx dE dt

—/ X1 —Efory (2 - &,k —T)fi, (2 + £,k + T)dp

€

—/ (X +E)firy (2 + &6 + T)fogy (2 - &,k — r)du}
= IZ,I _IZ,Z —IZ’B.

It follows from (1.1) that

2, > -I2 -12. (2.30)

€,

Let us estimate Z>2. It follows from (2.3) and (2.5) that

I?,’3=/B X(M)fmﬂ%ﬁ(’@) dtdsdyds

2]

- / K61 )fomy (5, )92, di0
PxP
_ / (0 )fony (5, 9) 5, d

= / X (%1 )fox, (%, 9)01, do
PxP

. / (0 )fomy (5, ) V5, d
PxP

Page9of 17
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. / X660 )fomy (5,9, d
Be

:f X (1), (2, )Y, do.

€

Taking into account that lim._.¢ |B.| = O (see [39]), we obtain that

lim (Z27) = 0. (2.31)
Similarly,

. 2’ _

lim (Z27) = 0. (2.32)

Combining (2.31)—(2.32), we obtain that
. 2
lim(Z2,) > 0 (2.33)

by passing to the limit as € — 0 in (2.30).
Let us estimate Z_ ;. We obtain that

lim(Z},) = f wifishy (X (21 + Efizy (2 + 6,6 + T)
e—0 PxP;
- x(z1 - gl)fhz(z -&,K - T))%q du,
which yields that
. 1 _
!1_13(1)(1.60) - v/l;xP
_,fZ(Z - 5,/( - T))Zzl/fzz dl'L

sy X (21 +€1)(f1(z+ E,k+T)

+/ s (x (21 + &)
PxPy

- x(z1 - 51))f2zz(z -&,Kk - T)l//z2 dn
=IM + T (2.34)

By applying (2.1) and taking into account the fact that supp(p1,,) C (-0, 0) (see [39]), we
obtain that

5% <C / 51112zl 522 1010 (51) 02,0 (8130 (7)
PxPp

<oC oz, 162 1to1,6 (61) P26 (61) 03,6 (T) At
PxPp

=0 CW,

for some positive constant C.

Page 10 of 17
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So

lim Z}* = 0. (2.35)

c—0

For 7!, we have that

;im I;’l = /Ptx(zl)(fl(z,lc) —fz(z,K)):2 Sz dzdk (2.36)

—0

by passing to the limit as o — 0.
Combining (2.35)—(2.36), we obtain that

lim (1im 77, ) = fp (@) (filz ) ~fo(z, ). 6. dzdic (2.37)
by letting o — 0 in (2.34).

Finally, we pass successively to the limit in (2.29) as € — 0 and then as 0 — 0, and using
(2.33) and (2.37), we obtain (2.28). O

Now, using Lemmas 2.2 and 3.1 and letting successively € — 0 and ¢ — 0 in (2.18), we
obtain (2.2). This completes the proof of Theorem 2.1. O

3 An application

In this section, we establish the existence of nontrivial positive solutions of (1.3) with ¢ =
¢* by Theorem 2.1. To this end, we first construct a pair of proper super- and subsolutions
of (1.3) with ¢ = ¢* (see [23, 27]). We define the continuous functions (see [26, 30, 34, 38])

j—f—(;) = \707
Jo — e)»sé“, <,
J@=1""" 1
€e4t, =0,
IC+(§): _wgea*;’ C <CZ?
(% - 1)-.70r ; > ;2:
K_(0) - —w e - L(=0) 27, ¢ <,
0: f > ;37
where

* *

o* «
I :min{— }, Ty =4/ /01,

2720,
and 1,8, 83 € R, p> Jo, € >0, @ >0, L > 0 will be clarified later.

Lemma 3.1 Assume that ¢ >y. Then (1.3) with ¢ = ¢* admits a solution satisfying

J-(¢) =8() = T (%), K-(¢)=1(5) =K.(¢), ¢eR
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Proof Define

m::f /I(t,s)e’\*(t’c*s)dtds,
o Jr
o * 5
n::/ /I(t,s)(t—ot*s)ek =< gt ds.
o Jr

It is easy to see that m, n are bounded and
o0 * *
m+n<(+K)m —a*/ f Z(t,s)se" 9 dt ds,
o Jr

and so ¢m + n < 0 for all ¢ < —K. Moreover, Lemma 2.3 indicates that
WA —a* A+ om—y =0, 20,05 —c* + on = 0.

Note that if #; > 0, iy > 0 with /1, + /5 > 0, then

hihy
h1 + h2

< min{u, v}.

If ¢ < £y, then I,(¢) = —w¢e” ¢, and it suffices to prove that

@K (0) = 22K7(8) + (T % K.)(6) - y K. (2). (3.1)

Note that
[o¢]
T+K))= / /Z(t,s)l@(g“ —t—c*s) dtds
o Jr
[e¢] +00
< / f I(t,s)L,(; —t—a*s) dtds
0 {-C*—a*s
=—w / / Z(ts)(¢ -t - c*s)ek*@_t’c*s) dtds
o Jr
© * *
=—w / / I(t,s)(¢ +t—c's)e’ C dtds
o Jr
= —ZU§€'\*{/ /I(t,s)ek*(t’c*s) dtds
o Jr
* o0 * 5
—weé 5/ /I(t,s)(t— c*s)ek =<9 dt ds
o Jr

= —wg‘e’\*cm —we n.

