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Abstract
This article concerns the Hamiltonian elliptic system:

⎧
⎪⎨

⎪⎩

–�ϕ + V(x)ϕ = Gψ (x,ϕ ,ψ ) in R
N ,

–�ψ + V(x)ψ = Gϕ (x,ϕ ,ψ ) in R
N ,

ϕ ,ψ ∈ H1(RN).

Assuming that the potential V is periodic and 0 lies in a spectral gap of σ (–� + V),
least energy solution of the system is obtained for the super-quadratic case with a
new technical condition, and the existence of ground state solutions of
Nehari–Pankov type is established for the asymptotically quadratic case. The results
obtained in the paper generalize and improve related ones in the literature.
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1 Introduction and main results
Consider the following Hamiltonian elliptic system:

⎧
⎪⎪⎨

⎪⎪⎩

–�ϕ + V (x)ϕ = Gψ (x,ϕ,ψ) in R
N ,

–�ψ + V (x)ψ = Gϕ(x,ϕ,ψ) in R
N ,

ϕ,ψ ∈ H1(RN ),

(1.1)

where ϕ,ψ : RN → R, V ∈ C(RN ,R), and G ∈ C1(RN × R
2,R) with gradient ∇G =

(Gϕ , Gψ ). Problem (1.1) or similar to (1.1) has been extensively investigated in the liter-
ature based on various assumptions on the potential V (x) and the nonlinearity G(x,η)
with η = (ϕ,ψ).

For the case of a bounded domain, assuming moreover V (x) ≡ 0, systems like or similar
to (1.1) have been studied by some authors, see [7] for sublinear systems, [8, 9, 17] for the
superlinear case, [18] for asymptotically linear systems, and [28] for a singularly perturbed
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problem. Recently, an Orlitz space approach was used by De Figueiredo et al. [11] dealing
the system with G(x,ϕ,ψ) = F(ϕ) + H(ψ).

In [44], the authors studied ground state solutions for a Hamiltonian elliptic system with
inverse square potential, and there are other papers concerned with the system in the
whole space R

N , see [10, 21–23, 31, 35, 38–40, 45–48] and the references therein. The
main difficulty of such a problem is lack of the compactness of Sobolev embedding. The
usual way to overcome this difficulty is working on the radially symmetric function space,
which possesses compact embedding. Using spectral family theory of non-compact op-
erator, De Figueiredo and Yang [10] proved the existence of a positive radially symmetric
solution which decays exponentially to 0 at infinity for the case that V ≡ 1, see also [39]
for the case that G(x,ϕ,ψ) = F(x,ϕ) + H(x,ψ) is asymptotically autonomous. Later, this
result was generalized by Sirakov [31] in a different way. Infinitely many radial as well as
non-radial solutions were obtained by Bartsch and De Figueiredo [4] provided that G(x,η)
is even in η. In [21], Li and Yang proved, via a generalized linking theorem, that (1.1) has a
positive ground state solution with V ≡ 1 and asymptotically autonomous quadratic non-
linearity, see also [48] for a super-quadratic case. The case of general periodic potential
was considered in [38, 47] for super-quadratic systems with G(x,ϕ,ψ) = F(x,ϕ) + H(x,ψ)
and [45, 46] for asymptotically quadratic systems. Assuming that V is periodic and posi-
tive, nontrivial solutions were obtained by Liao et al. in the recent paper [22] under some
new super-quadratic conditions. The nonperiodic and asymptotically quadratic case was
studied in [36, 41, 42]. For semiclassical problems with subcritical and critical nonlinear-
ities, we refer to [14, 22].

Here, we mention the dual variational method, another usual way to avoid the indefinite
character of the original functional. See, for instance, Ávila and Yang [2, 3], Alves et al. [1],
Yang [39], and the references therein.

As pointed out in [40, 46, 47], besides the lack of the compactness of Sobolev embedding,
there are two kinds of indefiniteness we have to face: one comes from the system itself
and the other comes from each equation in the system. Although a proper variational
setting for (1.1) can be established, the functional associated with it is strongly indefinite.
Therefore the periodic assumptions on V and G are usually needed, see, for instance, [19,
33–35, 40, 43, 45–47]. Applying the critical point theory developed by Bartsch and Ding
[5], Zhao et al. [46] obtained a least energy solution for asymptotically quadratic system
(1.1), i.e., a nontrivial solution η̄ ∈ E satisfying I(η̄) = infM I , where

M :=
{
η ∈ E \ {

(0, 0)
}

: I ′(η) = 0
}

, (1.2)

E = E– ⊕ E+ is the working space on which the energy functional I associated with (1.1) is
defined, see (2.12). For the super-quadratic case, a least energy solution of (1.1) was also
established by Zhang et al. [40] via the critical point theory constructed in [5]. Based on
the work [34], Tang [35] developed a direct approach and found a ground state solution
of Nehari–Pankov type for (1.1), i.e., a nontrivial solution η̄ ∈ E satisfying I(η̄) = infN– I ,
where

N – =
{
η ∈ E \ E– :

〈
I ′(η),η

〉
=

〈
I ′(η), w

〉
= 0,∀w ∈ E–}

. (1.3)

The main ingredients in this approach are the observations that, for any η ∈ E \ E–, there
exist t = t(η) > 0 and w = w(η) ∈ E– such that w + tη ∈ N –; moreover, a minimizing Ce-
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rami sequence for the energy functional I can be found outside N – by using the diagonal
method. The set N – first introduced by Pankov [27] is a subset of the Nehari manifold

N =
{
η ∈ E \ {

(0, 0)
}

:
〈
I ′(η),η

〉
= 0

}
. (1.4)

Note that, if η 	= (0, 0) and I ′(η) = 0, then η ∈N –. Hence N – contains all nontrivial critical
points of I , i.e., M is a very small subset of N –. In general, it is more difficult to find a
solution η̄ for (1.1) that satisfies I(η̄) = infN– I than the one satisfying I(η̄) = infM I .

Let

� := max{–�,�}, �0 = min{–�,�}. (1.5)

It follows from (1.6) that �0 > 0. The following assumptions were introduced in [40, 46]
for super and asymptotically quadratic system (1.1):

(V) V ∈ C(RN ) are 1-periodic in xi, i = 1, 2, . . . , N , and 0 lies in a gap of the spectrum of
–� + V , i.e.,

sup
[
σ (–
 + V ) ∩ (–∞, 0)

]
:= � < 0 < � := inf

[
σ (–
 + V ) ∩ (0,∞)

]
; (1.6)

(G1) G ∈ C1(RN ×R
2, [0,∞)) is 1-periodic in xi, i = 1, 2, . . . , N , and |Gη(x,η)| = o(|η|) as

|η| → 0 uniformly in x, where Gη(x,η) = ∇G(x,η);
(SQ) lim|η|→∞ G(x,η)

|η|2 = ∞ uniformly in x ∈R
N ;

(DL) Ĝ(x,η) := 1
2 Gη(x,η) · η – G(x,η) > 0 if η 	= (0, 0), and there exist r0 > 0, c0 > 0, and

σ > max{1, N/2} such that

∣
∣Gη(x,η)

∣
∣σ ≤ c0Ĝ(x,η)|η|σ , ∀(x,η) ∈R

N ×R
2, |η| ≥ r0,

where and in the sequel, the dot denotes the inner product in R
2;

(G2) Gη(x,η) = V∞(x)η + Ḡη(x,η) with Ḡη(x,η) = ∇Ḡ(x,η), where V∞ ∈ C(RN ) is 1-
periodic in each of x1, x2, . . . , xN , inf V∞ > �, and |Ḡη(x,η)| = o(|η|) as |η| → ∞
uniformly in x ∈ R

N ;
(G3) Ĝ(x,η) > 0 if η 	= (0, 0), and Ĝ(x,η) → ∞ as |η| → ∞;
(G4) Ĝ(x,η) ≥ 0, and there exist δ0 ∈ (0,�0), δ1 > 0 such that Ĝ(x,η) > 0 if 0 < |η| ≤ δ1,

and Ĝ(x,η) ≥ δ0 whenever |Ĝη(x,η)| ≥ (�0 – δ0)|η|.
More precisely, the following theorems were established in [40, 46].

