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Abstract
The local well-posedness for the Cauchy problem of a nonlinear shallow water
equation is established. The wave-breaking mechanisms, global existence, and
infinite propagation speed of solutions to the equation are derived under certain
assumptions. In addition, the effects of coefficients λ, β , a, b, and index k in the
equation are illustrated.
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1 Introduction
We aim to consider the problem

⎧
⎪⎪⎨

⎪⎪⎩

vt – vxxt + β(vx – vxxx) + λ(v – vxx) + (a + b)vkvx

= bvk–1vxvxx + avkvxxx,

v(0, x) = v0(x).

(1.1)

Here (t, x) ∈ R
+ × R, v(t, x) is fluid velocity of water waves, λ ∈ R

+, β ∈ R, (a, b) ∈ R
2,

k is a positive integer, β(v – vxx) is the diffusion term, λ(v – vxx) is the dissipative term,
v0 ∈ Bs

p,r(R) (s > max(1 + 1
p , 3

2 )).
Recently, the Camassa–Holm (CH) equation

vt – vxxt + βvx + 3vvx = 2vxvxx + vvxxx (1.2)

has attracted much attention. Equation (1.2) admits blow-up phenomena. Replacing v
with v + β in Eq. (1.2), we obtain

vt – vxxt + β(vx – vxxx) + 3vvx = 2vxvxx + vvxxx. (1.3)

Taking k = 1,λ = 0, a = 1, b = 2 in (1.1) gives rise to the Cauchy problem of Eq. (1.3). The
solution v to Eq. (1.2) is viewed as a perturbation near β (see [20]). The properties of
solutions to the problem with dispersion and dissipative terms are discovered in [15]. Mi
et al. [12] investigate the dynamical properties for a generalized CH equation. For a related
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study of the CH equation and other related partial differential equations, one may refer to
references [3, 7, 11, 14, 16].

Taking k = 1,λ = β = 0, a = 1, b = 3 in (1.1) yields the Degasperis–Procesi equation

vt – vxxt + 4vvx = 3vxvxx + vvxxx. (1.4)

The formation of singularity for solutions to (1.4) is discovered in [17]. Lai and Wu [10]
study the local well-posedness for the Cauchy problem of

vt – vxxt + βvx + (a + b)vx = bvxvxx + avvxxx, (1.5)

where β , a, b ∈R.
Taking k = 2,λ = β = 0, a = 1, b = 3 in (1.1), we obtain the Novikov equation

vt – vxxt + 4v2vx = 3vvxvxx + v2vxxx. (1.6)

Guo [4] studies the persistence properties of solutions to the CH-type equation. Fu and
Qu [2] discover blow-up of solutions to Eq. (1.6) in Hs(R) (s > 5

2 ). The peakon solutions to
the Novikov equation are established in [6].

Himonas and Thompson [8] discover persistence properties for solutions if λ = β =
0, a = 1 in (1.1). The behaviors of solutions [5], global existence of solutions for a = 1 [9],
and infinite propagation speed of solutions [9, 19] to the problems are investigated. We
extend parts of results in [9, 10, 13, 18, 19].

Let s ∈R, T > 0, p ∈ [1,∞] and r ∈ [1,∞]. Thus we set

Es
p,r(T) =

⎧
⎨

⎩

C([0, T]; Bs
p,r(R)) ∩ C1([0, T]; Bs–1

p,r (R)), 1 ≤ r < ∞,

L∞([0, T]; Bs
p,∞(R)) ∩ Lip([0, T]; Bs–1

p,∞(R)), r = ∞.

Letting P1(D) = –∂x(1 – ∂2
x )–1, P2(D) = (1 – ∂2

x )–1, problem (1.1) is turned into

⎧
⎪⎪⎨

⎪⎪⎩

vt + (avk + β)vx = P1(D)[ b
k+1 vk+1 + 3ak–b

2 vk–1v2
x]

+ P2(D)[ (k–1)(ak–b)
2 vk–2v3

x – λv],

v(0, x) = v0(x).

(1.7)

Now we summarize the main results in this paper.

Theorem 1.1 Suppose 1 ≤ r, p ≤ ∞, v0 ∈ Bs
p,r(R) (s > max(1 + 1

p , 3
2 )). Then solution v ∈

Es
p,r(T) to problem (1.1) is locally well-posed for certain T > 0.

