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1 Introduction

Fractional calculus is an old topic in mathematical analysis, which goes back to Leibniz
(1695) and Euler (1730) (see [15, 16]). In recent years, the numerical solution of frac-
tional equations has become a popular topic in applied sciences control and engineering.
Bagley—Torvik equation appears in the modeling of the motion of a rigid plate submerged
in a Newtonian fluid [6]. Existence and uniqueness theorem for Bagley—Torvik equation
with Dirichlet boundary condition is given in [5]. In this article, the exponential spline will
be employed to obtain the approximate solution of Bagley—Torvik equation with Caputo
derivative

u’(x) + TD%u(x) + pulx) =f(x), m-1<a <mx¢€la,b], (1)
subject to boundary conditions
u(a) — w1 = u(b) —w, =0. (2)

Here, D* is the Caputo derivative, f(x) is a continuous function, w; (i = 1,2), 7, u are real
constants, and m = 1 or 2. In general, it is difficult to solve most of the fractional differen-
tial equations analytically. Therefore, numerical methods to find an approximate solution
and qualitative behaviors of the solution for fractional differential equation have been in-
vestigated by authors in [1-9, 11, 14, 19-25, 27-29], and some references therein. The
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reproducing kernel method is employed for the fractional order differential equations in
[1-3]. In [21], numerical solution of boundary value problem of fractional Bagley—Torvik
equation is given in the reproducing kernel space. In [14], the authors study the numerical
approach based on operational matrices of fractional differential equations with a hybrid
of block-pulse functions and Chebyshev polynomials. The existence of positive and neg-
ative solutions and properties of their derivatives for the generalized Bagley—Torvik frac-
tional differential equation is given in [24]. Numerical solution of the fractional Bagley—
Torvik equation arising in fluid mechanics based on Taylor matrix method is given in [11].
In [29] the numerical solutions for fractional boundary value problem have been found by
cubic spline polynomials. The numerical scheme for solving two-point fractional Bagley—
Torvik equation using the Chebyshev collocation method has been solved in [22]. In [23]
the Bagley—Torvik equation as a prototype fractional differential equation with two deriva-
tives is investigated by means of homotopy perturbation method. The numerical solution
to the Bagley—Torvik equation by exponential integrators is discussed in [9]. Also Ado-
mian decomposition method for solving the initial value problem of Bagley—Torvik equa-
tion is discussed in [19], fractional linear multistep method and a predictor-corrector
method of Adams type based on finite difference methods for initial value problem of
Bagley—Torvik equation are discussed in [8]; Legendre operational matrix method for
fractional differential equation is applied in [20]; and a combination of collocation points
and first-order Bessel functions, which is called Bessel-collocation method for boundary
value problem of Bagley—Torvik equation, is discussed in [27]. Quadratic spline solution
for boundary value problem of fractional order is applied in [28], and an exponential spline
technique for solving fractional boundary value problem is employed in [4].

The first aim of the present work is to explore exponential spline interpolation with mul-
tiple parameters and to produce the error of approximate exponential spline. The second
aim is to introduce a new approximate technique to find solutions of fractional boundary
value problem, and we demonstrate the convergence analysis for this technique.

In [10], the authors tried to approximate the solution of nonlinear fractional differential
pantograph equations by sinc interpolation. At first, they have transformed the problem
into a nonlinear integral equation with some delay terms and the kernel of this integral
equation is weakly singular for the case 0 < « < 1, thus the solution is weakly singular and
the numerical methods cannot achieve high accuracy in approximating solutions. The
main advantage of our algorithm is that it can be used directly without using assumption
or transformation formulae.

This paper is organized into four sections. In Sect. 2, we describe basic definitions
and the nonpolynomial spline method to approximate the solutions of fractional Bagley—
Torvik equation. Convergence analysis is proved in Sect. 3. In Sect. 4, the numerical exam-
ples are given to illustrate the applications of the method, and also the computed results
are compared with another known method in [4, 9, 17, 21, 28, 29].

2 Basic definitions and description of the methods

In this section, we recall some definitions and properties of the fractional calculus theory,
which are used in this paper. There are several definitions of a fractional derivative of order
a > 0, such as Riemann-Liouville, Grunwald-Letnikov, and Caputo. In the present work,
Caputo and Grunwald-Letnikov fractional derivatives are used for the formulation of the

problem.
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Definition 1 Let u(x) be a function defined on (a, b), then the Riemann—Liouville frac-

tional derivative is of the following form [5]:

RD"‘(u(x)) 0"y dt, a>0m-1<a<m,

I'(m- oz)dx'”/(

where I is the gamma function.