Theorem 1.1 ([40]) Let (V), (G1), (SQ), and (DL) be satisfied. Then (1.1) has a least energy
solution, i.e., a nontrivial solution η̄ ∈ E such that I(η̄) = infM I .

Theorem 1.2 ([46]) Let (V), (G1), (G2), and (G3) or (G4) be satisfied. Then (1.1) has a least
energy solution.

It follows from (G1), (SQ), and (DL) that the following condition holds, see Lemma 2.2:
(G0) G ∈ C1(RN ×R

2,R), and there exist constants p ∈ (2, 2∗) and C1 > 0 such that

∣
∣Gη(x,η)

∣
∣ ≤ C1

(
1 + |η|p–1), ∀(x,η) ∈R

N ×R
2,

where 2∗ := 2N/(N – 2) if N ≥ 3 and 2∗ := +∞ if N = 1 or 2.
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Condition (DL) was first introduced by Ding and Lee [13] for a single Schrödinger equa-
tion, and it together with (SQ) is commonly used instead of the following classic condition,
see, for instance, [26, 40, 42].

(AR) There exists a constant μ > 2 such that

0 < μG(x,η) ≤ Gη(x,η) · η, ∀x ∈ R
N ,η ∈R

2 \ {
(0, 0)

}
.

It is clear that (AR) implies (SQ); moreover, by a similar argument as in the proof of [13,
Lemma 1.3], (DL) holds provided that (AR) and (G0) with μ ≥ p are satisfied. The idea
of using the more natural super-quadratic condition (SQ) under a Nehari type setting to
replace (AR) goes back to Liu and Wang [25]. Afterwards, condition (SQ) was used in
many papers, see [13, 14, 26, 33, 38, 42, 47] and the references therein. In a recent paper
[30], a local superquadratic condition instead of (SQ) was introduced by Qin, Tang, and
Wu, which combines with a technical condition to guarantee the existence of ground state
solutions for Schrödinger systems like (1.1). Note that the assumption Ĝ(x,η) > 0 in (DL),
(G3), and (G4) plays an important role in the arguments of Zhang [40] and Zhao [46], see
also Ding and Lee [13].

Inspired by the aforementioned works, we continue to study problem (1.1) in this paper
and construct two types of ground state solutions, i.e., the least energy solution and the
Nehari–Pankov type. We first use a technical condition introduced in [29] to consider the
super-quadratic case and obtain a least energy solution for (1.1) with the aid of a gener-
alized linking theorem established in [20]. Then we lay emphasis on the asymptotically
quadratic case and discuss the existence of ground state solution of Nehari–Pankov type
for (1.1). Different from the super-quadratic case, the Nehari–Pankov manifold N – is not
homeomorphic to the unit sphere for the asymptotically quadratic case, so the general-
ized Nehari manifold method introduced by Szulkin and Weth [33] does not apply even
under strict monotonicity on G. More precisely, for each η ∈ E \ E–, N – does not neces-
sarily intersect the set E– ⊕ R

+η, so one cannot directly adopt the method used in [35]
either. On the other hand, the argument in [40, 46, see Lemma 4.1] becomes invalid due
to the lack of positive assumption on Ĝ(x,η) (i.e., Ĝ(x,η) > 0). Motivated by the works [27,
33, 40, 46], we further develop the approach in [29, 34, 35] to find ground state solution
of Nehari–Pankov type for (1.1). Our approach is based on finding a proper subset E+

0 of
E \ E– (see (3.4) for the definition) such that, for any η ∈ E+

0 , there exist t = t(η) > 0 and
w = w(η) ∈ E– satisfying w + tη ∈ N –, then we can derive a minimizing sequence on the
Nehari–Pankov manifold by using the diagonal method, see Lemma 3.9.

Before stating our main results, we first introduce the following weaker version of (DL):
(G2) Ĝ(x,η) ≥ 0, and there exist C0 > 0, δ0 ∈ (0,�0), and σ > max{1, N/2} such that

|Gη(x,η)|
|η| ≥ 1

2
(�0 – δ0) �⇒ ∣

∣Gη(x,η)
∣
∣σ ≤ C0Ĝ(x,η)|η|σ .

Clearly, (G2) holds under (DL) and (G1). Thus (G2) weakens (DL), and there are some
functions satisfying (G2), but not (DL) and (AR), see Examples 1.9 and 1.10. Moreover,
(G0) holds under (G1), (G2), and (SQ), see Lemma 2.2.

We are now in a position to state the first result of this paper.

Theorem 1.3 Let (V), (G1), (G2), and (SQ) be satisfied. Then (1.1) has a least energy so-
lution.
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Next, we consider the asymptotically quadratic case and introduce the following as-
sumptions:

(G3) Gη(x,η) = V∞(x)η + Ḡη(x,η), where V∞ ∈ C(RN ) is 1-periodic in each of x1, x2, . . . ,
xN with inf V∞ > 0, and there exists η0 ∈ E+ \ {0} such that

‖η0‖2 – ‖w‖2 –
∫

RN
V∞(x)|η0 + w|2 dx < 0, ∀w ∈ E–; (1.7)

Gη(x,η) · Ḡη(x,η) ≤ 0 and Gη(x,η) · Ḡη(x,η) < 0 for 0 < |η| ≤ α0 for some α0 > 0,
|Ḡη(x,η)| = o(|η|) as |η| → ∞ uniformly in x ∈ R

N ;
(G3′) Gη(x,η) = V∞(x)η + Ḡη(x,η), where V∞ ∈ C(RN ) is 1-periodic in each of x1, x2, . . . ,

xN with inf V∞ > �, |Ḡη(x,η)| = o(|η|) as |η| → ∞ uniformly in x ∈ R
N , and

Gη(x,η) · Ḡη(x,η) < 0 for x ∈ R
N and η 	= (0, 0);

(G4) For all θ ≥ 0, x ∈R
N , η, w ∈R

2, there holds

1 – θ2

2
Gη(x,η) · η – θGη(x,η) · w + G(x, θη + w) – G(x,η) ≥ 0;

Our main results for the asymptotically quadratic case read as follows.

Theorem 1.4 Let (V), (G1), (G3), and (G4) be satisfied. Then (1.1) has a nontrivial solution
η̄ ∈ E such that I(η̄) = infN– I ≥ κ , where κ > 0 is a constant.

