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Abstract
The aim of this paper is to prove the Liouville-type theorem of the following weighted
Kirchhoff equations:

–M
(∫

RN
ω(z)|∇Gu|2 dz

)
divG(ω(z)∇Gu) = f (z)eu,

z = (x, y) ∈ RN = RN1 × RN2 (0.1)

and

M
(∫

RN
ω(z)|∇Gu|2 dz

)
divG(ω(z)∇Gu) = f (z)u–q,

z = (x, y) ∈R
N =R

N1 ×R
N2 , (0.2)

whereM(t) = a + btk , t ≥ 0, with a > 0, b, k ≥ 0, k = 0 if and only if b = 0. q > 0 and
ω(z), f (z) ∈ L1loc(R

N) are nonnegative functions satisfying ω(z)≤ C1‖z‖θ
G and

f (z) ≥ C2‖z‖dG as ‖z‖G ≥ R0 with d > θ – 2, R0, Ci (i = 1, 2) are some positive constants,

here α ≥ 0 and ‖z‖G = (|x|2(1+α) + |y|2) 1
2(1+α) is the norm corresponding to the Grushin

distance. Nα = N1 + (1 + α)N2 is the homogeneous dimension of RN . divG (resp., ∇G) is
Grushin divergence (resp., Grushin gradient). Under suitable assumptions on k, θ , d,
and Nα , the nonexistence of stable weak solutions to equations (0.1) and (0.2) is
investigated.
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1 Introduction and main result
In this paper, we study the nonexistence of stable weak solutions for the weighted Kirch-
hoff equations

– M
(∫

RN
ω(z)|∇Gu|2 dz

)
divG

(
ω(z)∇Gu

)
= f (z)eu,

z = (x, y) ∈R
N = R

N1 ×R
N2 (1.1)
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and

M
(∫

RN
ω(z)|∇Gu|2 dz

)
divG

(
ω(z)∇Gu

)
= f (z)u–q,

z = (x, y) ∈R
N = R

N1 ×R
N2 , (1.2)

where M(t) = a + btk , t ≥ 0, with a > 0, b, k ≥ 0, k = 0 if and only if b = 0. q > 0 and
ω(z), f (z) ∈ L1

loc(RN ) are nonnegative functions verifying ω(z) ≤ C1‖z‖θ
G and f (z) ≥ C2‖z‖d

G
as ‖z‖G ≥ R0 with d > θ – 2, where R0, Ci (i = 1, 2) are some positive constants. Here α ≥ 0
and

‖z‖G =
(|x|2(1+α) + |y|2) 1

2(1+α) , z = (x, y) ∈R
N = R

N1 ×R
N2

is the norm corresponding to the Grushin distance, where |x| and |y| are the usual Eu-
clidean norms in R

N1 and R
N2 , respectively.

Set ∇x and ∇y as Euclidean gradients with respect to the variables x ∈ R
N1 and y ∈R

N2 ,
respectively. The Grushin gradient is defined by

∇G =
(∇x, (1 + α)|x|α∇y

)
.

Moreover, we define

divG(g, h) =
N1∑
i=1

∂gi

∂xi
+ (1 + α)|x|α

N2∑
j=1

∂hj

∂yj

= divx g + (1 + α)|x|α divy h, (g, h) ∈ C1(
R

N ,RN1 ×R
N2

)

as the Grushin divergence. Then the Grushin operator is given by

�Gu = divG(∇Gu) = �xu + (1 + α)2|x|2α�yu,

where �x and �y represent the usual Laplacians on R
N1 and R

N2 respectively. This oper-
ator is uniformly elliptic for x �= 0 and degenerate when x = (x1, x2, . . . , xN1 ) goes to 0.

The anisotropic dilation attached to �G is defined by

δλ(z) =
(
λx,λ1+αy

)
, λ > 0, z = (x, y) ∈R

N1 ×R
N2 .

It is not hard to see that

dδλ(z) = λNα dx dy = λNα dz,

where

Nα = N1 + (1 + α)N2

is usually called the homogeneous dimension of RN , dx dy denotes the Lebesgue measure
in R

N . For more details about Grushin operators and their basic properties, we refer the
reader for instance to [34].
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In the case α = 0 and ω(z) ≡ 1, problems (1.1) and (1.2) are related to the stationary
analogue of the following Kirchhoff model:

∂2u
∂t2 –

(
a + b

∫

RN
|∇u|2 dz

)
�u = h(z, u),

which was proposed by Kirchhoff in 1883 as a generalization of the well-known D’Alem-
bert wave equation

ρ
∂2u
∂t2 –

(
p0

h
+

E
2L

∫ L

0

∣∣∣∣
∂u
∂z

∣∣∣∣
2

dz
)

∂2u
∂z2 = h(z, u)

for free vibrations of elastic strings, see [26], where ρ , p0, h, E, L are constants which
represent some physical meanings respectively. Indeed, Kirchhoff’s model considers the
changes in length of the string produced by transverse vibrations. Up to now, a great at-
tention has been paid to the study of the Kirchhoff-type problems involving nonlocal op-
erators, because nonlinear equations with nonlocal operators have a broad application
background and play an important role in physics, probability, biology, finance, etc. With
the help of variational calculus, some important and interesting results for this direction,
especially those concerning the existence and multiplicity of solutions, have been estab-
lished, we refer the interested reader to [17–19, 24, 31, 37] and the references therein.