Definition 2 The left Riemann-Liouville fractional integral [5]

a—1
u(x) = T )/ -0 u(®)dt, a>0,

D~ (£ — %)% Lu() dt, >0.
b=t a)/ “

Definition 3 Let u(x) be a function defined on (g, b), then the Caputo fractional derivative

is of the following form [5]:

D* (u(x)) = 1 ) /x(x 0" "M@ dt, a>0m-1<a<m. (3)

rm-a)/,
Definition 4 The Grunwald definition for the fractional derivative is defined in the fol-
lowing form [5]:

A (u(x)) _hm Zgaku (k - p)h), (4)

where A% (u(x)) =* D*(u(x)) + O() and gux = o rasy-

Definition 5 The weighted and shifted Griinwald difference operator is as follows [25].
Let u(x) € L}(R), D%**(u(x)), and its Fourier transform belongs to L'(R),

[h]P

D %) = 73 D ko Luki(x — (k= p)h)
+ <lh£> R g gl — - g)) + O(?),

WDY ) = 2 SN g+ (k- p)h) ©
+ “h:;’ U2 o i+ (k= g)h) + OGR2),

where x € R, ¥ € [0,1], also p and g (p # q) are integers and symmetric.
Let us consider a mesh with nodal points x; on [a, b] such that
A:ia=x9<X] <Xy <+ <Xy_1<X,=b,
where 1 = 22, x; = a + ih for i = 0(1)n.

Let u(x) be the exact solution of (1) and S; be an approximation to u; = u(x;) obtained
by the exponential spline function Q;(x) € C*[a, b] passing through the points (x;, S;) and
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(141, Si+1)- Then in each subinterval the parametric spline segment Q;(x) has the following
form (see [12, 18, 26]):

4
Qi(x) = Z ai, kPl (6)
k=1

where B is a free parameter of the spline functions which can be real or pure imaginary
and which will be used to raise the accuracy of the method, see [26].
To derive the coefficients a;,, k = 1,2, 3,4, of equation (6), we first define

Q) =u, QP w) =M, )
Qilxir1) = i1, Ql('2)(xi+1) = Mi,1.

By algebraic manipulation we get

p1=e (563 M; — 7¢* M; — 5¢° M;,1 + 7M1 — 80€* t2u;
+28e* %y + 80 T2uiq — 287%u;41),

P2 = —e 20 (83 M; — 7e* M; — 7€ M + 7€’ M;,1 — 8e* M1
+ 7M1 — 1283 02y, + 7Y 12u; + 77 12u; — 7€ 120501
+128¢ t%u; 1 — 77%u511),

03 = e (CZGMZ‘ + e”Mi — 4-649Mi - eeMm - eZ(’MM
+4M;, — 16e¥ 12u; — 16€3 v2u; + 4 1%y,
+16€? t2u;01 + 16e¥ 121,01 — 47%u541),

s =—e 20 (3e® M; — 5¢*° M; — 3¢’ M1 + 5M;y1 — 27e* 2y,

30,12

+5e% 2y, + 276 t2u; — 57%u41),

ps =3(e? —1)(-18¢’ + 7% + 7)72,

P e _2 P

a; ==, a; , a; , a, =—, (8)
T s 27 s 5 ps T ps
where 6 = 1. Applying the continuity of the first derivative of Q(x) = Q;_, (x) at x = «; for

i=1,...,n—1, we get the following consistency relation:

W2 (1M1 + aoM; + a3Miy1) = 0t + sty + g1, 9)
where
2e~ 2 (e? - 1)? 4(e? + 1)(e? - 1)°
Q= —— ay= —————
! 302 2 302
263 (ef — 1)?

2
as = Qg = ge‘ze(—lleg +16e* +1),

362 ’

a5 = %(e6 +1)(-28¢" +11e* +11),  ag= %e% (-11€” + ¥ + 16).

For the development of consistency relations between the exponential spline approx-
imation and its derivatives at the nodal points, we consider the following four rela-
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tions:

Qi) = wyy Qix;) = my,

Qi(%i41) = Uis1, Qi(xis1) = My

(10)

After a simple calculation, we obtain the values of coefficients, and using the second-order
derivative continuity at the knots x;, fori=1,...,n— 1, we get

h(Bimi_1 + Pom; + Bamisn) = (Batticy + Bsts; + Beltir1), (11)
where

pr=-2e%,  By=-4(" +1),

2e 20 (4¢? - 1)0
B3 :_2839’ Ba = M’

e -1
239 0_49
Bs =10(e” + 1), ,36:%.
e_

In the limiting case, when 6 — 0, relations (9) and (11) reduce into the ordinary cubic
spline relation:

2 .
%[Mi—l+4Mi+Mi+l]=ui+1_2ui+ui—1: i=1,...,n-1, (I

(12)
—2h(Wli_1 + 4:1/}’11' + VI’I,‘H) = (61/![_1 - 6Mi+1), i=1,...,n—-1. (II)
The proposed differential Eq. (1) in the mesh point (x;) may be discretized by
M;=f,—nDfu; — pu;, i=1,...,n-1. (13)

Lemma 1 The local truncation error x; associated with equations (9) and (11) for i =
1,...,n—1in the limiting case when 6 — 0 is given by