Corollary 1.5 Let (V), (G1), (G3′), and (G4) be satisfied. Then (1.1) has a nontrivial solu-
tion η̄ ∈ E such that I(η̄) = infN– I ≥ κ , where κ > 0 is a constant.

In general,N – contains infinitely many elements of E. In fact, for any η ∈ E+
0 defined later

by (3.4), there exist t = t(η) > 0 and w = w(η) ∈ E– such that w + tη ∈N – which is the global
maximum of I|E–⊕R+η , see Corollary 3.2 and Lemma 3.7. Since η̄ is a solution at which I
has least “energy” in set N –, it was called a ground state solution of Nehari–Pankov type
in [33, 35].

Remark 1.6 It is easy to see that (G4), together with |Gη(x,η)| = o(|η|) as |η| → 0 uniformly
in x ∈R

N , implies that G(x,η) ≥ 0 and Ĝ(x,η) ≥ 0 for any (x,η) ∈R
N ×R

2. Condition (G0)
holds under (G1) and (G3); moreover, (G3′) implies (G3), see (2.14) for details. The crucial
condition Ĝ(x,η) > 0 in (DL), (G3), and (G4) is not needed in (G2) and (G4); moreover,
there are many functions satisfying (G2), (G3), and (G4), but not (DL), (G3′), and (G4′)
resp., see Examples 1.10 and 1.11. Thus Theorems 1.3 and 1.4 generalize and improve the
results in [35, 40, 46].

Remark 1.7 In [35], Tang introduced the following class of functions which satisfies (G4):

G(x,ϕ,ψ) =
k∑

i=1

∫ αiϕ+βiψ

0
gi(x, t)t dt +

l∑

j=1

∫ √
ϕ2+2bjϕψ+ajψ2

0
hj(x, t)t dt,

where αi,βi, aj, bj ∈R with α2
i + β2

i 	= 0 and aj > b2
j , gi(x, t) and hj(x, t) are nondecreasing in

t ∈R
+ for every x ∈R

N and gi(x, 0) = hj(x, 0) = 0.



He et al. Boundary Value Problems        (2019) 2019:158 Page 6 of 20

Condition (G4) is also satisfied under assumptions (G1), (G2) and the following con-
dition introduced by Bartsch and Mederski [6], the proof of which will be given in the
Appendix.

(G4′) Ĝ(x,η) ≥ 0, and for any x ∈R
N , η, w ∈R

2, there holds

2Gη(x,η) · η[
G(x,η) – G(x, w)

] ≤ (
Gη(x,η) · η)2 –

(
Gη(x,η) · w

)2,

whenever Gη(x,η) · w = Gη(x, w) · η 	= 0.
Moreover, (G4) holds also under conditions (G1), (G4′), and (SQ).

Remark 1.8 For the asymptotically quadratic case, Nehari–Pankov manifold N – does not
necessarily intersect the set Ê(η) := E– ⊕R

+η for each η ∈ E \ E–, and so N – is not home-
omorphic to the unit sphere S+ ⊂ E+ even under the strict monotonic condition. Thus, it
seems infeasible to find a minimizing sequence on the Nehari–Pankov manifold by reduc-
ing the problem on a sphere under assumptions (G1), (G3), and (G4).

Before proceeding to the proof of main results, we give some nonlinear examples to
illustrate condition (G2).

Example 1.9 G(x,η) = α(x)|η|2 ln[1 + |η|], where α ∈ C(RN , (0,∞)) is 1-periodic in xi, i =
1, 2, . . . , N .

It is not difficult to verify that G satisfies (G1), (G2), and (SQ), but it does not satisfy
(AR).

Example 1.10 G(x,η) = a(8/5|η|13/4 – 4|η|11/4 + 9/2|η|9/4), where a > 0 and N ≤ 4.

By simple computation, one has Ĝ(x,η) = a|η|9/4(
√|η| – 3/4)2 ≥ 0. Then G does not

satisfy (AR) and (DL), but it satisfies (G2) with σ = 12/5 if a ∈ (0, 8�0/81).
For the asymptotically quadratic case, it is not difficult to verify that the following func-

tions satisfy (G1), (G3), (G4), or (G3′) by virtue of Remark 1.7, but Example 1.11 does not
satisfy (G3) and (G4) since Ĝ(x,η) = 0 if |η| ≥ 1.

Example 1.11 Gη(x,η) = V∞(x) max{|η|α , 1}η, where α > 0 and V∞ ∈ C(RN ) is 1-periodic
in each of x1, x2, . . . , xN with inf V∞ > �.

Example 1.12 Gη(x,η) = V∞(x)[1 – 1
1+|η|α ]η, where α > 0 and V∞ ∈ C(RN ) is 1-periodic in

each of x1, x2, . . . , xN with inf V∞ > �.

Example 1.13 Gη(x,η) = V∞(x)[1 – 1
ln(e+|η|) ]η, where V∞ ∈ C(RN ) is 1-periodic in each of

x1, x2, . . . , xN with inf V∞ > �.

The remainder of this paper is organized as follows. In Sect. 2, some preliminary results
are presented. The proofs of the main results will be given in the last section.

2 Variational setting and preliminaries
Let A = –
 + V . Then A is self-adjoint in L2(RN ) with domain D(A) = H2(RN ) (see [16,
Theorem 4.26]). Let {E(λ) : –∞ ≤ λ ≤ +∞} and |A| be the spectral family and the absolute
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value ofA, respectively, and |A|1/2 be the square root of |A|. SetU = id–E(0)–E(0–). Then
U commutes with A, |A|, and |A|1/2, and A = U |A| is the polar decomposition of A (see
[15, Theorem IV 3.3]). Let

H := D
(|A|1/2), H– := E(0)H , H+ :=

[
id – E(0)

]
H . (2.1)

For any u ∈ H , it is easy to see that

u = u– + u+, u– := E(0)u ∈ H–, u+ :=
[
id – E(0)

]
u ∈ H+ (2.2)

and

Au– = –|A|u–, Au+ = |A|u+, ∀u ∈ H ∩D(A). (2.3)

Define an inner product

(u, v)H =
(|A|1/2u, |A|1/2v

)

L2 , u, v ∈ H (2.4)

and the corresponding norm

‖u‖H =
∥
∥|A|1/2u

∥
∥

L2 , u ∈ H , (2.5)

where (·, ·)L2 denotes the inner product of L2(RN ), ‖ ·‖Ls stands for the usual Ls(RN ) norm.
By (V), H = H1(RN ) with equivalent norms. Therefore, H embeds continuously in Ls(RN )
for all 2 ≤ s ≤ 2∗. In addition, one has the decomposition H = H– ⊕ H+ which are orthog-
onal with respect to (·, ·)L2 and (·, ·)H . Then there hold

∫

RN

(|∇u|2 + V (x)|u|2)dx =
∥
∥u+∥

∥2
H –

∥
∥u–∥

∥2
H , ∀u = u– + u+ ∈ H . (2.6)

Let E = H × H with the inner product

(
(u, v), (ϕ,ψ)

)
= (u,ϕ)H + (v,ψ)H , (2.7)

and the corresponding norm

‖z‖ =
[‖u‖2

H + ‖v‖2
H
]1/2, ∀z = (u, v) ∈ E. (2.8)

By (1.6), (1.5), and (2.8), it is easy to see that ‖z‖2 ≥ �0‖z‖2
2 for any z ∈ E, where ‖ · ‖s

stands for the usual Ls(RN ,R2) norm. Moreover, we have the following lemma.