It is obvious that (3.1) holds in the case where the following inequality holds.
a*IC,(0) 20K Q) —pwie” im—gwe” Cn-yK.(0).

It follows that

K(¢)=-we” t(1+07¢),
KI©) e (2 + (o))
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for any ¢ < ¢, by Lemma 2.2 and the definition of 7,(¢).
So

@*KL(¢) = 02K () + g e Sm+ gmme” n+ y KL ()

= Ay (0% a)we C + Alo",a")w et =0,

which yields (3.1).
Put ¢ > ¢;. Then

0T (OT*K)@) _ TG - Do y<£_1)jo.

J@)+@T*K)Q) = o+ (E-DJ ' \y
Denote
(o*-11)
= Z0e € 4 sup —pwe? §(§;;n+n)
<0 o*Ty — 017
and

Jo —pe™t =ee.
If ¢ < &1, then
J(¢)=To—pe™t >0
and
o T =0T @) - (T *L)(©),

where ¢ < ¢3.
It follows that

(I*ICJ({):/ /I(t,s)L({—t—a*s) dtds
o Jr
5[ / I(t,s)1+(§ —t—a*s) dtds
0 C-CF—a*s
=—wte” ‘m-we” tn

since{ <& <¢*-K.
To verify that

T C) <0 T C) +ewie” Sm+ gwe tn,
by simple calculations, we have
—a*rpetst < —legpe)‘“ +towie’ ‘m+owe’ n, <l

which is true by the definition of p.

Page 13 0of 17
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It suffices to confirm that
o JN(E) =0T () - pT-(2),
which is equivalent to
—a*hgee™ <D Fee™ — pee Mt

and this is also evident by the definition of A4.
Let L > M, > w +/-3 be such that

J_(&) = Tol2,

I\2
§<§33:—<—) <&
w

for o >0and ¢, <O0.
It is obvious that the definition of ¢3 implies that

K_(¢) =K.(2)

forall ¢ e R.
If; < 53; then

K_(¢) = -wee™s —L(-0)2e" < —mre™ = K,(0),
which yields that

TxK)¢)= /OOO/RI(t,s)IC_(; —t—c*s) dtds

S/OO/Z(LS)IQ(;“—t—c*s)dtds
o Jr

* *
= —zzré,’eA ‘m-we fn.

So
0 T()T + K)(¢)
—o(T _
T+ @rkg)  PEHIE)
Jo
2 TRk

D (T

2¢ 2
> —70[(1* K)(@)]

2
_ 2w
Jo

en*g({m +n)?,

which gives that

20w? ..
KL(E) <0,K1(E) + (T + K)(E) - yK_(¢) - %e” (Cm+ n)>,
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By a simple calculation we have that

K (£) =K, (¢) +Le” E(—s‘)“”2 - 0*(—4‘)”2}
K@) = K/(£) + Le’™ E(—C)a‘/2 +o*(=¢)? - (0*)2(—§)1/2]

Since —¢ +y+ a*s > 0 for any ¢ < g3, |y < K, and s > 0, there exists 6 € (0, 1) such that

2

==Y+ (—{)‘1/2(t +os) — %[—{ +6(t+ ot*s)]_S/z(t +os)

<04 (0 v as)

by applying the Taylor theorem (see [12, 31]), which yields that
TxK)¢)= / /I(t,s)l_(;“ —t—a*s) dtds
o Jr
0o K
= / / I(t,s)l_(c —t—a*s)dtds
0o Jx
oo pK . .
> f / It s)|[-w (¢ -t —a's)e” (§-t-a®s)
0o Jx
—L(=(¢ - t—a%s)) e "] dr ds
oo K . .
> —ZU/ / Z(t,s)(¢ -t —a’s)e” (E=t=0) ¢ g
0o Jk
e~ rk 1 . .
-L / / I(t,s)[(—{)m += (=) (e + ot*s):|e“ (€=t gt dis
0o Jx 2
* * * 1 *
=—wie® ‘m-we” ‘n-L(=)"%e” Sm+ EL(—g)_l/ze" ‘n.
So
1! * _o* 1 -1/2 * 1/2
@' KL(6) + Lae” * | S (=) = 0™(=¢)
w1
< 0K(5) +aLe” [Z(—c)‘” +or(=0) - (o*)z(—é)“z]

—pwie” Sm—gwe” tn—oL(-0) " tm + %L(—{)_l/ze"*{n

2pw?
Jo

—y K. (§) + yL(=¢) e - &7 (tm +n)?,

which is true provided that

a1 20w? , .
0,Le” ¢ Z(—C)_?’/2 - g}_we% S(em+n)?=>0.
0
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Put

8pw*(cm +n)*(=£)*e” ¢
M, :=sup

+1
<0 027

forany ¢ < {3, where L := M; + M. When ¢ > ¢, it is straightforward to show the required
result. The proof is complete. d

4 Conclusions

In this paper, we further studied the Phragmén—Lindel6f method related to a second-order
order boundary value problem with respect to the Schrédinger operator. We also pre-
sented some mathematical consequences of the method including a stability result. The
main technical tools used to develop the mathematical analysis are local and global bifur-
cation, monotonicity techniques, the augmented Phragmén-Lindel6f method, blow-up
arguments, and some techniques used in the previous works. As an application, we proved
the uniqueness of a solution for the definite problem of a parabolic variational inequality.
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