- /] = o+ o), (1)
Q] = L+ o), )
4~ Q)| = Q%+ o), (16)
Q- )| = %u@ +O(K°). (17)

Proof The above expressions can be obtained by expanding the terms M;,;, M;_1, m;,1,
mi_1, Uis1, and u;_; about the points x; in relations (12) using Taylor series respectively.
Moreover,

2 4 4 6 6 8 R
W =Q+ QW+ Q¥ - Q¥ v o), i=1,..,n-1, ()

G 6 (8 .
Q =ul -y + By 0 ® L ow7), i=1,..,n-1. (D)

(18)
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In a similar manner, we get

M_Q/+180 5)+£ 7 L QY +o(), i=1,...,n-1, (Il

1512 14,400 o (19)
5 7 .
Q/_u—l%ufuﬁujugm u® + O, i=1,..,n-1. (IV)

O

2.1 Cubic and exponential splines method for approximate fractional
Bagley-Torvik equation
In this section, we give some methods to approximate D(u(x))|«-», by using spline func-
tion.
Method I. The discrete approximation of the Caputo fractional derivative D*(u(x)) can
be obtained by a cubic spline (in the limiting case when 6 — 0, the relations of exponential
spline reduce into ordinary cubic spline relation) formula as follows (see [12] and [13]):

M; + D (u()) |ge, + ptti = fi,  i=1,2,3,..,m—1. (20)

Using the Caputo fractional derivative for 1 < o < 2, we get

D (13)) gy = / (s = )1 () . (21)

1“(2

Using a piecewise technique, the following equation is obtained using equation (21) and

Lemma 1:
o 1 i i % 2 1-«
Dl = 75 2 [, (@0 0= an. 22)

Since (x; — 1)~ does not change sign on [(j— 1), ji], by the weighted mean value theorem
for integrals and by applying to each integration of the last summation, we get

jh Jh
| @+ o) -n"dn=@@+00) [ @-nan
G

i~1)h (i-1)h

where 77 € [(j — 1)/, jh]. After simple calculations, equations (6), (10), and (22) become

D (1)) =,

_ Z 6 = xi)(hm; — by — 20 + 21,1)
rid-a) o

j=1

2(2hm; + hmj,y + 3uj —
_ o

. —a 6(96,—]]’[) 4
G- a)Z ) (S

3Mj+1) O(hz)) ((xl _]h " h)Z_D‘ — (xi —jh)Z_a)

1 d , o vaany [ O —jh) 2
* g 2 =) (S
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i

+ _ Z((xi —jh+ )7 — (x —jh)zfa) (712(& —Jh) - %)m

ré-a) w3
L e (“12-jh) 6
ey 2 = )(T_ﬁ%l
1 i
+ m FZI((XL —]h + h)Z—a — (xi _jh)zfa)(o(hz))‘ (23)

Using [12] and [13], we have ||Q” — #”||o = O(#2). Also we obtain the following relation
fori=1,2,...,n-1:

=1
=f, i=123,...,n—1. (24)

_ , > o [ O —jh) 4

R | z>'

- 4 > oo [0 —jh) 2

biji = ((xi —jh+ B>~ = (x; = jh)? ) h2] - h)’

_ . o oo [ 12(xi—jh) 6
= (i i+ B = (i ) )(T’ - Z),
- ) » e (—12(xi— ) 6

dijer = (i = jh + b = (x; = jh)? )(T] - ﬁ)

where @, = Cj, = by =djy =0 for i =1,2,...,n. Also we approximate u; by #; and m; by 7;

such that #; and #1; for i = 1,2,..., n satisfy system (11). We get

— i i i i
~ Ui — A T o~ N = A
M; + Tm—-a+1) (Z a;jm;j + Zbijmjﬂ + Zcijui + Zdiiuiﬂ)
j=1 j=1 j=1 j=1
+ud;=f, i=1,23,...,n. (25)

Finally, we approximate the exact solution #; by the natural cubic spline function (j,»(x)

fori=1,2,...,n. In the matrix notation, we get

v +L(Zﬁ1+§ﬁ1+flfl+5ﬁ)+ul:1=ﬂ (26)
I'(m-a+1)

where 4 = (@), B= (Ei,»), C= (cij), and D= (E,»,»). Now, the values M; and #; are determined

as the solutions of linear systems (12)(I) and (12)(II). We approximate #iy = W,

A _ Bly_—4lly 1~y
2h

my, = ,and also, by using boundary conditions, we approximate M; fori =0,n.

We need the following lemma.