On the other hand, the nonexistence and stability of solutions to nonlinear elliptic equa-
tions have drawn much attention in the last decades. For some physical motivation and
recent development on the topic of stable solutions, we refer to [13]. Also, see [2, 33] for
related problems.

The motivation of writing this article is to prove a Liouville-type theorem for stable
solutions of equations (1.1) and (1.2). We recall that Liouville-type theorem focuses on
the nonexistence of nontrivial solution in the entire space RN . In 1981, in their pioneering
article [22], Gidas and Spruck established the optimal Liouville-type result for positive
solutions to the equation

–�u = |u|q–1u in R
N . (1.3)

They proved that (1.3) has no positive solution if and only if 1 < q < qs = N+2
N–2 (= ∞) if

N = 2. Farina [14, 16] also considered problem (1.3). He proved that there is no nontriv-
ial stable solution if 1 < q < qc(N), where qc(N) is explicitly given and is always greater
than the classical critical exponent N+2

N–2 . It is worth pointing out that his proof makes a
delicate application of the classical Moser iterative method. Later, these results were ex-
tended to the quasilinear case –�pu = |u|q–1u in [7] and the weighted quasilinear case
–�pu = f (z)|u|q–1u in [3].

Obviously, equation (1.1) becomes the following Laplace equation with exponential
nonlinearity:

–�u = eu in R
N (1.4)

for the case M(t) ≡ 1, α = 0, and ω(z) ≡ 1 ≡ f (z). Problem (1.4) has been studied by sev-
eral experts; for example, Farina [15] proved that all stable C2 solutions of (1.4) must be
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zero if 2 ≤ N ≤ 9; Dancer and Farina [9] proved that equation (1.4) admits classical entire
solutions which are stable outside a compact set of RN if and only if N ≥ 10. Later, Wang
and Ye [38] proved the following theorem.

Theorem 1.1 Let α = 0, M(t) ≡ 1 ≡ ω(z), and f (z) = |z|d with d > –2. If 2 ≤ N < 10 + 4d,
then equation (1.1) admits no stable weak solution.

For the case of negative exponent nonlinearity, the authors [32] obtained the following.

Theorem 1.2 Let q > 0, M(t) ≡ 1, α = 0, and ω(z) ≡ 1 ≡ f (z) in (1.2). If

2 ≤ N < 2 +
4

1 + q
(
q +

√
q(q + 1)

)
,

then there are no positive stable solutions to (1.2) in R
N .

Remark 1.3 It is clear that if 2 < N < 10, then from the above inequality we have

q > p0 :=
N2 – 8N + 4 + 8

√
N – 1

(N – 2)(10 – N)
. (1.5)

Recently, Du and Guo [10] studied equation (1.2) with α = 0, M(t) ≡ 1 ≡ ω(z) and f (z) =
|z|d with d > –2. It was proved that there is no positive stable solution provided 2 ≤ N <
10 + 4d and q > pc(d) hold, where pc(d) is a critical exponent depending on d and N .

Very recently, by Farina’s approach, Cowan and Fazly [6] established the nonexistence
of nontrivial stable solution of the weighted elliptic equation

– div
(
ω1(z)∇u

)
= ω2(z)g(u) in R

N (1.6)

with positive smooth weights ωi(z), i = 1, 2, where the nonlinearity g(u) = eu, |u|p–1u with
p > 1 and –u–p with p > 0. After that, these results were extended to the quasilinear
case –�pu = f (z)g(u) in [4, 27] and the weighted quasilinear case – div(ω(z)|∇u|p–2∇u) =
f (z)g(u) in [28, 29], where g(u) = eu or g(u) = –u–q, q > 0. Similar works can be found in
[5, 21, 23, 25, 41].

We now turn to the case where α > 0, equations (1.1) and (1.2) become nonlinear elliptic
equations involving Grushin operator. It is well known that the Grushin operator belongs
to the wide class of subelliptic operators studied by Franchi et al. [20] (also see [1]). The
Liouville-type theorem has been recently proved by Monticelli [35] for nonnegative clas-
sical solutions and by Yu [40] for nonnegative weak solutions of the problem

–�Gu = uτ in R
N1 ×R

N2 .

The optimal exponent is τ < Nα+2
Nα–2 , where Nα = N1 + (1 + α)N2 is the homogeneous dimen-

sion. The main tool they used [35, 40] is the Kelvin transform combined with the moving
planes technique. On the other hand, Monti and Morbidelli [34] considered the classifi-
cation results for equation

–�Gu = u
Nα+2
Nα–2 in R

N1 ×R
N2 ,
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the main tool they used is the moving spheres technique, which is a variant of the moving
plane technique and was widely used in elliptic equations such as [30]. For other results of
Liouville-type theorem related to Grushin operators, we refer the reader to [8, 11, 12, 36]
and the references therein.

However, as far as we know, there are few results on the Liouville-type theorem for prob-
lem (1.1) or (1.2) with α �= 0 and M(t), ω(z), f (z) �≡ 1. Motivated by the above works, in the
present paper, we try to establish the Liouville property for the class of stable weak solu-
tions of (1.1) and (1.2).