Theorem 1.2 Suppose 1 ≤ r, p ≤ ∞, v0 ∈ Bs
p,r(R) (s > max(1 + 1

p , 3
2 )), t ∈ [0, T]. Then a

solution v to problem (1.1) blows up in finite time if and only if

∫ t

0

(
1 + ‖vx‖L∞

)k dτ = ∞. (1.8)
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Theorem 1.3 Suppose b = a(k + 1) and v0 ∈ Hs(R) (s > 3
2 ), t ∈ [0, T]. Then a solution v to

problem (1.1) blows up in finite time if and only if

lim
t→T–

inf
x∈R

vx(t, x) = –∞. (1.9)

Theorem 1.4 Suppose b = a(k + 1) and v0 ∈ Hs(R) (s ≥ 2) satisfies ‖v0 – v0,xx‖L2 <
4λ

|a|(k+2)‖v0‖k–1
H1

. Then there exists a global solution to problem (1.1) in Hs(R) (s ≥ 2).

Theorem 1.5 Assume v0 ∈ Hs(R) (s ≥ 2), n0(x) = v0 – v0,xx 	= 0 for all x ∈ R, ‖n0‖L2 <
( 2k+1λ
|ak–2b| )

1
k and b 	= ak

2 . Then a solution v to problem (1.1) is global in Hs(R) (s ≥ 2).

Theorem 1.6 Assume a > 0 and let v0 ∈ Hs(R) (s > 5
2 ) be compactly supported in [a0, b0],

t ∈ [0, T]. Suppose k is a positive odd number and b = ak, or k = 1, 0 < b < 3a. Then, the
solution v(t, x) to (1.1) satisfies

v(t, x) =
1
2

L+(t)e–x for x ≥ p(t, b0), v(t, x) =
1
2

L–(t)ex for x ≤ p(t, a0),

where L+(t) and L–(t) are continuous non-vanishing functions given in (4.1). What is more,
L+(t) > 0, L–(t) < 0 for t ∈ [0, T]. In particular, if k = 1, b = 2a or b = a

2 , then L+(t) ≤ C3e(β–λ)t

and |L–(t)| ≤ C4e–(β+λ)t .

Remark 1.1 Problem (1.1) is local well-posed in Bs
p,r(R) (s > max( 3

2 , 1 + 1
p )). ‖v(t)‖H1(R) is

bounded if b = a(k + 1). Also ‖v(t)‖H2(R) is bounded if b = ak
2 . Theorem 1.2 improves the

result of Theorem 5.1 in [19]. Theorem 1.3 implies that wave-breaking for a solution v
occurs if its slope is unbounded. This result improves Theorem 3.1 in [18] and Theorem
5.6 in [19]. From Theorems 1.4, 1.5, and 1.6, we deduce that λ, β , a, b, and k are related to
global existence and infinite propagation speed of the solutions. Parts of results in [9, 10,
13, 18, 19] are extended.

2 Proof of Theorem 1.1
We prove Theorem 1.1 in following five steps.

Step 1. Let v0 = 0. Let (vi)i∈N ∈ C(R+; B∞
p,r) be smooth and satisfy

⎧
⎨

⎩

(∂t + (a(vi)k + β)∂x)vi+1 = G,

vi+1(0, x) = vi+1
0 = Si+1v0,

(2.1)

and suppose

G = P1(D)
[

b
k + 1

(
vi)k+1 +

3ak – b
2

(
vi)k–1(vi)2

x

]

+ P2(D)
[

(k – 1)(ak – b)
2

(
vi)k–2(vi)3

x – λvi
]

. (2.2)

We see Si+1v0 ∈ B∞
p,r . Then the solution vi ∈ C(R+; B∞

p,r) in (2.1) is global for all i ∈ N by
Lemma 2.5 in [13].
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Step 2. It is derived from Lemma 2.4 in [13] that

∥
∥vi+1∥∥

Bs
p,r

≤ e
C1

∫ t
0 ‖(vi(τ ))k‖Bs

p,r
dτ

×
[

‖v0‖Bs
p,r +

∫ t

0
e

–C1
∫ τ

0 ‖(vi(ξ ))k‖Bsp,r
dξ∥∥G(τ , ·)∥∥Bs

p,r
dτ

]

. (2.3)

The notation a � b means a ≤ Cb for a certain positive constant C. We acquire the esti-
mates

∥
∥G(t, x)

∥
∥

Bs
p,r

�
(∥
∥vi∥∥

Bs
p,r

+ 1
)k∥∥vi∥∥

Bs
p,r

. (2.4)