Page 7 of 20
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Lemma 2 The matrices W and Z are obtained with the help of systems (9) and (11) in-

vertible.
Proof The values M; are determined as the solutions of the following linear system:
oo 0 0 0 0 0] M] r fio 1
1 10 1 0 0 0 0 0 Ml Ijto - 21’:{1 + ljtz
1 10 1 0 0 0 0 M2 I:ll - 21:l2 + I:{g
12
- (27)
0 0 0 0 1 10 1 Of|M,, B3 — 2lyo + thyy
0 0 0 0 o 1 10 1|, s — Dby + By
L0 0 O O 0 0 1] L Mn ] L iy |
Also the values 71; are determined as follows:
oo 0 0 0 0 07T A [ SBdothid—ihy
10 1 0 0o 0 0 O my ity — o
1 10 1 0 0 0 0| sy B3 — iy
24
== 28
s 28)
00 0 0 1 10 1 0|/, Byt — fins
o 0 0 O 0 1 10 1| |#aA1,1 Uy — Uy
L0 0 0 O 0 0 1JL A W

Also, for determining the values M; and 7;, in the limiting case when 6 — 0, by using
relations (12), the matrices W and Z are strictly diagonally-dominant matrices, then the

matrices W and Z are invertible. Hence,
(29)

WWM=RU, M=5WRU,
hZim=SU,  n=1z71S0.
(30)

Therefore, from (26) and (29) we obtain
O

(h2 W R+ LAz 'S+ BZ 'S+ C+D) + ;u) {=F.

Method II. Suppose that M; = Q”"(x;) is approximated #”(x;) in the subintervals [(j —
1)h,jh] for i =1,2,3,...,n—1andj =1,2,...,i. Also, by using equation (23), the follow-

ing recurrence relation is obtained:

hZ—a i R
D” (U(x))|x=xi = TG-a) ZN[J((I —j+ 1) (i —j)z_a) + O(hz).
j=1
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Bagley—Torvik equation (1)—(2) for 1 < « < 2 can be discretized as follows:

i

A ’71’12 “ . n2—a\ A ~
Mit T3 a) 4 Z AR A
=f, i=1,23,...,n (31)

Finally, we approximate the exact solution u; by the natural cubic spline function Qi(x)

fori=1,2,...,n. In the matrix notation, we get
M +7h*%(oM) + nll = F, (32)

where p = ﬁ Z;:I((i —j+ )P = (i—j)*).
Hence, from (29) and (32) we also obtain

1 1 .
h—w IRU +7H* “( i lku) +ull =F. (33)

Method II1. In this section, we approximate the exact solution by use of the Caputo frac-

tional derivative for O < o < 1 as follows:
D ) = 1o | =) (34)
u(x xzxi_]"(l—a) A Xi—n) un)an.

Using a piecewise technique, equation (34) becomes

— 3 —a
D (49 s = T Z /0 QO+ o) =y an (35)

Since (x; — 7)™ does not change sign on [(j — 1)/, jh], by the weighted mean value theorem

for integrals and by applying to each integration of the last summation, we get
jih jih
/ (Q'(m) + O(h?)) (i — )™ dn = (Q' () + O(hg))/(/ ) (i —m) ™ dn. (36)
-1k i~1)h

After simple calculations, from equations (34) and (36) we get

i

o _ 1 /[ 3 L3 l-a _ (... \1-«a
D () lss = 13 =g ;(Q (1) + O(K?)) (i = jh + B)'~ = (i = j)' ™)
= ﬁ D (i =+ 1) = (o — ) ) (@, T
j=1
1 i iy
= (o — jh+ B = (% — ) ) (Zaizrezg(’_’)
r2-ow) ]:21( )
1 i

+ m ;((xz —]h + h)l—oz _ (xi —jh)l—d)(gaigre&%j—i))
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1 i s - . —o i
+mizzl((xi—1h+h)1 — (% — jh) ™) (4a;,Te*V ™)

i

1
“Te-a ZI:(("" = jh ) = = jn) ) (O()), (37)

where a;, for i =1,2,3,4 are given in relation (8).

The values M;,j=0,1,2,...,n, are determined by using (9) with natural boundary con-
ditions My = Q"(a) = M,, = Q" (b) = 0; in consequence, we approximate u; by #; and M; by
]\;Ii so that #7; and ]\7[,» fori=1,2,...,n— 1 satisfy system (9). We get

i

. nh (e” = 1)*(7¢" - 3) L l-a ) X
M; + r@_a) (3(66 T 1) (C18¢0 1 7e% + 7)9> ]:21((961 —jh+h) ™ = (x; = jh) )M,

i

nh 2e7(e? —1)? ‘ > .
¥ F(z—a)(g(e9 “1)(~18¢” + 7¢¥ +7)9>Z((’”_ﬂ”h)1 = (= 1)) My
=1

7 2(46€° — 29¢% +7¢% —18)0\ < ‘ - e A
+ hF(Z—a)( 3@ _1)(18¢ + 7¢¥ 1 7) jzzl((xl‘—]h + ) = (o — ) ) g

i

i 27 (-11&% + 16e¥ + 1)0 o 1) A
Yare-a < 3(¢7 — 1)(—18¢" + 7¢ +7) Z((xl ) = = ) g

+udi=fi+0(h?), i=1,2,...,n-1 (38)