Since solutions to elliptic equations with Hardy potentials may possess singularities, it
is natural to study weak solutions of (1.1) and (1.2) in a suitable weighted Sobolev space.
Based on this reality, we define

‖ϕ‖ω =
(∫

RN
ω(z)|∇Gϕ|2 dz

)1/2

for ϕ ∈ C∞
c (RN ) and denote by H1

0 (RN ,ω) the closure of C∞
c (RN ) with respect to the ‖ ·

‖ω-norm. Note that, for ω(z) ∈ L1
loc(RN ), we have C1

c (RN ) ⊂ H1
0 (RN ,ω). Denote also by

H1
loc(RN ,ω) the space of all functions u such that uϕ ∈ H1

0 (RN ,ω) for all ϕ ∈ C1
c (RN ). Here

and in the following Ck
c (RN ) denotes the set of Ck functions with compact support in R

N .
To facilitate the writing, we unify equations (1.1) and (1.2) into the following equation:

–M
(∫

RN
ω(z)|∇Gu|2 dz

)
divG

(
ω(z)∇Gu

)
= f (z)g(u),

z = (x, y) ∈R
N = R

N1 ×R
N2 , (1.7)

where g(u) = eu or g(u) = –u–q.

Definition 1.4 Let X = H1
0 (RN ,ω) ∩ H1

loc(RN ,ω), we say that u ∈ X is a weak solution of
(1.7) if f (z)g(u) ∈ L1

loc(RN ) and

(
a + b‖u‖2k

ω

)∫

RN
ω(z)∇Gu · ∇Gϕ dz =

∫

RN
f (z)g(u)ϕ dz, ∀ϕ ∈ C1

c
(
R

N)
, (1.8)

where g(u) = eu or g(u) = –u–q.

The energy functional J : X →R corresponding to (1.7) is

J (u) =
a
2
‖u‖2

ω +
b

2(k + 1)
‖u‖2(k+1)

ω –
∫

RN
f (z)G(u) dz,

where G(u) =
∫ u

0 g(s) ds.
Obviously, if u ∈ X is a weak solution of (1.7), then for any ϕ ∈ C1

c (RN ), the function
E(t) := J (u + tϕ) satisfies E′(0) = 0. As in [7], we say that the solution u of (1.7) is stable if
E′′(0) ≥ 0. Now, we compute E′′(0). Observe that

E′(t) – E′(0)
t

=
J ′(u + tϕ)ϕ – J ′(u)ϕ

t
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=
b(‖u + tϕ‖2k

ω – ‖u‖2k
ω )

t

∫

RN
ω(z)∇Gu · ∇Gϕ dz

+
(
a + b‖u + tϕ‖2k

ω

)∫

RN
ω(z)|∇Gϕ|2 dz –

1
t

∫

RN
f (z)

(
g(u + tϕ) – g(u)

)
ϕ dz,

we obtain

E′′(0) = lim
t→0

E′(t) – E′(0)
t

= 2bk‖u‖2(k–1)
ω

(∫

RN
ω(z)∇Gu · ∇Gϕ dz

)2

+
(
a + b‖u‖2k

ω

)∫

RN
ω(z)|∇Gϕ|2 dz –

∫

RN
f (z)g ′(u)ϕ2 dz.

We are ready to state the stability as follows.

Definition 1.5 We say that a weak solution u of (1.7) is stable if f (z)g ′(u) ∈ L1
loc(RN ) and

2bk‖u‖2(k–1)
ω

(∫

RN
ω(z)∇Gu · ∇Gϕ dz

)2

+
(
a + b‖u‖2k

ω

)∫

RN
ω(z)|∇Gϕ|2 dz

≥
∫

RN
f (z)g ′(u)ϕ2 dz (1.9)

for every ϕ ∈ C1
c (RN ), where g(u) = eu or g(u) = –u–q.

Remark 1.6 If u is a stable weak solution of (1.1), in view of (1.9) with g(u) = eu, it can be
deduced that

∫

RN
f (z)euϕ2 dz ≤ A

∫

RN
ω(z)|∇Gϕ|2 dz, ∀ϕ ∈ C1

c
(
R

N)
(1.10)

with

A = a + b(1 + 2k)‖u‖2k
ω . (1.11)

Similarly, if u is a positive stable weak solution of (1.2), by virtue of (1.9) with g(u) = –u–q,
it follows that

q
∫

RN
f (z)u–(1+q)ϕ2 dz ≤ A

∫

RN
ω(z)|∇Gϕ|2 dz, ∀ϕ ∈ C1

c
(
R

N)
, (1.12)

where A is given in (1.11). Note that (1.8)–(1.10) and (1.12) hold for all ϕ ∈ H1
0 (RN ,ω) by

density arguments.

Throughout this paper, the functions ω(z), f (z) satisfy the following assumptions:
(H1) ω(z), f (z) ∈ L1

loc(RN ) are nonnegative functions. In addition, there exist d > θ – 2,
Ci > 0 (i = 1, 2) and R0 > 0 such that

ω(z) ≤ C1‖z‖θ
G, f (z) ≥ C2‖z‖d

G, ∀‖z‖G ≥ R0.

To simplify the notations, we denote

μ0(k, θ , d) = 2 – θ +
4(2 – θ + d)

1 + 2k
, μ1(k, θ , d) = 2 – θ +

1 +
√

1 + 2k
2k

(2 – θ + d).
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Our results can be stated as follows.

Theorem 1.7 Let M(t) = a + btk , t ≥ 0, a > 0, b, k ≥ 0, k = 0 if and only if b = 0. Suppose
that (H1) and Nα < μ0(k, θ , d) hold. Then there is no stable weak solution u ∈ X to (1.1).