That is,

∥
∥vi+1∥∥

Bs
p,r

≤ C2 · e
C2

∫ t
0 (‖vi(τ )‖Bsp,r

+1)k dτ
[

‖v0‖Bs
p,r

+
∫ t

0
e

–C2
∫ τ

0 (‖vi(ξ )‖Bs
p,r

+1)k dξ (∥∥vi∥∥
Bs

p,r
+ 1

)k∥∥vi∥∥
Bs

p,r
dτ

]

. (2.5)

One may find certain T > 0 which satisfies 2kCk+1
2 (1 + ‖v0‖Bs

p,r )kT < 1 and

(
1 +

∥
∥vi(t)

∥
∥

Bs
p,r

)k ≤ Ck
2 (1 + ‖v0‖Bs

p,r )k

1 – 2kCk+1
2 (1 + ‖v0‖Bs

p,r )kt
. (2.6)

Further, we deduce

(
1 +

∥
∥vi+1(t)

∥
∥

Bs
p,r

)k ≤ Ck
2 (1 + ‖v0‖Bs

p,r )k

1 – 2kCk+1
2 (1 + ‖v0‖Bs

p,r )kt
,

which implies that (vi)i∈N is uniformly bounded in Es
p,r(T).

Step 3. Let m, n ∈N. From (2.1), we deduce that

(
∂t +

(
a
(
vm+n)k + β

)
∂x

)(
vm+n+1 – vm+1)

= –a
((

vm+n)k –
(
vm)k)

∂xvm+1

+ P1(D)
[

b
k + 1

((
vm+n)k+1 –

(
vm)k+1)

]

+ P1(D)
[

3ak – b
2

((
vm+n)k–1(vm+n)2

x –
(
vm)k–1(vm)2

x

)
]

+ P2(D)
[

(k – 1)(ak – b)
2

((
vm+n)k–2(vm+n)3

x –
(
vm)k–2(vm)3

x

)
]

+ P2(D)
[
–λ

(
vm+n – vm)]

. (2.7)

Using Lemma 2.4 in [13] yields

∥
∥vm+n+1 – vm+1∥∥

Bs–1
p,r
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≤ e
C

∫ t
0 ‖vm+n‖k

Bsp,r
dτ

[
∥
∥vm+n+1

0 – vm+1
0

∥
∥

Bs–1
p,r

+ C ×
∫ t

0
e

–C
∫ τ

0 ‖vm+n‖k
Bsp,r

dξ

× (∥
∥vm+n – vm∥

∥
Bs–1

p,r

(∥
∥vm∥

∥
Bs

p,r
+

∥
∥vm+n∥∥

Bs
p,r

+
∥
∥vm+1∥∥

Bs
p,r

+ 1
)k)dτ

]

. (2.8)

We note that the initial values satisfy

vm+n+1
0 – vm+1

0 =
m+n∑

q=m+1

�qv0.

One may find a constant CT1 independent of m to satisfy

∥
∥vm+n+1 – vm+1∥∥

L∞([0,T];Bs–1
p,r ) ≤ CT1 2–m.

We obtain the desired results.
Step 4. Following the discussions in Step 4 in Sect. 3.1 in [13], one derives that v ∈ Es

p,r(T),
which is continuous.

Step 5. (Proof of the uniqueness). Suppose 1 ≤ r, p ≤ ∞, s > max( 3
2 , 1 + 1

p ). Assume v1

and v2 satisfy (1.7) with v1
0, v2

0 ∈ Bs
p,r , v1, v2 ∈ L∞([0, T]; Bs

p,r)∩C([0, T]; Bs–1
p,r ). We write v12 =

v1 – v2. Then

v12 ∈ L∞(
[0, T]; Bs

p,r
) ∩ C

(
[0, T]; Bs–1

p,r
)
,

which results in
⎧
⎨

⎩

∂tv12 + (a(v1)k + β)∂xv12 = –a((v1)k – (v2)k)∂xv2 + G1,

v12(0, x) = v12
0 = v1

0 – v2
0,

(2.9)

where

G1 = P1(D)
[

b
k + 1

((
v1)k+1 –

(
v2)k+1)

]

+ P1(D)
[

3ak – b
2

((
v1)k–1(v1)2

x –
(
v2)k–1(v2)2

x

)
]

+ P2(D)
[

(k – 1)(ak – b)
2

((
v1)k–2(v1)3

x –
(
v2)k–2(v2)3

x

)
– λv12

]

.