This implies that

A h2 3 1)2(7e _ 3)
Mit r2-oa) (3(69 —1)(—18¢ + 7% + 7)0 Z(M)M
nhZ o 29(6 _ 1)2
F(Z Ol)( ZOW}H)M/H

i

Z i)

3(e? —1)(—18¢? + 7e% + 7)9)

nh [ 2(46€% — 29¢% +7¢e30 — 18)6
2 Ol) (69 - 1)(—1860 + 7629 + 7) =
nh 2e72 (~11¢" + 16¢% +1)0 \ i
Lt
]_'(2 a) 3(69 —1)(-18¢? + 7€ +7) & z/+1 /B

+ i f+O( ) i=12,...,n-1, (39)
where . = (}‘17) == (Xii) == (L’j) =A= (5\1';') =((i—j+ )= (i)t ) fori=1,2,...,n—1
such that ().ui()) = ()"m) = ()\,0) = ()\,1) = (XiO) = (5\,'") = ()_\iO) = (;,,'1) = 0. In the matrix notation,
we get

N nh*¢ (e? —1)%(7¢° - 3) A
M+ rew (3(e9 —1)(—18¢% + 7¢¥ + 7)9)(A)M

ﬁh2—a 26—29(39 _ 1)2 ()\‘)M
"Te-w (3(e9 " 1)(18¢0 + 762 + 7)9)

Page 10 of 20
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nh (2(46e9 —29e* +7¢% — 18)9) “ A

e\ 3@ D1se 17 17y ) MY
nh™ (_ 2e20(-11¢? + 16€%* +1)0 ) Y
I'2—-a)\ 3(e? —1)(-18¢? +7e% +7)
+ul = F+O(h?), (40)
(I+ W00y + W TL)M + (W05 + 01, + pd) U = F, (41)

where M = (M, My, ...,M,)!, U = (4, s, ..., 14,)", and F = (fifor---»fu)". By using (29) and
(41), we have

1 . .
(I+hI + BT, )h2 WRU + (WM + h™® My + nI)U = F (42)
such that

(e? —1)%(7¢? - 3)
3(ef - 1)( 18¢ef + 7e?? +7)0

I = F(2 a)

2

2(46¢€° — 29¢% + 730 —

3(e? —1)(-18e? + 7e% + 7)
2e720(—11€” + 16 +1)0 )

1"(2 —a)\ 3(ef — 1)(—18¢f + 7e¥ +7) )

I3 =

F(2 ) (3(e9 -1)(- 186‘9 + 7e20 + 7)9>(’\)’

F(2 o)

I, =

2.2 The weighted and shifted Griinwald difference operator and exponential
spline function

Method IV. In this section, we would like to develop a numerical method based on the
methods in references [4, 25, 29], and [28]. Also we investigate the convergence analysis of
this method. Let U = (4;), S =(s;), C=(¢;), T = (t;),and E=(e;) = U — S = U — Q;(x) be (n -
1)-dimensional column vectors. We used the weighted and shifted Griinwald difference
operator and exponential spline function. By using consistency relation (12)(I) and using
the boundary condition, we get the system of algebraic equations

NS =hBM +C, (43)
where
-2 i=j=1,2,..,n-1, : i=j=12,...,n-1,
N=1-1 |i-jl=1, B= é li—jl=1, (44)
0 otherwise, 0 otherwise,
_ 2o
—S() + ?MO
0
C= : . 45)
0
h2
_—Sn + ?Mn_
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We assume that F = (f1,f5, /3, .. f-1) S = (51,82,83, .+, Sp1)’

M=F - /,LS - ((G1 + Gz)S + G3 + G4), (46)
where
- o -
ga,O 0
Giogp| S 0 O 47
L= Ze2 8wl 8wo O ’ (47)
_ga,n—3 got,n—4 o o ga,O 0_
_ % -
got,l ga,O
Go=n(1-0)| L2 o1 a0 , (48)
_ga,n—Z goz,n—S o ga,l ga,O_
i got,O ] [ got,l ]
8ul 8u2
_ 8,2 _ 8,3
G3 = m?a)l . , G4 = T](l — 19)(,()1 . . (49)
8o,n-3 Za,n-2
_ga,n—Z_ _ga,n—l_
Substituting equation (46) into equation (43), we obtain
NS + h*%BG;S + h* “BG,S + uh*BS
=W’BF —h**BG3 - h* BG4 + C (50)
and
NU + H**BG U + h**BG,U + uh®>BU
=W*BF —h*>“BGs —h* BG4+ C+ T. (51)
Now the error equation can be written as follows:
NE + h**BGLE + > *BGyE + uh*BE =T. (52)

In order to get a bound on ||E| (the infinite norm), we need the following lemma.

Lemma 3 Assume A to bean (n—1) x (n—1) matrix with ||A|| s < 1, then the matrix (I -A)

is invertible in addition to ||(I = A) ™o < m.