Remark 1.8 If α = θ = 0 and k = 1, then the result in Theorem 1.7 coincides with that in
[39]. If α = k = 0, we get a result similar to that in [6, 23]. If α = k = θ = 0 we derive the
result in [38]. Finally, if α = k = θ = d = 0, we have the Liouville theorem in the pioneering
article [15].

Theorem 1.9 Let M(t) = a + btk , t ≥ 0, a > 0, b, k ≥ 0, k = 0 if and only if b = 0. Assume
that (H1) holds. Then (1.2) has no positive stable weak solution u ∈ X provided that one of
the following conditions is satisfied:

(H2) k ≥ 0 and Nα ≤ 2 – θ , q > 0;
(H3) 0 ≤ k ≤ 3

2 and 2 – θ < Nα < μ0(k, θ , d), q > qc;
(H4) k > 3

2 and 2 – θ < Nα < μ0(k, θ , d), q > q̃c;
(H5) k > 3

2 and Nα = μ0(k, θ , d), q > 4
2k–3 ;

(H6) k > 3
2 and μ0(k, θ , d) < Nα < μ1(k, θ , d), q1 < q < q2,

where

qc = –1 –
2(2 – θ + d)[Nα – 4 + 2θ – d +

√
(Nα + d)2 – (Nα – 2 + θ )2(1 + 2k)]

(Nα – 2 + θ )(1 + 2k)(Nα – μ0(k, θ , d))
; (1.13)

q̃c = –1 –
2(2 – θ + d)[Nα – 4 + 2θ – d +

√
(Nα + d)2 – (Nα – 2 + θ )2(1 + 2k)]

(Nα – 2 + θ )(1 + 2k)(Nα – μ0(k, θ , d))
; (1.14)

q1,2 = –1 –
2(2 – θ + d)[Nα – 4 + 2θ – d ± √

(Nα + d)2 – (Nα – 2 + θ )2(1 + 2k)]
(Nα – 2 + θ )(1 + 2k)(Nα – μ0(k, θ , d))

. (1.15)

Remark 1.10 If α = k = θ = 0, we obtain

qc =
2(2 + d)2 + 2(N – 2)(2 + d) – (N – 2)2 – 2(2 + d)

√
(2 + d)(d + 2N – 2)

(N – 2)(N – 10 – 4d)
,

which equals the critical exponent pc in [10]. If α = k = θ = d = 0, we find

qc =
N2 – 8N + 4 + 8

√
N – 1

(N – 2)(10 – N)
,

which is the critical exponent p0 in (1.5) and equals the exponent in [32]. Obviously, equa-
tions (1.1) and (1.2) are an extension of problems in [5, 6, 10, 15, 23, 24, 28, 29, 32, 38, 39],
respectively. Therefore, our conclusions in Theorem 1.7 and Theorem 1.9 extend some
results in the above references.

This paper is organized as follows. In Sect. 2, we give the proof of Theorem 1.7. The
proof of Theorem 1.9 is finally finished in Sect. 3. In the sequel, we denote by C some
constant, which may vary from line to line. If this constant depends on an arbitrary small
number ε, then we denote it by Cε .
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2 Proof of Theorem 1.7
We first give the following proposition which plays a crucial role in the proof of Theo-
rem 1.7.

Proposition 2.1 Assume that u is a stable weak solution of (1.1). Then, for any s ∈ (0, 4
1+2k ),

there exists a constant C = C(k, s) > 0 such that

∫

RN
f (z)e(1+s)uψ2(1+s) dz ≤ CA1+s

∫

RN
ω(z)1+sf (z)–s|∇Gψ |2(1+s) dz (2.1)

holds for all functions ψ ∈ C1
c (RN ) satisfying 0 ≤ ψ ≤ 1 and ∇Gψ = 0 in a neighborhood of

{z ∈R
N | f (z) = 0}.

Proof We will use some of the ideas in [23, 28] to complete the proof. For each i ∈ N, we
define

βi(t) =

⎧⎨
⎩

e st
2 , t < i,

[ s
2 (t – i) + 1]e si

2 , t ≥ i,

and

γi(t) =

⎧⎨
⎩

est , t < i,

[s(t – i) + 1]esi, t ≥ i.

It is not difficult to verify that βi, γi are increasing positive C1(R) functions and

β2
i (t) ≥ γi(t), β ′

i (t)2 =
s
4
γ ′

i (t) and β2
i (t) + γ 2

i (t)γ ′
i (t)–1 ≤ Cest (2.2)

for all t ∈ R, where C > 0 depends only on s. Owing to u ∈ H1
loc(RN ,ω), we conclude

βi(u),γi(u) ∈ H1
loc(RN ,ω) for any i ∈N.

Let ε ∈ (0, 1) and ψ ∈ C1
c (RN ) be a nonnegative function.