Using Lemma 2.4 in [13], we derive the estimates

e
–C

∫ t
0 ‖v1‖k

Bsp,r
dτ∥

∥v12∥∥
Bs–1

p,r

≤ ∥
∥v12

0
∥
∥

Bs–1
p,r

+ C
∫ t

0
e

–C
∫ τ

0 ‖v1‖k
Bs

p,r
dξ∥

∥v12∥∥
Bs–1

p,r

(∥
∥v1∥∥

Bs
p,r

+
∥
∥v2∥∥

Bs
p,r

+ 1
)k dτ ,

which finishes the proof of the uniqueness.
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Remark 2.1 Suppose b = a(k + 1), 1 ≤ r, p ≤ ∞, v0 ∈ Bs
p,r(R) (s > max(1 + 1

p , 3
2 )), t ∈ [0, T].

Then, the solution v to (1.1) satisfies

∥
∥v(t)

∥
∥

H1 ≤ ‖v0‖H1 .

3 Proofs of Theorems 1.2, 1.3, 1.4, and 1.5
3.1 Proof of Theorem 1.2
Taking advantage of the operator �q to (1.7) yields

(
∂t +

(
avk + β

)
∂x

)
�qv = a

[
vk ,�q

]
∂xv + �qG2(t, x), (3.1)

where

G2(t, x) = P1(D)
[

b
k + 1

vk+1 +
3ak – b

2
vk–1v2

x

]

+ P2(D)
[

(k – 1)(ak – b)
2

vk–2v3
x – λv

]

.

Applying Lemma 2.3 in [13] gives rise to the estimates

∥
∥a

[
vk ,�q

]
∂xv

∥
∥

Bs
p,r

� ‖vx‖k
L∞‖v‖Bs

p,r

and

∥
∥G2(t, x)

∥
∥

Bs
p,r

�
(‖vx‖k

L∞ + 1
)‖v‖Bs

p,r .

We derive that

∥
∥v(t)

∥
∥

Bs
p,r

� ‖v0‖Bs
p,r +

∫ t

0

(
1 +

∥
∥vx(τ )

∥
∥

L∞
)k∥∥v(τ )

∥
∥

Bs
p,r

dτ .

That is,

∥
∥v(t)

∥
∥

Bs
p,r

� ‖v0‖Bs
p,r e

∫ t
0 (1+‖vx(τ )‖L∞ )k dτ . (3.2)

Letting t ∈ [0, T∗], T∗ < ∞ and

∫ t

0

(
1 +

∥
∥vx(τ )

∥
∥

L∞
)k dτ < ∞, (3.3)

we see that ‖v(T∗)‖Bs
p,r is bounded by using (3.2). It yields a contradiction, ending the proof.

From Remark 2.1, we obtain a blow-up result.

Remark 3.1 If assumption b = a(k + 1) is added into Theorem 1.2, then condition in (1.8)
is changed into

∫ t

0

(
1 + ‖vx‖L∞

)2 dτ = ∞.
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3.2 Proof of Theorem 1.3
We only need to prove Theorem 1.3 with s = 2 by density argument. Take b = a(k + 1). It
is deduced from (1.1) that

1
2

d
dt

∫

R

(
v2 + v2

x
)

dx +
∫

R

λ
(
v2 + v2

x
)

dx = 0, (3.4)

which results in

1
2

d
dt

∫

R

(
v2 + v2

x
)

dx ≤ 0. (3.5)

A direct calculation shows that

1
2

d
dt

∫

R

(
v2

x + v2
xx

)
dx

= a(k + 2)
∫

R

vkvxvxx dx –
∫

R

λ
(
v2

x + v2
xx

)
dx

–
∫

R

[
a(k + 1)vk–1vxv2

xx + avkvxxxvxx
]

dx. (3.6)

Let T < ∞ and vx(t, x) ≥ –M for a certain M > 0. We come to the estimate

∥
∥v(t)

∥
∥

H2 ≤ ‖v0‖H2 e(1+M+‖v0‖H1 )k t , for all t ∈ [0, T],

which yields a contradiction.

3.3 Proof of Theorem 1.4
We take n = v – vxx. The first equation in (1.1) is written in the form

nt + βnx + λn + bvk–1vxn + avknx = 0. (3.7)

We see b = a(k + 1) in Theorem 1.4. Multiplying (3.7) by n and applying (3.6) gives rise to

1
2

d
dt

∫

R

n2 dx + λ

∫

R

n2 dx � |a|(k + 2)
4

‖v0‖k–1
H1 ‖n‖3

L2 .