Lemma 2.1 Let (V) be satisfied. Then the embedding E ↪→ Lp(RN ,R2) is continuous for all
p ∈ [2, 2∗] and E ↪→ Lp

loc(RN ,R2) is compact for all p ∈ [2, 2∗).

Lemma 2.2 ([29, Lemma 2.2]) Suppose that (G1), (G2), and (SQ) are satisfied. Then (G0)
holds. Moreover, for any ε > 0, there exist Cε > 0 and p ∈ (2, 2∗) such that

∣
∣Gη(x,η)

∣
∣ ≤ ε|η| + Cε|η|p–1, ∀(x,η) ∈ R

N ×R
2, (2.9)

and Ĝ(x,η) → ∞ as |η| → ∞ uniformly in x.



He et al. Boundary Value Problems        (2019) 2019:158 Page 8 of 20

Under (V), (G0), and (G1), a standard argument (see [12, 32, 37]) shows that the solu-
tions of problem (1.1) are critical points of the functional

I(η) =
∫

RN

(∇ϕ∇ψ + V (x)ϕψ
)

dx –
∫

RN
G(x,η) dx, ∀η = (ϕ,ψ) ∈ E, (2.10)

I is of class C1(E,R), and

〈
I ′(η), w

〉
=

∫

RN

(∇ϕ∇φ + V (x)ϕφ
)

dx +
∫

RN

(∇ψ∇ξ + V (x)ψξ
)

dx

–
∫

RN

(
Gϕ(x,η)ξ + Gψ (x,η)φ

)
dx, ∀η = (ϕ,ψ), w = (ξ ,φ) ∈ E. (2.11)

The following generalized linking theorem plays an important role in proving our main
results.

Let X be a Hilbert space with X = X– ⊕X+ and X– ⊥ X+. For a functional I ∈ C1(X,R), I is
said to be weakly sequentially lower semi-continuous if, for any un ⇀ u in X, one has I(u) ≤
lim infn→∞ I(un), and I ′ is said to be weakly sequentially continuous if limn→∞〈I ′(un), v〉 =
〈I ′(u), v〉 for each v ∈ X.

Lemma 2.3 ([19], [20, Theorem 2.1]) Let X be a Hilbert space with X = X– ⊕ X+ and
X– ⊥ X+, and let I ∈ C1(X,R) of the form

I(u) =
1
2
(∥
∥u+∥

∥2 –
∥
∥u–∥

∥2) – φ(u), u = u+ + u– ∈ X+ ⊥ X–.

Suppose that the following assumptions are satisfied:
(I1) φ ∈ C1(X,R) is bounded from below and weakly sequentially lower semi-continuous;
(I2) φ′ is weakly sequentially continuous;
(I3) there exist r > ρ > 0 and e ∈ X+ with ‖e‖ = 1 such that

κ := inf I(Sρ) > sup I(∂Q),

where

Sρ =
{

u ∈ X+ : ‖u‖ = ρ
}

, Q =
{

se + v : v ∈ X–, s ≥ 0,‖se + v‖ ≤ r
}

.

Then, for some c ≥ κ , there exists a sequence {un} ⊂ X satisfying

I(un) → c,
∥
∥I ′(un)

∥
∥
(
1 + ‖un‖

) → 0.

Let

E+ = H+ × H–, E– = H– × H+, (2.12)

then, for any z = (u, v) ∈ E, there holds

z = z+ + z–, z+ =
(
u+, v–) ∈ E+, z– =

(
u–, v+) ∈ E–. (2.13)
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Moreover, E+ and E– are orthogonal with respect to the inner products (·, ·)2 and
(·, ·), where (·, ·)2 is chosen by ((u, v), (ϕ,ψ))2 = (u,ϕ)L2 + (v,ψ)L2 for any (u, v), (ϕ,ψ) ∈
L2(RN ,R2). Hence E = E+ ⊕ E–.

Next we show that (G3′) implies (G3). If inf V∞ > �, take μ̄ ∈ (�, inf V∞), then there ex-
ists η0 ∈ (E(μ̄) –E(0))H × (E(0) –E(–μ̄))H ⊂ E+ \ {0} such that �‖η0‖2

2 ≤ ‖η0‖2 ≤ μ̄‖η0‖2
2,

thus for any w ∈ E–, one has

‖η0‖2 – ‖w‖2 –
∫

RN
V∞(x)|η0 + w|2 dx

≤ μ̄‖η0‖2
2 – ‖w‖2 – inf V∞

(‖η0‖2
2 + ‖w‖2

2
)

= –
[
(inf V∞ – μ̄)‖η0‖2

2 + ‖w‖2 + inf V∞
(‖η0‖2

2 + ‖w‖2
2
)]

< 0. (2.14)

This shows that (1.7) holds.
As in [46], we introduce a change of variable

⎧
⎨

⎩

ϕ = u+v√
2 ,

ψ = u–v√
2 ,

(2.15)

and set H(x, z) = H(x, u, v) := G(x, u+v√
2 , u–v√

2 ), H̄(x, z) = Ḡ(x, u+v√
2 , u–v√

2 ), here and in the sequel,

we write z = (u, v) and |z| = (|u|2 + |v|2) 1
2 .

It is not difficult to verify that assumptions (G2′), (G4′), and (G0)–(G5) on G imply that
H satisfies:

(S0) There exist constants p ∈ (2, 2∗) and C1 > 0 such that

∣
∣Hz(x, z)

∣
∣ ≤ C1

(
1 + |z|p–1), ∀(x, z) ∈ R

N ×R
2;

(S1) H ∈ C1(RN ×R
2, [0,∞)) is 1-periodic in xi, i = 1, 2, . . . , N , and |Hz(x, z)| = o(|z|) as

|z| → 0 uniformly in x;
(S2) Ĥ(x, z) := 1

2 Hz(x, z) · z – H(x, z) ≥ 0, and there exist constants C0 > 0, δ0 ∈ (0,�0)
and σ > max{1, N/2} such that

|Hz(x, z)|
|z| ≥ 1

2
(�0 – δ0) �⇒ ∣

∣Hz(x, z)
∣
∣σ ≤ C0Ĥ(x, z)|z|σ ;

(S3) Hz(x, z) = V∞(x)z+H̄z(x, z), where V∞ ∈ C(RN ) is 1-periodic in each of x1, x2, . . . , xN

with inf V∞ > 0, and there exists z0 ∈ E+ \ {0} such that

τ 2‖z0‖2 – ‖w‖2 –
∫

RN
V∞(x)(τz0 + w)2 dx < 0, ∀τ > 0, w ∈ E–;

Hz(x, z) · H̄z(x, z) ≤ 0 and Hz(x, z) · H̄z(x, z) < 0 for 0 < |z| ≤ α0 for some α0 > 0,
|H̄z(x, z)| = o(|z|) as |z| → ∞ uniformly in x ∈R

N ;
(S3′) Hz(x, z) = V∞(x)z+H̄z(x, z), where V∞ ∈ C(RN ) is 1-periodic in each of x1, x2, . . . , xN

with inf V∞ > �, |H̄z(x, z)| = o(|z|) as |z| → ∞ uniformly in x ∈ R
N , and Hz(x, z) ·