Set ϕ = γi(u)ψ2 as a test function in (1.8) with g(u) = eu, we have

B
∫

RN
ω(z)|∇Gu|2γ ′

i (u)ψ2 dz + 2B
∫

RN
ω(z)γi(u)ψ∇Gu · ∇Gψ dz

=
∫

RN
f (z)euγi(u)ψ2 dz,

where B = a + b‖u‖2k
ω . By Young’s inequality, it yields

B
∫

RN
ω(z)|∇Gu|2γ ′

i (u)ψ2 dz

≤ 2B
∫

RN
ω(z)γi(u)ψ |∇Gu||∇Gψ |dz +

∫

RN
f (z)euγi(u)ψ2 dz

≤ εB
∫

RN

(
ω(z)1/2|∇Gu|γ ′

i (u)1/2ψ
)2 dz

+ CεB
∫

RN

(
ω(z)1/2γi(u)γ ′

i (u)–1/2|∇Gψ |)2 dz +
∫

RN
f (z)euγi(u)ψ2 dz
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= εB
∫

RN
ω(z)|∇Gu|2γ ′

i (u)ψ2 dz

+ CεB
∫

RN
ω(z)γ 2

i (u)γ ′
i (u)–1|∇Gψ |2 dz +

∫

RN
f (z)euγi(u)ψ2 dz,

which implies that

(1 – ε)B
∫

RN
ω(z)|∇Gu|2γ ′

i (u)ψ2 dz

≤ CεB
∫

RN
ω(z)γ 2

i (u)γ ′
i (u)–1|∇Gψ |2 dz +

∫

RN
f (z)euγi(u)ψ2 dz. (2.3)

On the other hand, according to the stability assumption, we take ϕ = βi(u)ψ in (1.10) and
get

∫

RN
f (z)euβ2

i (u)ψ2 dz

≤ A
∫

RN
ω(z)|∇Gu|2β ′

i (u)2ψ2 dz + 2A
∫

RN
ω(z)βi(u)β ′

i (u)ψ |∇Gu||∇Gψ |dz

+ A
∫

RN
ω(z)β2

i (u)|∇Gψ |2 dz. (2.4)

We use Young’s inequality to estimate the middle term of the right-hand side of the above
inequality:

2A
∫

RN
ω(z)βi(u)β ′

i (u)ψ |∇Gu||∇Gψ |dz

≤ εA
∫

RN

(
ω(z)1/2|∇Gu|β ′

i (u)ψ
)2 dz + CεA

∫

RN

(
ω(z)1/2βi(u)|∇Gψ |)2 dz

= εA
∫

RN
ω(z)|∇Gu|2β ′

i (u)2ψ2 dz + CεA
∫

RN
ω(z)β2

i (u)|∇Gψ |2 dz.

Substituting this estimate into (2.4), there holds

∫

RN
f (z)euβ2

i (u)ψ2 dz

≤ (1 + ε)A
∫

RN
ω(z)|∇Gu|2β ′

i (u)2ψ2 dz + CεA
∫

RN
ω(z)β2

i (u)|∇Gψ |2 dz. (2.5)

Together with (2.2), (2.3), (2.5), we obtain

∫

RN
f (z)euβ2

i (u)ψ2 dz

≤ (1 + ε)sA
4

∫

RN
ω(z)|∇Gu|2γ ′

i (u)ψ2 dz + CεA
∫

RN
ω(z)β2

i (u)|∇Gψ |2 dz

≤ (1 + ε)sA
4(1 – ε)B

∫

RN
f (z)euγi(u)ψ2 dz + CεA

∫

RN
ω(z)

[
β2

i (u) + γ 2
i (u)γ ′

i (u)–1]|∇Gψ |2 dz

≤ (1 + ε)sA
4(1 – ε)B

∫

RN
f (z)euβ2

i (u)ψ2 dz + CεA
∫

RN
ω(z)esu|∇Gψ |2 dz.
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This combined with the expressions of A and B gives

∫

RN
f (z)euβ2

i (u)ψ2 dz

≤ (1 + ε)(1 + 2k)s
4(1 – ε)

∫

RN
f (z)euβ2

i (u)ψ2 dz + CεA
∫

RN
ω(z)esu|∇Gψ |2 dz,

that is,

λε

∫

RN
f (z)euβ2

i (u)ψ2 dz ≤ CεA
∫

RN
ω(z)esu|∇Gψ |2 dz, (2.6)

where λε = 1 – (1+ε)(1+2k)s
4(1–ε) . Since limε→0+ λε = 1 – (1+2k)s

4 . Thanks to s ∈ (0, 4
1+2k ), we let ε > 0

be so small that λε > 0.
Letting i → ∞ in (2.6), by Fatou’s lemma, we have

∫

RN
f (z)e(1+s)uψ2 dz ≤ CA

∫

RN
ω(z)esu|∇Gψ |2 dz (2.7)

for some constant C > 0 depending only on k and s.
On the other hand, replacing ψ by ψ1+s in (2.7) and using Hölder’s inequality, we derive

∫

RN
f (z)e(1+s)uψ2(1+s) dz

≤ CA
∫

RN
ω(z)esuψ2s|∇Gψ |2 dz

≤ CA
(∫

RN

(
f (z)

s
1+s esuψ2s) 1+s

s dz
) s

1+s
(∫

RN

(
ω(z)f (z)– s

1+s |∇Gψ |2)1+s dz
) 1

1+s

= CA
(∫

RN
f (z)e(1+s)uψ2(1+s) dz

) s
1+s

(∫

RN
ω(z)1+sf (z)–s|∇Gψ |2(1+s) dz

) 1
1+s

.

Hence, (2.1) is obtained immediately. �

Set R > 0, Ω2R = B1(0, 2R) × B2(0, 2R1+α), where Bi ⊂ R
Ni , i = 1, 2, are open balls cen-

tered at 0, the radii are 2R and 2R1+α , respectively. Let χ (t) ∈ C∞
c ([0,∞); [0, 1]) be cut-off

functions such that

χ (t) =

⎧
⎨
⎩

1, 0 ≤ t ≤ 1,

0, t ≥ 2.