Emadifar and Jalilian Boundary Value Problems (2020) 2020:20 Page 13 of 20

From equation (52), it can be written that
E=(I+ KW *N"'BG, + " *N"'BG, + uh®N"'B) 'N"'T. (53)

Using the above lemma and (53), we get

INHHIT
IN-UI(2 | BIIGLIl + h2= | BIl[|Gall + 4142 BII)’

1Bl < — (54)

provided that |[N7Y||(h2~*||B|||G1|| + k> ¢||B|||G2|| + ||k?||B])) < 1. Also from equation
(18) we have || T|| = 1—12h4P4, where

Max|u® (n;)| = Py (x; < 1 < %11

and ||B|| = 1. It was shown in [29], where ||G;|| < 2|77]9, |G2]l <2|7|(1 - ¢) forO<a < 1

and ||G1|| < 47|19, |G2 |l < 4[7|(1-9) for 1 <« < 2. Also in [18] it was shown that |[N7!|| <
(0-a)®

8h2 *

By substituting the values of ||B]|, | G1]l, | G2, and |[N~!| in equation (54), we get

(b - a)*h*P,
(8 - (b—a)?2nlh—=v +2[n|h*(1-9) + )]

< K1h2+a = O(h2+a), (55)

Ell <
IEN < —

provided (b — a)?(2|7|h %0 + 2|7l (1 - 0) + |u]) <8 forO<a<land 0 < ¥ < 1.

Theorem 1 Let Qa(x, B) = Q(x) € C*[a, b] be the unique nonpolynomial spline which in-
terpolates u(x) with relations (9) and (11). Then the following error estimates hold for cubic

spline (in the limiting case when 6 — 0):
h4
’6(?65 + Th)} = ﬁ‘b‘h Max(xi<m<xl‘+1)|u(4)(ni)| = ¢a. (56)

Proof See [13] and [18]. Now, by using [13] we approximate u; by cubic spline ai where

1Qi(x) - Qi(x)| = O(h*),
1Q/(x) — Q/(x)] = O(K?), (57)
1Q/ (%) - Q/(%)| = O(?),
and
4

Qi) = Y @ kPl (58)
k=1

We known that 7, 7,, ]\7[0, and ]/\;I,, are known from boundary conditions. The notations
M = (Mo, My, Ma, ..., My, M,)T, U = (To, 1,5, ..., Bin1,7n) ", and by using (12)(II), we



Emadifar and Jalilian Boundary Value Problems (2020) 2020:20 Page 14 of 20

get 711 = (g, My, My, . ..., My_1,7,) T, and also D*(u(x))|s=x;» i = 0,1,2, ..., 1, are taken from
(5). Therefore, by using (57) and (55), we get

U = Slloo < 1U = Slloo + IS = Sllo < k1h*** + k1h* = O(H**).

It follows ||E|| — 0 as & — 0. Therefore the convergence of this method has been estab-
lished. O

3 Convergence analysis
In this section, we discuss the convergence analysis of exponential spline Method III. Con-
vergence analyses of Method I and Method II are similar. So, first we write equation (41)

in the points of x;, i = 1,2,...,n - 1:

F(xi,u(xi)ru//(xi)) = O; i:O) 1,2,...,”,

(59)
ulxo) = w1,  ulxy) = ws.
Now, using the results obtained in (18), we have
F(x;, Q(x;),Q"(x)) =0, i=0,1,2,...,n,
(i Q(x:), Q" (%)) (60)

Q(xo) = w1, Qxy) = ws.

Equations (60) construct a nonlinear system, which can be solved by Newton’s iterations
method. Let u(x) be the exact solution of the problem and Q(x) € C*°[0, T'] be the ex-
ponential spline approximation to u(x) satisfied in Q(x;) = u(x;), i = 1,2,...,n — 1, and
Q" (x;) = u”(x;), i = 0,n. We should approximate the error ||u(x) — Q(x)||. Let us assume
that Q(x) is the computed spline approximation to Q(x). To estimate ||u(x) — Q(x)||, we
will estimate [|z(x) — Q(x)|| and ||Q(x) — Q(x)|| separately.

Lemma4 Let Q(x) be the unique spline interpolation to Q(x), and also suppose that partial

derivatives of F exist and |%| < ky, |%| < ko for some constants k; and ky. Then, for 0 <

i <n, we have
|F(t Q(x:), Q"(x:)) — F (i, Q) Q" (1)) | < O(). (61)
Proof For1 <i<n-1,we get

F(x:, Q(x), Q" (1)) — F (s, Q(x), Q”(xi))
= F(xl'; Q(xi)1 Q//(xi)) - F(xi, Q(xi)) Q//(xi))
+ F(xb Q(xi)r Q//(xi)) - F(xi’ Q(xi)x Q//(xi))'
Now, using the mean value theorem for two parts of the above relation, there exist &; and

v; such that

F(x:, Q(x:), Q" () — F (s, Q(x), Q' (%)) = %(&‘)(Q(xi) - Q(xi)):
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OF
- ou’