H̄z(x, z) < 0 for x ∈R
N and z 	= (0, 0);
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(S4) For all θ ≥ 0, x ∈ R
N , z, ζ ∈ E, there holds

1 – θ2

2
Hz(x, z) · z – θHz(x, z) · ζ + H(x, θz + ζ ) – H(x, z) ≥ 0;

(S4′) Ĥ(x, z) ≥ 0, and for any x ∈ R
N , z, ζ ∈R

2, there holds

2Hz(x, z) · z
[
H(x, z) – H(x, ζ )

] ≤ (
Hz(x, z) · z

)2 –
(
Hz(x, z) · ζ )2,

whenever Hz(x, z) · ζ = Hz(x, ζ ) · z 	= 0.
Under (V), (S0), and (S1), it follows from Lemma 2.2 that, for any ε > 0, there exist Cε > 0

and p ∈ (2, 2∗) such that

∣
∣Hz(x, z)

∣
∣ ≤ ε|z| + Cε|z|p–1, ∀(x, z) ∈R

N ×R
2. (2.16)

Clearly, (S0) holds under (S1) and (S3), as well as under (S1), (S2), and (SQ). For any z =
(u, v) ∈ E, it follows from (2.6) and (2.15) that η = (ϕ,ψ) = ( u+v√

2 , u–v√
2 ) and

∫

RN

(∇ϕ∇ψ + V (x)ϕψ
)

dx

=
1
2

∫

RN

(|∇u|2 + V (x)|u|2 – |∇v|2 – V (x)|v|2)dx

=
1
2
(∥
∥u+∥

∥2
H –

∥
∥u–∥

∥2
H –

∥
∥v+∥

∥2
H +

∥
∥v–∥

∥2
H

)

=
1
2
(∥
∥z+∥

∥2 –
∥
∥z–∥

∥2). (2.17)

Thus, we have an equivalent functional

�(z) = �(u, v) =
1
2
(∥
∥z+∥

∥2 –
∥
∥z–∥

∥2) – �(z) (2.18)

and

〈
�′(z), ζ

〉
=

(
z+, ζ +)

–
(
z–, ζ –)

–
〈
� ′(z), ζ

〉
, ∀z, ζ ∈ E, (2.19)

where

�(z) =
∫

RN
H(x, z) dx,

〈
� ′(z), ζ

〉
=

∫

RN
Hz(x, z) · ζ dx. (2.20)

It is obvious that z = (u, v) ∈ E is a critical point of � if and only if ( u+v√
2 , u–v√

2 ) is a critical
point of I . In what follows, we shall seek for the critical points of � under the assumptions
on H . Obviously, the sets M and N – defined by (1.2) and (1.3) can be rewritten as follows:

M :=
{

z ∈ E \ {
(0, 0)

}
: �′(z) = 0

}
, (2.21)

and

N – =
{

z ∈ E \ E– :
〈
�′(z), z

〉
=

〈
�′(z), ζ

〉
= 0,∀ζ ∈ E–}

, (2.22)
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By (V), the functional � is strongly indefinite, the type of which has been largely inves-
tigated by authors via critical point theory, see [8, 12, 13, 18, 33, 37] and the references
therein.

Before proceeding to the proof of the main results, we need some preliminaries.

Lemma 2.4 Suppose that (V), (S0), and (S1) are satisfied. If inf V∞ > 0, then

τ
〈
�′(z), τz + 2ζ

〉 ≥ τ 2∥∥z+∥
∥2 –

∥
∥τz– + ζ

∥
∥2 + ‖ζ‖2 –

∫

RN
V∞(x)|τz + ζ |2 dx

+ τ 2
∫

RN

z · Hz(x, z)V∞(x) – |Hz(x, z)|2
V∞(x)

dx,

∀z ∈ E, τ ∈R, ζ ∈ E–. (2.23)

Proof In view of (2.19) and inf V∞ > 0, we have

τ
〈
�′(z), τz + 2ζ

〉

= τ 2∥∥z+∥
∥2 – τ 2∥∥z–∥

∥2 – 2τ
(
z–, ζ

)
– τ

∫

RN
Hz(x, z) · (τz + 2ζ ) dx

= τ 2∥∥z+∥
∥2 –

∥
∥τz– + ζ

∥
∥2 + ‖ζ‖2 –

∫

RN
V∞(x)|τz + ζ |2 dx

+
∫

RN

[
V∞(x)|τz + ζ |2 – τHz(x, z) · (τz + 2ζ )

]
dx

= τ 2∥∥z+∥
∥2 –

∥
∥τz– + ζ

∥
∥2 + ‖ζ‖2 –

∫

RN
V∞(x)|τz + ζ |2 dx

+
∫

RN

{
V∞(x)|ζ |2 + 2τ

[
V∞(x)z – Hz(x, z)

] · ζ

+
[
V∞(x)|z|2 – z · Hz(x, z)

]
τ 2}dx

≥ τ 2∥∥z+∥
∥2 –

∥
∥τz– + ζ

∥
∥2 + ‖ζ‖2 –

∫

RN
V∞(x)|τz + ζ |2 dx

+
∫

RN

|V∞(x)ζ + τ [V∞(x)z – Hz(x, z)]|2
V∞(x)

dx

+ τ 2
∫

RN

z · Hz(x, z)V∞(x) – |Hz(x, z)|2
V∞(x)

dx

≥ τ 2∥∥z+∥
∥2 –

∥
∥τz– + ζ

∥
∥2 + ‖ζ‖2 –

∫

RN
V∞(x)|τz + ζ |2 dx

+ τ 2
∫

RN

z · Hz(x, z)V∞(x) – |Hz(x, z)|2
V∞(x)

dx, ∀z ∈ E, τ ∈R, ζ ∈ E–,

which shows that (2.23) holds. �

Corollary 2.5 Suppose that (V), (S0), and (S1) are satisfied, and that inf V∞ > 0. Then

∥
∥z+∥

∥2 –
∥
∥z– + ζ

∥
∥2 –

∫

RN
V∞(x)|z + ζ |2 dx

≤ –‖ζ‖2 –
∫

RN

z · Hz(x, z)V∞(x) – |Hz(x, z)|2
V∞(x)

dx, ∀z ∈N –, ζ ∈ E–. (2.24)
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Employing a standard argument (see [37] and [40]), one can easily check the following
lemma.

Lemma 2.6 Let (V), (S0), and (S1) be satisfied. Then � is nonnegative and weakly sequen-
tially lower semi-continuous, and � ′ is weakly sequentially continuous.

3 Proof of main results
Lemma 3.1 Let (V), (S0), (S1), and (S4) be satisfied. Then, for any z ∈ E,

�(z) ≥ �(τz + ζ ) +
1
2
‖ζ‖2 +

1 – τ 2

2
〈
�′(z), z

〉
– τ

〈
�′(z), ζ

〉
, ∀ζ ∈ E–, τ ≥ 0. (3.1)

Proof The proof is the same as the one of [35, Lemma 3.3], here we omit the details. �

From Lemma 3.1, we have the following two corollaries.