Define

ψ1,R(x) = χ

( |x|
R

)
, x ∈ R

N1 , ψ2,R(y) = χ

( |y|
R1+α

)
, y ∈R

N2

and

ψR(x, y) = ψ1,R(x)ψ2,R(y), (x, y) ∈ R
N = R

N1 ×R
N2 . (2.8)
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By a series of calculations, one can verify that there exists a constant C > 0 independent
of R such that

|∇xψ1,R| ≤ CR–1, |∇yψ2,R| ≤ CR–(1+α),

|�xψ1,R| ≤ CR–2, |�yψ2,R| ≤ CR–2(1+α),

|∇GψR|2 + |�GψR| ≤ CR–2,

R ≤ ‖z‖G ≤ CR, ∀z = (x, y) ∈ Ω2R\ΩR.

(2.9)

Proof of Theorem 1.7 Arguing by contradiction, we assume that u is a stable weak solution
of (1.1). Let ψ = ψR(x, y) = ψ1,R(x)ψ2,R(y) with R ≥ R0 in (2.1), then there exists a positive
constant C independent of R such that

∫

ΩR

f (z)e(1+s)u dz ≤ CA1+sR–2(1+s)
∫

Ω2R\ΩR

‖z‖θ (1+s)–ds
G dz

≤ CA1+sRNα+θ (1+s)–ds–2(1+s), (2.10)

where assumption (H1) and (2.9) have been used.
Since Nα < μ0(k, θ , d) and

lim
s→ 4

1+2k
–

[
Nα + θ (1 + s) – ds – 2(1 + s)

]
= Nα – μ0(k, θ , d) < 0,

we may choose some s ∈ (0, 4
1+2k ) suitably near 4

1+2k such that Nα +θ (1+ s)–ds–2(1+ s) < 0.
Letting R → +∞ in (2.10), we have

∫

RN
f (z)e(1+s)u dz = 0.

A contradiction! The proof is completed. �

3 Proof of Theorem 1.9
In this section, we give the proof of Theorem 1.9, which mainly relies on the following a
priori estimate.

Proposition 3.1 Suppose that u is a positive stable weak solution of (1.2) with q > 0. Then,
for every s ∈ (h(q), –1), where

h(t) = –
1 + 2k + 2t + 2

√
t(t + 1 + 2k)

1 + 2k
, t > 0, (3.1)

and for any constant τ ≥ q–s
q+1 , there exists a constant C > 0 depending on q, s, τ , a, and k

such that
∫

RN

(
f (z)us–q + ω(z)|∇Gu|2us–1)ψ2τ dz

≤ CA
q–s
q+1

∫

RN
ω(z)

q–s
q+1 f (z)

s+1
q+1 |∇Gψ | 2(q–s)

q+1 dz (3.2)
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holds for all functions ψ ∈ C1
c (RN ) verifying 0 ≤ ψ ≤ 1 and ∇Gψ = 0 in a neighborhood of

{z ∈R
N | f (z) = 0}.

Proof Some ideas in this proof are inspired by [29]. For each i ∈N\{0}, we define

δi(t) =

⎧
⎨
⎩

1+s

2i
s–1

2
(t + 1–s

i(1+s) ), 0 ≤ t < 1
i ,

t 1+s
2 , t ≥ 1

i ,

and

ηi(t) =

⎧⎨
⎩

s
is–1 (t + 1–s

is ), 0 ≤ t < 1
i ,

ts, t ≥ 1
i .

A direct calculation yields that δi, ηi are decreasing positive C1([0, +∞)) functions and

δ2
i (t) ≥ tηi(t), δ′

i(t)2 =
(1 + s)2

4|s|
∣∣η′

i(t)
∣∣, δ2

i (t) + η2
i (t)

∣∣η′
i(t)

∣∣–1 ≤ Ct1+s (3.3)

for all t ≥ 0, where C > 0 is a constant depending only on s. Owning to u ∈ H1
loc(RN ,ω), we

have δi(u),ηi(u) ∈ H1
loc(RN ,ω) for any i ∈N\{0}.

Let ε ∈ (0, 1) and ψ ∈ C1
c (RN ) be a nonnegative function.

Choosing ϕ = ηi(u)ψ2 as a test function in (1.8) with g(u) = –u–q, q > 0, we obtain

B
∫

RN
ω(z)|∇Gu|2η′

i(u)ψ2 dz + 2B
∫

RN
ω(z)ηi(u)ψ∇Gu · ∇Gψ dz

= –
∫

RN
f (z)u–qηi(u)ψ2 dz.

By use of Young’s inequality, we deduce that

B
∫

RN
ω(z)|∇Gu|2∣∣η′

i(u)
∣∣ψ2 dz

≤ 2B
∫

RN
ω(z)ηi(u)ψ |∇Gu||∇Gψ |dz +

∫

RN
f (z)u–qηi(u)ψ2 dz

≤ εB
∫

RN

(
ω(z)1/2|∇Gu|∣∣η′

i(u)
∣∣1/2

ψ
)2 dz

+ CεB
∫

RN

(
ω(z)1/2ηi(u)

∣∣η′
i(u)