F(xi, Q(x), Q" (xi)) — F(x:, Q(xy), Q”(xi)) () (Q" (i) - Q”(xi))~

Using relation (57), we have |Q(x;) — Qx;)| = O(HY), |Q" (x;) — Q" (x;)| = O(h?), and taking
the absolute value, we obtain

|F (%, Qi), Q" (7)) — F (1, Q) Q" (x1)) |
< k] Q(w) — Q)| + ko | Q" (1) — Q' ()|
<k O(h*) + k,O(K*) = O(K?). (62)
O

Theorem 2 Let u(x) € C%[0, T| be the exact solution (1) and Q(x) be the exponential spline

approximation to u(x), then we have
|u6) - Q)| < O(?).

Proof Since Q(x) is an interpolation to x(x), thus there is a finite constant o, independent
of /1 that we get

|utx) - Q@) < 1k = O(?),

where 0, is a finite constant. Now, using the triangular inequality and Lemma 1, we can

obtain the results as follows:
|u(x) = Q)| < [ulx) — Q)| + || Q) - Q)| = O(K?).

We can prove the convergence analysis for Method I and Method II in the same man-

ner. O

4 Numerical results

In this section, we have implemented our methods for solving some of the Bagley—
Torvik differential equations with different valuesof #= %, L, L L L "L 1 _1_'anq
o =0,0.2,0.3,0.4,0.5,0.9. The maximum absolute errors in solutions of the methods are
tabulated in tables. We compute the absolute error for examples and compare them with

the methods in [4, 9, 17, 21, 28, 29]. The convergence order (C.O.) is obtained by

E(h
C.0. =log, %, (63)
2

where E(h) is the maximum absolute error. Numerical results can be derived by using
MATHEMATICA 9.

Example 1 Consider the following boundary value problem [29]:

u”(x) + TD%u(x) + pu(x) = f(x), u(0)=u(1)=0, x<[0,1],
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Table 1 Observed maximum absolute errors of Example 1 by using Method IV with i =0.5, . =1

n a=0 a=03 CO. a=05 C.O.
8 277x1077  570x 107 172 x 107
16 416x 1077 102x10° 248 3.10x 107 247

32 111x107% 212x10° 227 622x10° 232

1
1
1
64 832x1077  432x107 229 132x10° 224

Table 2 Observed maximum absolute errors of Example 1 in reference [29]

n a=0 a=03 a=05

8 733x103 685x103 639x1073
16 209x%x103 193x102 173x1073
32 534x10%  538x10%  495x 107
64  144x10% 152x10% 137x10%

128 402x 10  423x10° 369x 107

Table 3 Observed maximum absolute errors of Example 1 by using Method /Il with 7 =0.5, . = 1

n a=0 a=03 a=05 a=09

8 119x107° 146x103 662x107° 886x 1073
16 274x10%  257x10% 105x10° 201 x1073
32 438x107° 589x10™ 340x10™% 447 x 107

Table 4 Observed maximum absolute errors of Example 2 by using Method IV

n a=0 a=02 CO. «a=04 CO.

8  492x10%  471x10* 368 x 107
16 389x10° 969x10° 228 629x10° 255
32 275%x10°  222x10° 217 123x107° 235

where

120 24
x_
re6-a) rG-a)

F) = 45— 3) + 7 —a< ) o e 1),

the exact solution is given by the relation u(x) = x*(x — 1). The maximum absolute errors of
Method III and Method IV are presented in Tables 1 and 3, and also compare the computed
results with the method [29] in Table 2.

Example 2 Consider the following boundary value problem:

720 40,320
D—au//(x) + u(x) =x6(1 _xZ) + ( d+a )x6+a

rGra)  T(7+a)

M(O) = M(l) =0, xe€ [0¢ 1];
where the exact solution is given by the relation u(x) = x°(1 — x?). The maximum absolute
errors of Method III and Method IV are presented in Tables 7 and 4. Also compare the
computed results with the methods [28] and [4] in Tables 5 and 6.
Example 3 Consider the following Bagley—Torvik fractional boundary value problem:

W)+ DY)+ u() =2 4554 2 xe[0,1],  u(0)=u(l)=0,

N
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Table 5 Observed maximum absolute errors of Example 2 in reference [28]

n a=0 a=02 a=04

8 929x102 106x107" 143 x 107"
16 257x102 291x102  411x1072
32 715x1073  805x 103  1.10x 1072
64 185x 103 221 x10° 306x1073

Table 6 Observed maximum absolute errors of Example 2 in reference [4]

Table 7 Observed maximum absolute errors of Example 2 by using Method Il

n aoa=0 a=02 oa=04

8 15x1072 17x102 205x107?
16 56x103  79x103 1.14x1072
32 45x10°  66x10°  980x 1073

n a=0 a=04 a=09

8 386x10° 648x103 858x1073
16 988x 1074 1.16x103 189x 1073
32 195x107°  260x10%  865x 107