Taking λ1 = 2λ and M1 = |a|(k+2)
2 ‖v0‖k–1

H1 , we have

d
dt

‖n‖2
L2 + λ1‖n‖2

L2 ≤ M1
(‖n‖2

L2
) 3

2 .

It follows that ‖n‖L2 ≤ e– 1
2 λ1t( 1

‖n0‖L2
– M1

λ1
)–1 if ‖n0‖L2 < λ1

M1
. Then

‖vx‖L∞ ≤ ‖n‖L2 ≤ C2(T).

Using Theorem 1.3, we end the proof.
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3.4 Proof of Theorem 1.5
We investigate problem

⎧
⎨

⎩

d
dt p(t, x) = avk(t, p(t, x)) + β ,

p(0, x) = x,
(3.8)

where (t, x) ∈ (0, T) ×R.

Lemma 3.1 ([1]) Let v ∈ C([0, T]; Hs(R)) ∩ C1([0, T]; Hs–1(R)) (s ≥ 2), (t, x) ∈ [0, T] × R.
It follows that p ∈ C1([0, T] ×R,R) to (3.8) is unique and

px(t, x) = e
∫ t

0 akvk–1vx(τ ,p(τ ,x)) dτ . (3.9)

Lemma 3.2 Let v0 ∈ Hs(R) (s ≥ 2), (t, x) ∈ [0, T] ×R. Then

n(t, p)(px)
b

ak (t, x) = n0e–λt . (3.10)

Moreover, ‖n‖
L

ak
b

= e–λt‖n0‖
L

ak
b

. If b = ak
2 , it holds that

‖n‖L2 = e–λt‖n0‖L2 . (3.11)

Proof From (3.10), we acquire that

d
dt

[
n(t, p)(px)

b
ak

]
= –λn(px)

b
ak . (3.12)

That is,

n(t, p)(px)
b

ak = e–λtn0(x).

A direct computation gives rise to

∥
∥e–λtn0(x)

∥
∥

L
ak
b

= ‖n‖
L

ak
b

.

We note b = ak
2 . Thus we get (3.11). �

Proof of Theorem 1.5 Multiplying (3.7) by ne2λt , we come to

d
dt

(

e2λt
∫

R

n2 dx
)

= (ak – 2b)e2λt
∫

R

n2vk–1vx dx. (3.13)

We derive that

d
dt

(

e2λt
∫

R

n2 dx
)

≤ |ak – 2b|
2k e–kλt

[

e2λt
∫

R

n2 dx
] k+2

2
. (3.14)
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Let h(t) = e2λt ∫
R

n2 dx. Bearing in mind that n0(x) 	= 0, x ∈ R and (3.10), one deduces that
h(t) is positive. Then

d
dt

[
h(t)

]– k
2 ≥ –

k
2

|ak – 2b|
2k e–kλt . (3.15)

Using the assumption n0(x) 	= 0, b 	= ak
2 , ‖n0‖L2 < ( 2k+1λ

|ak–2b| )
1
k , we have [h(0)]– k

2 – |ak–2b|
2k+1λ

> 0.
We obtain the inequality

(

e2λt
∫

R

n2 dx
) k

2 ≤
[

‖n0‖–k
L2 –

|ak – 2b|
2k+1λ

]–1

.

Consequently, we have the estimate

‖vx‖L∞ ≤ ‖n‖L2 ≤ e–λt
[

‖n0‖–k
L2 –

|ak – 2b|
2k+1λ

]– 1
k

.

Applying Theorem 1.3, we complete the proof. �

We give a global existence result.

Lemma 3.3 Let b = a(k + 1) or b = ak
2 , v0 ∈ Hs(R) (s ≥ 2). Assume n0 = v0 – v0,xx does not

change sign. It holds that a solution v(t, x) to problem (1.1) exists globally.

Proof One may assume n0(x) > 0. We use Lemma 3.2 to derive that n > 0. Thus

v(t, x) =
∫

R

1
2

e–|x–ξ |n(t, ξ ) dξ ≥ 0.