∣∣–1/2|∇Gψ |)2 dz +
∫

RN
f (z)u–qηi(u)ψ2 dz

= εB
∫

RN
ω(z)|∇Gu|2∣∣η′

i(u)
∣∣ψ2 dz + CεB

∫

RN
ω(z)η2

i (u)
∣∣η′

i(u)
∣∣–1|∇Gψ |2 dz

+
∫

RN
f (z)u–qηi(u)ψp dz,

that is,

(1 – ε)B
∫

RN
ω(z)|∇Gu|2∣∣η′

i(u)
∣∣ψ2 dz

≤ CεB
∫

RN
ω(z)η2

i (u)
∣∣η′

i(u)
∣∣–1|∇Gψ |2 dz +

∫

RN
f (z)u–qηi(u)ψ2 dz. (3.4)
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On the other hand, by virtue of the stability assumption, we take ϕ = δi(u)ψ in (1.12) and
get

q
∫

RN
f (z)u–(1+q)δ2

i (u)ψ2 dz

≤ A
∫

RN
ω(z)|∇Gu|2δ′

i(u)2ψ2 dz + 2A
∫

RN
ω(z)δi(u)ψ |∇Gu|∣∣δ′

i(u)
∣∣|∇Gψ |dz

+ A
∫

RN
ω(z)δ2

i (u)|∇Gψ |2 dz. (3.5)

Moreover, by Young’s inequality, we conclude

2
∫

RN
ω(z)δi(u)ψ |∇Gu|∣∣δ′

i(u)
∣∣|∇Gψ |dz

≤ ε

∫

RN

(
ω(z)1/2|∇Gu|∣∣δ′

i(u)
∣∣ψ)2 dz + Cε

∫

RN

(
ω(z)1/2δi(u)|∇Gψ |)2 dz

= ε

∫

RN
ω(z)|∇Gu|2δ′

i(u)2ψ2 dz + Cε

∫

RN
ω(z)δ2

i (u)|∇Gψ |2 dz.

Substituting this inequality into (3.5), it holds that

q
∫

RN
f (z)u–(1+q)δ2

i (u)ψ2 dz ≤ (1 + ε)A
∫

RN
ω(z)|∇Gu|2δ′

i(u)2ψ2 dz

+ CεA
∫

RN
ω(z)δ2

i (u)|∇Gψ |2 dz. (3.6)

Combining (3.6) with (3.3) and (3.4), we can find

q
∫

RN
f (z)u–(1+q)δ2

i (u)ψ2 dz ≤ (1 + ε)(1 + s)2

4|s| A
∫

RN
ω(z)|∇Gu|2∣∣η′

i(u)
∣∣ψ2 dz

+ CεA
∫

RN
ω(z)δ2

i (u)|∇Gψ |2 dz.

≤ (1 + ε)(1 + s)2A
4|s|(1 – ε)B

∫

RN
f (z)u–qηi(u)ψ2 dz

+ CεA
∫

RN
ω(z)

[
δ2

i (u) + η2
i (u)

∣∣η′
i(u)

∣∣–1]|∇Gψ |2 dz

≤ (1 + ε)(1 + s)2(1 + 2k)
4|s|(1 – ε)

∫

RN
f (z)u–(1+q)δ2

i (u)ψ2 dz

+ CεA
∫

RN
ω(z)u1+s|∇Gψ |2 dz,

that is,

με

∫

RN
f (z)u–(1+q)δ2

i (u)ψ2 dz ≤ CεA
∫

RN
ω(z)u1+s|∇Gψ |2 dz, (3.7)

where

με = q –
(1 + ε)(1 + s)2(1 + 2k)

4|s|(1 – ε)
.
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Clearly,

lim
ε→0+

με = μ0 := q –
(1 + s)2(1 + 2k)

4|s| .

Thanks to s ∈ (h(q), –1), we get μ0 > 0. Thus, we can fix some sufficiently small ε > 0 such
that με > 0. Furthermore, the monotone convergence theorem implies

∫

RN
f (z)us–qψ2 dz ≤ CA

∫

RN
ω(z)u1+s|∇Gψ |2 dz (3.8)

as i → +∞ in (3.7), where C > 0 depending on q, k, and s.
Taking advantage of (3.4) with ε = 1/2, (3.3), and (3.7), it follows that

B
∫

RN
ω(z)|∇Gu|2∣∣η′

i(u)
∣∣ψ2 dz

≤ CB
∫

RN
ω(z)η2

i (u)
∣∣η′

i(u)
∣∣–1|∇Gψ |2 dz + 2

∫

RN
f (z)u–qηi(u)ψ2 dz

≤ CB
∫

RN
ω(z)u1+s|∇Gψ |2 dz + 2

∫

RN
f (z)u–qηi(u)ψ2 dz

≤ C(A + B)
∫

RN
ω(z)u1+s|∇Gψ |2 dz. (3.9)

Setting i → +∞ in (3.9), the monotone convergence theorem leads to

B
∫

RN
ω(z)|∇Gu|2us–1ψ2 dz ≤ C(A + B)

∫

RN
ω(z)u1+s|∇Gψ |2 dz. (3.10)

Consequently,

∫

RN
ω(z)|∇Gu|2us–1ψ2 dz ≤ C

∫

RN
ω(z)u1+s|∇Gψ |2 dz. (3.11)

Now we claim that (3.2) holds true. Indeed, we can choose some positive constant τ � 1
such that

(τ – 1)(s – q)
s + 1

≥ τ , or τ ≥ q – s
q + 1

.

By virtue of 0 ≤ ψ(z) ≤ 1 in R
N , it follows

(
ψ(z)

) 2(τ–1)(s–q)
s+1 ≤ (

ψ(z)
)2τ , ∀z ∈R

N .