Corollary 3.2 Let (V), (S0), (S1), and (S4) be satisfied. Then, for any z ∈N –,

�(z) ≥ �(τz + ζ ) +
1
2
‖ζ‖2, ∀ζ ∈ E–, τ ≥ 0. (3.2)

Corollary 3.3 Let (V), (S0), (S1), and (S4) be satisfied. Then, for any z ∈ E,

�(z) ≥ �
(
τz+)

+
τ 2‖z–‖2

2
+

1 – τ 2

2
〈
�′(z), z

〉
+ τ 2〈�′(z), z–〉

, ∀τ ≥ 0. (3.3)

Applying Corollary 3.2, we can prove the following lemma in the same way as [33,
Lemma 2.6].

Lemma 3.4 Let (V), (S0), (S1), and (S4) be satisfied. Then
(i) there exists ρ > 0 such that m := infN– � ≥ κ := inf{�(z) : z ∈ E+,‖z‖ = ρ} > 0;

(ii) ‖z+‖ ≥ max{‖z–‖,
√

2m} for all z ∈N –.

Define a set E+
0 as follows:

E+
0 =

{

z ∈ E+ \ {0} : ‖z‖2 – ‖ζ‖2 –
∫

RN
V∞(x)|z + ζ |2 dx < 0,∀ζ ∈ E–

}

. (3.4)

Obviously, (S3) shows that the set E+
0 is not empty.

Lemma 3.5 Let (V), (S1), and (S3) be satisfied. Then, for any e ∈ E+
0 , there is a constant

r1 > ρ such that sup�(∂Q) ≤ 0 for r ≥ r1, where

Q =
{
ζ + se : ζ ∈ E–, s ≥ 0,‖ζ + se‖ ≤ r

}
. (3.5)

Proof It is sufficient to show �(z) ≤ 0 for z ∈ E– ⊕ Re and ‖z‖ ≥ R for large R. Arguing
indirectly, assume that, for some sequence {zn} ⊂ E– ⊕ R

+e with ‖zn‖ → ∞, �(zn) ≥ 0
for all n ∈ N. Set wn = zn

‖zn‖ = w–
n + sne, then ‖wn‖ = 1. Passing to a subsequence, we may

assume that wn ⇀ w in E. By Lemma 2.1 and (2.18), then wn → w a.e. on R
N , sn → s and

0 ≤ �(zn)
‖zn‖2 =

1
2

s2
n‖e‖2 –

1
2
∥
∥w–

n
∥
∥2 –

∫

RN

H(x, zn)
|zn|2 |wn|2 dx. (3.6)
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If s = 0, it follows from (S1) and (3.6) that

0 ≤ 1
2
∥
∥w–

n
∥
∥2 +

∫

RN

H(x, zn)
|zn|2 |wn|2 dx ≤ s2

n
2

‖e‖2 → 0,

which yields ‖w–
n‖ → 0, and so 1 = ‖wn‖ → 0, a contradiction.

If s 	= 0, then w 	= 0. Since e ∈ E+
0 , there exists a bounded domain � ⊂R

N such that

s2‖e‖2 –
∥
∥w–∥

∥2 –
∫

�

V∞(x)
∣
∣se + w–∣

∣2 dx < 0. (3.7)

By (S3), H(x, z) = 1
2 V∞(x)|z|2 + H̄(x, z). It follows from (3.6) that

0 ≤ s2
n
2

‖e‖2 –
1
2
∥
∥w–

n
∥
∥2 –

∫

�

H(x, zn)
‖zn‖2 dx

=
s2

n
2

‖e‖2 –
1
2
∥
∥w–

n
∥
∥2 –

1
2

∫

�

V∞(x)|wn|2 dx –
∫

�

H̄(x, zn)
‖zn‖2 dx.

Clearly, |H̄(x, z)| ≤ C1|z|2 for some C1 > 0 and |H̄(x, z)|/|z|2 → 0 as |z| → ∞. Since wn ⇀ w
in E, then wn → w in L2(�), and it is easy to see from the Lebesgue dominated convergence
theorem that

∫

�

H(x, zn)
‖zn‖2 dx =

∫

�

F(x, zn)
|zn|2 |wn|2 dx = o(1).

Hence

0 ≤ s2‖e‖2 –
∥
∥w–∥

∥2 –
∫

�

V∞(x)
∣
∣se + w–∣

∣2 dx,

a contradiction to (3.7). �

Lemma 3.6 Let (V), (S1), (S2), and (SQ) be satisfied. Then, for any e ∈ E+ with ‖e‖ = 1,
there is a constant r1 > ρ such that sup�(∂Q) ≤ 0 for r ≥ r1, where

Q =
{
ζ + se : ζ ∈ E–, s ≥ 0,‖ζ + se‖ ≤ r

}
. (3.8)

Proof The argument is similar to the proof of Lemma 3.5, we only need to modify the last
part of it. Indeed, for the case s 	= 0, it follows from (S1), (SQ), (3.6), and Fatou’s lemma
that

0 ≤ lim sup
n→∞

[
s2

n
2

–
1
2
∥
∥w–

n
∥
∥2 –

∫

RN

H(x, zn)
|zn|2 |wn|2 dx

]

≤ lim
n→∞

s2
n
2

– lim inf
n→∞

∫

RN

H(x, zn)
|zn|2 |wn|2 dx

≤ s2

2
–

∫

RN
lim inf

n→∞
H(x, zn)

|zn|2 |wn|2 dx = –∞,

a contradiction. �
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By virtue of Lemmas 3.4 and 3.5, one can prove the following lemma by using the same
argument as in the proof of [33, Lemma 2.6].

Lemma 3.7 Let (V), (S1), (S3), and (S4) be satisfied. Then, for any z ∈ E+
0 , N – ∩ (E– ⊕

R
+z) 	= ∅, i.e., there exist τ (z) > 0 and w(z) ∈ E– such that τ (z)z + w(z) ∈N –.

Applying Lemmas 2.3, 2.6, 3.4(i), 3.5, and 3.6, one gets directly the following.

Lemma 3.8 Under (V) and (S1), either (S2), (SQ) are satisfied or (S3) holds. Then there
exist a constant c ∈ [κ , sup�(Q)] and a sequence {zn} ⊂ E such that

�(zn) → c,
∥
∥�′(zn)

∥
∥
(
1 + ‖zn‖

) → 0, (3.9)

where Q is defined by (3.8).

The following lemma shows that a minimizing Cerami sequence for the energy func-
tional can be found outside the Nehari–Pankov manifold, from which one can easily
demonstrate a ground state solution of Nehari–Pankov type for problem (1.1).

Lemma 3.9 Let (V), (S1), (S3), and (S4) be satisfied. Then there exist a constant c∗ ∈ [κ , m]
and a sequence {zn} ⊂ E satisfying

�(zn) → c∗,
∥
∥�′(zn)

∥
∥
(
1 + ‖zn‖

) → 0. (3.10)

Proof The proof is essentially contained in [34], we omit it here. �

Lemma 3.10 Let (V), (S1), and (S3) be satisfied. Then for any sequence {zn} ⊂ E satisfying
(3.10) is bounded in E.