Table 8 The numerical solutions of Method [ for different n values with exact solution for Example 3

X n=10 n=20 n=40 Exact Solutions

0.1 —-0.0999839029648408 -0.0991780129777646 —0.09902563129364461 —0.09900000000
0.2 —0.1929496573590681 —0.1921404327629765 -0.19201920290616248 —0.19200000000
03 —0.2737783729484617 —0.2731115210232273 —0.27301499021665854 —0.27300000000
04 —-0.3366319163396341 —-0.3360891417690852 -0.33601185443796866 —-0.33600000000
0.5 -0.3755082480342222 -0.3750708830494593 -0.37500935812857605 -0.37500000000
0.6 —-0.3844011689404432 —0.3840554682536743 -0.38400728559367271 —-0.38400000000
0.7 -0.3573069005124369 -0.3570421354342761 -0.35700551447130562 -0.35700000000
0.8 —-0.2882213997500855 —0.2880303912577806 -0.28800396865039084 —0.28800000000
09 —0.1711547289079775 -0.1710197837825782 —0.17100259741188184 —0.17100000000

Table 9 The numerical solutions for different n values with exact solution for Example 3 in [21]

X n=10 n=20 n=40 Exact Solutions

0.1 —0.0989868450 —0.0989087970 —0.0989662744 —0.09900000000
0.2 -0.1915262280 -0.1918109570 -0.1919429930 -0.19200000000
03 -0.2722913010 -0.2727620400 —0.2729317000 —0.27300000000
04 -0.3351934350 -0.3357462050 -0.3359286851 -0.33600000000
0.5 -0.3741958950 -0.3747551070 -0.3749319383 —0.37500000000
0.6 —-0.3832752590 —-0.3837831780 —-0.3839400733 —-0.38400000000
0.7 -0.3564138890 -0.3568261360 -0.3569520382 —0.35700000000
0.8 —-0.2875962800 -0.2878801690 —-0.2879668795 —-0.28800000000
0.9 -0.1708055150 -0.1709411180 -0.1709835662 —0.17100000000

the exact solution is given by u(x) = x

3

— x. The numerical solutions are computed by

Methods I and IV. In order to compare the solutions with [21] in Table 9, we have taken

n = 10,20, and 40 in Table 8. The absolute error and the order of convergence for n =
4,8,16,32,64,128,256, and 512 are given in Table 10.

Page 17 of 20
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Table 10 Observed maximum absolute errors of Example 3

Table 11 Observed maximum absolute errors of Example 4 for y =3

n Method | Method IV
4 509%x 103  871x107

8 127x102  454x1072
16 267 x10%  225x 1072
32 493x10°  1.01x1072
64 809x10° 545x1073
128 124x10° 268x1073
256 184x107 132x1073
512 284x10% 656x10™

n Method | Method Il [9] 117
8 891x102 483x1072 176x107" 277 %107
16 214x102 232x102 909%x102 150x 107
32 526x107°  113x1072  462x102 776 x 1072
64 162x10°  548x 1073 233x102 394x 1072
128 473x10%  269x103  1.17x 102  1.98x 1072
256 146x10%  132x103  585x1073 996 x 1073
512 446x 107  655x10%  293x103 449 x 1073

1024 138x 10  326x 104 - -

Table 12 Observed maximum absolute errors of Example 4 for y =4

n Method | Method Il [9] 117
8 177x102 702x102%2 157x1072 476x 107"
16 431x10° 349x102 391x10° 231x 10"
32 106x10°  1.72x102 977 x10% 113 x 107"
64 320x10% 840x 1073 244x10* 558x 1072
128 957 x107°  411x1073  610x 102 277 x 1072
256 294x10°  202x103  153x10° 138x 1072
512 898x10° 999x10* 381x10° 690x 1073

1024 277 x107°  494x10% - -

Example 4 Consider the following Bagley—Torvik fractional boundary value problem:

r'(y+ l)xy%

T +x7,
r'(y-;

u(x) + D3 ulx) +ux) =y(y - D’ 2 +

x€[0,1], u(0)=0, u'(0)=0.
The exact solution is given by u(x) = x”. The absolute errors are compared with the
methods [9] and [17]. In order to compare the solutions with [9], we have taken n =

8,16,32,64,128,256,512,1024 and y = 3,4 in Tables 11 and 12.

5 Conclusion

Computational methods for solving the fractional Bagley—Torvik equation were proposed.
The fractional differential equation term in the fractional Bagley—Torvik equation was
discretized using the exponential spline function and the shifted Griinwald difference op-
erator. Also we obtain the four numerical schemes based on the exponential spline. The
convergence analyses of the shifted Griinwald difference and the exponential spline are
discussed. The feasibility of the numerical algorithms was illustrated with four examples,
and the approximated results were compared with the methods in [4, 9, 17, 21, 28, 29].
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