Replacing ψ by ψτ in (3.8) and applying Hölder’s inequality, we see that

∫

RN
f (z)us–qψ2τ dz

≤ CA
∫

RN
ω(z)u1+sψ2(τ–1)|∇Gψ |2 dz
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≤ CA
(∫

RN

(
f (z)

s+1
s–q us+1ψ2(τ–1)) s–q

s+1 dz
) s+1

s–q
(∫

RN

(
ω(z)f (z)

s+1
q–s |∇Gψ |2)

q–s
q+1 dz

) q+1
q–s

= CA
(∫

RN
f (z)us–qψ

2(τ–1)(s–q)
s+1 dz

) s+1
s–q

(∫

RN
ω(z)

q–s
q+1 f (z)

s+1
q+1 |∇Gψ | 2(q–s)

q+1 dz
) q+1

q–s

≤ CA
(∫

RN
f (z)us–qψ2τ dz

) s+1
s–q

(∫

RN
ω(z)

q–s
q+1 f (z)

s+1
q+1 |∇Gψ | 2(q–s)

q+1 dz
) q+1

q–s
, (3.12)

which implies that

∫

RN
f (z)us–qψ2τ dz ≤ CA

q–s
q+1

∫

RN
ω(z)

q–s
q+1 f (z)

s+1
q+1 |∇Gψ | 2(q–s)

q+1 dz. (3.13)

Analogously, we replace the function ψ by ψτ in (3.11); it follows from (3.11)–(3.13) that

∫

RN
ω(z)|∇Gu|2us–1ψ2τ dz

≤ C
∫

RN
ω(z)u1+sψ2(τ–1)|∇Gψ |2 dz

≤ CA
q–s
q+1

∫

RN
ω(z)

q–s
q+1 f (z)

s+1
q+1 |∇Gψ | 2(q–s)

q+1 dz.

This together with (3.13) derives (3.2), and the proof is finished. �

Proof of Theorem 1.9 On the contrary, u is a positive stable weak solution of (1.2). We
apply (3.2) for a test function ψR(x, y) defined in (2.8). Similar to the proof of (2.10), we
can prove that, for all R ≥ R0, there exists a constant C > 0 independent of R satisfying

∫

ΩR

(
f (z)us–q + ω(z)|∇Gu|2us–1)dz ≤ CA

q–s
q+1 Rm (3.14)

with

m = Nα –
(2 – θ )(q – s) – d(s + 1)

q + 1
.

Evidently, if m < 0, the desired result is obtained immediately by tending R → +∞ in (3.14).
Define the function

l(t) =
(2 – θ )(t – h(t)) – d(h(t) + 1)

t + 1
, t > 0,

where h(t) is given in (3.1). The elementary calculus shows that

lim
t→0+

h(t) = –1, lim
t→+∞ h(t) = –∞, h′(t) < 0,∀t > 0

and

lim
t→0+

l(t) = 2 – θ , lim
t→+∞ l(t) = μ0(k, θ , d),

l′(t) =
(2 – θ + d)(2

√
t(t + 1 + 2k) + 1 + 2k + t(1 – 2k))

(1 + 2k)(t + 1)2
√

t(t + 1 + 2k)
, t > 0.
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A straightforward calculation yields that if 0 ≤ k ≤ 3
2 , then l(t) is increasing on (0,∞). If k >

3
2 , then l(t) is increasing on (0, 1+2k+2

√
1+2k

2k–3 ) and decreasing on ( 1+2k+2
√

1+2k
2k–3 ,∞). Moreover,

l( 1+2k+2
√

1+2k
2k–3 ) = μ1(k, θ , d), l( 4

2k–3 ) = μ0(k, θ , d).
Thus, if Nα ≤ 2 – θ and k ≥ 0, then Nα < l(t), ∀t > 0. Hence if we fix s ∈ (h(q), –1) suffi-

ciently near to h(q), we have

Nα <
(2 – θ )(q – s) – d(s + 1)

q + 1
, q > 0,

which means that m < 0. Then we reach a contradiction by letting R → +∞ in (3.14).
If 2–θ < Nα < μ0(k, θ , d) and 0 ≤ k ≤ 3

2 . Make use of the monotonicity of l(t), there exists
unique qc > 0 such that Nα < l(t) for t > qc. So if we fix s ∈ (h(q), –1) sufficiently close to
h(q), we obtain

Nα <
(2 – θ )(q – s) – d(s + 1)

q + 1
, q > qc,

which means that m < 0. Letting R → +∞ in (3.14), we get a contradiction and the desired
result is obtained. Obviously, qc can be derived from the equation Nα = l(q), which is given
in (1.13).

If 2 – θ < Nα < μ0(k, θ , d) and k > 3
2 . According to the monotonicity of l(t), there exists

unique q̃c > 0 such that Nα < l(t) for t > q̃c. Taking R → +∞ in (3.14), we reach a contra-
diction, and qc may be deduced from the equation Nα = l(q), which is given in (1.14).

If Nα = μ0(k, θ , d) and k > 3
2 . Combining l( 4

2k–3 ) = μ0(k, θ , d) and the monotonicity of
h(t), we have l(t) > Nα for t > 4

2k–3 . We get a contradiction by tending R → +∞ in (3.14).
Assume now μ0(k, θ , d) < Nα < μ1(k, θ , d) and k > 3

2 , by the monotonicity of l(t), there
exists q1,2 > 4

2k–3 such that l(t) > Nα for q1 < t < q2. We get a contradiction by tending
R → +∞ in (3.14). Evidently, q1,2 can be derived from the equation Nα = l(q), which is
given in (1.15). So we are done. �
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