Proof To prove the boundedness of {zn}, arguing by contradiction, suppose that ‖zn‖ →
∞. Let wn = zn/‖zn‖, then ‖wn‖ = 1. By Lemma 2.1, there exists a constant C2 > 0 such that
‖w+

n‖2 ≤ C2. If

δ := lim sup
n→∞

sup
y∈RN

∫

B1(y)

∣
∣w+

n
∣
∣2 dx = 0,

then by Lions’s concentration compactness principle [24] or [37, Lemma 1.21] (usually
this lemma is stated for {zn} ⊂ H1(RN ); however, a simple modification of the argument
in [24] shows that the conclusion remains valid for E), w+

n → 0 in Ls(RN ,R2) for 2 < s < 2∗.
Fix R > [2(1 + c)]1/2. By virtue of (2.16), for ε = 1/4(RC2)2 > 0, we have

lim sup
n→∞

∫

RN
H

(
x, Rw+

n
)

dx ≤ ε(RC2)2 + RpCε lim
n→∞

∥
∥w+

n
∥
∥p

p =
1
4

. (3.11)

Let τn = R/‖zn‖. Hence, by virtue of (3.10), (3.11), and Corollary 3.3, one can get that

c + o(1) = �(zn) ≥ τ 2
n
2

(∥
∥z+

n
∥
∥2 +

∥
∥z–

n
∥
∥2) –

∫

RN
H

(
x, τnz+

n
)

dx +
1 – τ 2

n
2

〈
�′(zn), zn

〉

+ τ 2
n
〈
�′(zn), z–

n
〉
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=
R2

2
(∥
∥w+

n
∥
∥2 +

∥
∥w–

n
∥
∥2) –

∫

RN
H

(
x, Rw+

n
)

dx +
(

1
2

–
R2

2‖zn‖2

)
〈
�′(zn), zn

〉

+
R2

‖zn‖2

〈
�′(zn), z–

n
〉

=
R2

2
–

∫

RN
H

(
x, Rw+

n
)

dx + o(1) ≥ R2

2
–

1
4

+ o(1) > c +
3
4

+ o(1).

This contradiction shows that δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z

N such that
∫

B1+
√

N (kn) |w+
n|2 dx > δ

2 . Let w̃n(x) = wn(x + kn). Since V (x) is 1-periodic in x, then ‖w̃n‖ =
‖wn‖ = 1, and

∫

B1+
√

N (0)

∣
∣w̃+

n
∣
∣2 dx >

δ

2
. (3.12)

Passing to a subsequence, we have w̃n ⇀ w̃ in E, w̃n → w̃ in Ls
loc(RN ,R2), 2 ≤ s < 2∗, w̃n →

w̃ a.e. on R
N . It follows from (3.12) that w̃+ 	= 0, and so w̃ 	= 0.

Now we define z̃n(x) = zn(x + kn), then z̃n/‖zn‖ = w̃n → w̃ a.e. on R
N , w̃ 	= 0. For x ∈

� := {y ∈ R
N : w̃(y) 	= 0}, we have limn→∞ |z̃n(x)| = ∞. For any ς ∈ C∞

0 (RN ,R2), setting
ςn(x) = ς (x – kn), then

〈
�′(zn),ςn

〉
=

(
z+

n – z–
n ,ςn

)
– (V∞zn,ςn)2 –

∫

RN
H̄z(x, zn) · ςn dx

= ‖zn‖
[
(
w+

n – w–
n ,ςn

)
– (V∞wn,ςn)2 –

∫

RN

H̄z(x, zn)
|zn| · ςn|wn|dx

]

= ‖zn‖
[
(
w̃+

n – w̃–
n ,ς

)
– (V∞w̃n,ς )2 –

∫

RN

H̄z(x, z̃n)
|z̃n| · ς |w̃n|dx

]

,

which, together with (3.10), yields that

(
w̃+

n – w̃–
n ,ς

)
– (V∞w̃n,ς )2 –

∫

RN

H̄z(x, z̃n)
|z̃n| · ς |w̃n|dx = o(1). (3.13)

Note that, for some constant C > 0, there holds

∣
∣
∣
∣

∫

RN

H̄z(x, z̃n)
|z̃n| · ς

∣
∣
∣
∣w̃n|dx| ≤

∫

RN

∣
∣
∣
∣
H̄z(x, z̃n)

|z̃n|
∣
∣
∣
∣|w̃n – w̃||ς |dx +

∫

RN

∣
∣
∣
∣
H̄z(x, z̃n)

z̃n

∣
∣
∣
∣|w̃||ς |dx

≤ C
∫

suppς

|w̃n – w̃||ς |dx +
∫

�

∣
∣
∣
∣
H̄z(x, z̃n)

z̃n

∣
∣
∣
∣|w̃||ς |dx = o(1).

Hence,

(
w̃+ – w̃–,ς

)
– (V∞w̃,ς )2 = 0, ∀ς = (ϕ,ψ) ∈ C∞

0
(
R

N ,R2). (3.14)

Let w̃ = (u, v), then w̃+ – w̃– = (u+ – u–, v– – v+). Thus from (3.14) we have

(
u+ – u–,ϕ

)

H +
(
v– – v+,ψ

)

H – (V∞u,ϕ)L2 – (V∞v,ψ)L2 = 0,
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which implies that

⎧
⎨

⎩

–�u + V (x)u = V∞u,

�v + V (x)v = V∞v.

Hence u is an eigenfunction of operator B1 := –
 + (V – V∞), and v is an eigenfunction
of operator B2 := –
 + (V∞ – V ), which contradicts the fact that Bi has only continuous
spectrum for i = 1, 2 since V – V∞ is 1-periodic. This contradiction shows that {zn} is
bounded. �

Lemma 3.11 Let (V), (S1), (S2), and (SQ) be satisfied. Then for any sequence {zn} ⊂ E
satisfying

�(zn) → c ≥ 0,
〈
�′(zn), z±

n
〉 → 0, (3.15)

is bounded in E.

Proof By virtue of (S4) and (3.15), there exists a constant C3 > 0 such that

C3 ≥ �(zn) –
1
2
〈
�′(zn), zn

〉
=

∫

RN
Ĥ(x, zn) dx ≥ 0. (3.16)

To prove the boundedness of {zn}, arguing by contradiction, suppose that ‖zn‖ → ∞. Let
wn = zn/‖zn‖, then ‖wn‖ = 1. If δ := lim supn→∞ supy∈RN

∫

B1(y) |w+
n|2 dx = 0, then by Lions’s

concentration compactness principle, w+
n → 0 in Ls(RN ,R2) for 2 < s < 2∗. Set σ ′ = σ /(σ –

1) and

�n :=
{

x ∈R
N :

|Hz(x, z)|
|z| ≤ 1

2
(�0 – δ0)

}

. (3.17)

Then 2σ ′ ∈ (2, 2∗) since σ > max{1, N/2}. Note that �0‖z‖2
2 ≤ ‖z‖2 for any z ∈ E, then

∫

�n

|Hz(x, zn)|
|zn| |wn|

∣
∣w+

n
∣
∣dx ≤ 1

2
(�0 – δ0)

∥
∥w+

n
∥
∥

2‖wn‖2 ≤ 1
2

–
δ0

2�0
. (3.18)

On the other hand, by virtue of (S4), (3.16), Lemma 2.1, and the Hölder inequality, there
exists a constant C4 > 0 such that

∫

RN \�n

|Hz(x, zn)|
|zn| |wn|

∣
∣w+

n
∣
∣dx ≤

[∫

RN \�n

( |Hz(x, zn)|
|zn|

)σ]1/σ∥
∥w+

n
∥
∥

2σ ′ ‖wn‖2σ ′

≤ C4

(∫

RN \�n

C0Ĥ(x, zn) dx
)1/σ∥

∥w+
n
∥
∥

2σ ′

≤ C4(C0C3)1/σ∥
∥w+

n
∥
∥

2σ ′ = o(1). (3.19)