That is,

v(t, x) =
1
2

e–x
∫ x

–∞
eξ n(t, ξ ) dξ +

1
2

ex
∫ ∞

x
e–ξ n(t, ξ ) dξ . (3.16)

We conclude that

vx(t, x) = –
1
2

e–x
∫ x

–∞
eξ n(t, ξ ) dξ +

1
2

ex
∫ ∞

x
e–ξ n(t, ξ ) dξ . (3.17)

Hence |vx| ≤ v.
Applying b = a(k + 1) and recalling Remark 2.1, we derive

|vx| ≤ |v| � ∥
∥v(t)

∥
∥

H1 � ‖v0‖H1 . (3.18)

Taking advantage of b = ak
2 and using Lemma 3.2 results in

|vx| ≤ |v| � ‖n‖L2 � ‖n0‖L2 . (3.19)

Combining (3.18) or (3.19) with Theorem 1.2, we obtain the desired results. �
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4 Proof of Theorem 1.6
Note that a > 0. Using supp v0(x) ⊂ [a0, b0], we derive that supp v0(x) ⊂ [p(t, a0), p(t, b0)].
Applying Lemma 3.2 yields that supp n(t, x) ⊂ [p(t, a0), p(t, b0)], t ∈ [0, T].

Let

L+(t) =
∫ p(t,b0)

p(t,a0)
eξ n(t, ξ ) dξ , L–(t) =

∫ p(t,b0)

p(t,a0)
e–ξ n(t, ξ ) dξ . (4.1)

From (3.16) and (4.1), we have

v(t, x) =
1
2

e–x
(∫ p(t,a0)

–∞
+

∫ p(t,b0)

p(t,a0)
+

∫ x

p(t,b0)

)

eξ n(t, ξ ) dξ

+
1
2

ex
∫ ∞

x
e–ξ n(t, ξ ) dξ

=
1
2

e–xL+(t), x > p(t, b0). (4.2)

We derive v = 1
2 exL–(t) if x < p(t, a0). Combining (3.17) with (4.2) gives rise to

v = –vx = vxx =
1
2

e–xL+(t), x > p(t, b0) (4.3)

and

v = vx = vxx =
1
2

exL–(t), x < p(t, a0). (4.4)

An application of (4.1) leads to the identity

L+(0) =
∫ b0

a0

eξ n0(ξ ) dξ = 0. (4.5)

A direct calculation shows

d
dt

L+(t) =
∫ ∞

–∞
eξ nt(t, ξ ) dξ

= –
∫ ∞

–∞
eξ (λ – β)n dξ +

∫ ∞

–∞
eξ b

k + 1
vk+1 dξ

+
3ak – b

2

∫ ∞

–∞
eξ v2

xvk–1 dξ +
(k – 1)(ak – b)

2

∫ ∞

–∞
eξ v3

xvk–2 dξ . (4.6)

If b = ak and k is a positive odd number, we obtain

d
dt

L+(t) + (λ – β)L+(t) > 0, (4.7)

which is equivalent to the inequality

d[L+(t)e(λ–β)t]
dt

> 0. (4.8)

Hence L+(t) > 0, t ∈ [0, T).
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Similarly, we have

d[–L–(t)e(λ+β)t]
dt

> 0. (4.9)

Thus, L–(t) < 0, t ∈ [0, T).
If k = 1, 0 < b < 3a, we derive that (4.8) and (4.9) still hold true.
We give the estimates for curve p(t, b0). Using the assumption k = 1, b = 2a and (3.4)

yields

‖v‖L∞ ≤ ‖v‖H1 ≤ e–λt‖v0‖H1 . (4.10)

Taking x = b0 in (3.8) and integrating (3.8) on [0, t], we come to the estimate

p(t, b0) = b0 +
∫ t

0
av(τ , p) dτ + βt

≤ 1
λ

C5 + b0 + βt. (4.11)

We conclude from (4.2) that

L+(t) = 2ep(t,b0)v
(
t, p(t, b0)

) ≤ C3e(β–λ)t . (4.12)

Similar to the derivation in (4.11), we have

p(t, a0) = a0 +
∫ t

0
av(τ , p) dτ + βt

≥ –
1
λ

C5 + a0 + βt, (4.13)

which, combining with (4.4), implies

∣
∣L–(t)

∣
∣ ≤ C4e–(β+λ)t . (4.14)

If k = 1, b = a
2 , it is deduced from (3.11) that ‖v‖L∞ ≤ e–λt‖v0‖H2 . Similarly, we establish

(4.12) and (4.14).

Remark 4.1 If supp v0(x) ⊂ [a0, b0] in (1.1), then n = (1 – ∂2
x )v(t, x) satisfies supp n ⊂

[p(t, a0), p(t, b0)]. Indeed, v does not have compact support. Also v(t, x) is positive if x → ∞
and v(t, x) is negative if x → –∞.
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