In view of (S1), (2.18), and (3.15), one has

2c + o(1) =
∥
∥z+

n
∥
∥2 –

∥
∥z–

n
∥
∥2 – 2

∫

RN
H(x, zn) dx ≤ ∥

∥z+
n
∥
∥2 –

∥
∥z–

n
∥
∥2. (3.20)
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Combining (3.18) and (3.19) and using (2.19), (3.15), and (3.20), we have

1
2

+ o(1) ≤ ‖z+
n‖2 – 〈�′(zn), z+

n〉
‖zn‖2

=
1

‖zn‖
∫

|z+
n |	=0

Hz(x, zn) · z+
n

|z+
n |

∣
∣w+

n
∣
∣dx

≤
∫

|zn|	=0

|Hz(x, zn)|
|zn| |wn|

∣
∣w+

n
∣
∣dx

≤
∫

�n

|Hz(x, zn)|
|zn| |wn|

∣
∣w+

n
∣
∣dx +

∫

RN \�n

|Hz(x, zn)|
|zn| |wn|

∣
∣w+

n
∣
∣dx

≤ 1
2

–
δ0

2�0
+ o(1). (3.21)

This contradiction shows that δ > 0. The rest of the argument is standard, so we omit it.
�

We first prove Theorem 1.4, then sketch the proof of Theorem 1.3.

Proof of Theorem 1.4 Applying Lemmas 3.9 and 3.10, there exists a bounded sequence
{zn} ⊂ E satisfying (3.10). By Lemma 2.1, there is a constant C5 > 0 such that ‖zn‖2

2 +
‖zn‖p

p ≤ C5. If

δ := lim sup
n→∞

sup
y∈RN

∫

B(y,1)
|zn|dx = 0,

then by Lions’s concentration compactness principle, zn → 0 in Ls(RN ,R2) for 2 < s < 2∗.
From (S1), (2.16), (2.18), (2.19), and (3.10), one has

2c∗ + o(1) =
∥
∥z+

n
∥
∥2 –

∥
∥z–

n
∥
∥2 – 2

∫

RN
H(x, zn) dx

≤ ∥
∥z+

n
∥
∥2 =

〈
�′(zn), z+

n
〉
+

∫

RN
Hz(x, zn)z+

n dx

≤ ε‖zn‖2
∥
∥z+

n
∥
∥

2 + Cε‖zn‖p–1
p

∥
∥z+

n
∥
∥

p + o(1)

≤ εC5 + o(1).

This is a contradiction since ε > 0 is arbitrary. Thus δ > 0.
Going if necessary to a subsequence, we may assume the existence of kn ∈ Z

N such that
∫

B(kn ,1+
√

N)
|zn|2 dx >

δ

2
.

Let us define wn(x) = zn(x + kn) so that
∫

B(0,1+
√

N)
|wn|2 >

δ

2
. (3.22)

Since V (x), H(x, z) are periodic in x, together with (3.10), we have ‖wn‖ = ‖zn‖ and

�(wn) → c∗ ∈ [κ , m],
∥
∥�′(wn)

∥
∥
(
1 + ‖wn‖

) → 0. (3.23)
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Passing to a subsequence, we have wn ⇀ w0 in E, wn → w0 in Ls
loc(RN ,R2) for 2 ≤ s < 2∗

and wn → w0 a.e. onR
N . Hence it follows from (3.22) and (3.23) that �′(w0) = 0 and w0 	= 0.

This shows that w0 ∈N –, and so �(w0) ≥ m. On the other hand, by (S1),(S4), (2.18), (2.19),
(3.23), and Fatou’s lemma, we have

m ≥ c∗ = lim
n→∞

[

�(wn) –
1
2
〈
�′(wn), wn

〉
]

= lim
n→∞

∫

RN
Ĥ(x, wn) dx ≥

∫

RN
lim inf

n→∞ Ĥ(x, wn) dx

=
∫

RN
Ĥ(x, w0) dx = �(w0) –

1
2
〈
�′(w0), w0

〉

= �(w0).

This shows that �(w0) ≤ m, and so �(w0) = m = infN– � ≥ κ > 0 by Lemma 3.4(i). �

Proof of Theorem 1.3 It follows from Lemma 2.2 that (S1), (SQ), and (S2) yield (S0). Ap-
plying Lemmas 3.8 and 3.11, there exists a bounded sequence {zn} ⊂ E satisfying (3.9).
Similar to the argument as in the proof of Theorem 1.3, we can show that �′(z̄) = 0 for
some z̄ ∈ E \ {(0, 0)}, i.e., M 	= 0. Let ĉ := infM �. By (S4), for any z ∈M, one has

�(z) = �(z) –
1
2
〈
�′(z), z

〉
=

∫

RN
Ĥ(x, z) dx ≥ 0,

therefore ĉ ≥ 0. Let {zn} ⊂ M such that �(zn) → ĉ. Then 〈�′(zn), ζ 〉 = 0 for any ζ ∈ E. It
follows from Lemma 3.11 that {zn} is bounded in E. The rest of the argument is the same
as in the proof of Theorem 1.4 by using (S2) instead of (S4). �

Appendix
Here, we prove that (G4) holds under (G1), (G4′), and (G2). It is equivalent to showing that
(S4′) together with (S1), (S3′) yields (S4). For any z, ζ ∈R

2, let

h(t) :=
1 – t2

2
Hz(x, z) · z – tHz(x, z) · ζ + H(x, tz + ζ ) – H(x, z), ∀t ≥ 0.

It is sufficient to show that h(t) ≥ 0 for t ≥ 0. If z = 0, then h(t) = H(x, ζ ) ≥ 0 by (S1).
Assume z 	= 0. It follows from (S1), (S4′) and z · H̄z(x, z) < 0 for z 	= 0 (deduced from (S3′))
that

h(0) =
1
2

Hz(x, z) · z – H(x, z) + H(x, ζ ) ≥ 0, and h(t) ≥ 0 for any t large.

Assume that h(t) reaches a minimum at some point t0 ∈ [0,∞). Clearly, h(t) ≥ 0 for any
t ≥ 0 if t0 = 0. Assume t0 > 0. Then h′(t0) = 0, i.e.,

Hz(x, t0z + ζ ) · z – Hz(x, z) · (t0z + ζ ) = 0.

If Hz(x, t0z + ζ ) · z = 0, (S1) and (S4′) imply that

h(t0) =
1 + t2

0
2

Hz(x, z) · z – H(x, z) + H(x, t0z + ζ ) ≥ 0.
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If Hz(x, t0z + ζ ) · z 	= 0, (S4′) yields that Hz(x, z) · z 	= 0. Using (S1) and (S4′) again, we have

h(t0) ≥ 1 – t2
0

2
Hz(x, z) · z – t0Hz(x, z) · ζ –

[
2Hz(x, z) · z

]–1

× {[
Hz(x, z) · z

]2 –
[
Hz(x, z) · (t0z + ζ )

]2}

≥ [
2Hz(x, z) · z

]–1[t0Hz(x, z) · z – Hz(x, z) · (t0z + ζ )
]2

≥ 0.

Then h(t) ≥ 0 for t ≥ 0, and so (S4) holds.
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