
Hou et al. Boundary Value Problems         (2020) 2020:24 
https://doi.org/10.1186/s13661-020-01333-4

R E S E A R C H Open Access

Ground state sign-changing solutions for a
class of double-phase problem in bounded
domains
Gangling Hou1, Bin Ge2,3* , Beilei Zhang2 and Liyan Wang3

*Correspondence:
gebin791025@hrbeu.edu.cn
2School of Mathematical Sciences,
Harbin Engineering University,
Harbin, P.R. China
3College of Automation, Harbin
Engineering University, Harbin, P.R.
China
Full list of author information is
available at the end of the article

Abstract
This paper is concerned with the following double-phase problem:

{
–div(|∇u|p–2∇u + a(x)|∇u|q–2∇u) = f (x,u) in Ω ,

u = 0 on ∂Ω ,

where N ≥ 2 and 1 < p < q < N. Assuming that the primitive of f (x,u) is asymptotically
q-linear as |u| → ∞ and a weak version of Nehari-type monotonicity condition that
the function u �→ f (x,u)

|u|q–1 is nondecreasing on (–∞, 0)∪ (0,∞) for a.e. x ∈ Ω , we prove
the existence of one ground state sign-changing solution via the constraint
variational method and quantitative deformation lemma for the equation. Our results
improve and generalize some results obtained by Liu and Dai (J. Differ. Equ.
265(9):4311–4334, 2018).

Keywords: Double-phase problem; Musielak–Orlicz space; Variational method;
Ground state sign-changing solutions; Nehari manifold; Perturbation method

1 Introduction and main results
Differential equations and variational problems with double phase operator are a new and
interesting topic. It arises from the nonlinear elasticity theory, strongly anisotropic mate-
rials, Lavrentiev’s phenomenon, and so on (see [2–5]). The study on double-phase prob-
lems attracts more and more interest in recent years, and many results have been obtained
[1, 6–10]. More precisely, the research is related to the energy functional

u �→
∫

Ω

(|∇u|p + a(x)|∇u|q)dx, (1)

where the integrand switches between two different elliptic behaviors. In [5], energies of
the form (1) are used in the context of homogenization and elasticity, and the function a
drives the geometry of a composite of two different materials with hardening powers p
and q.
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In this paper, we are concerned with the existence of sign-changing solutions of the
double-phase problem

⎧⎨
⎩– div(|∇u|p–2∇u + a(x)|∇u|q–2∇u) = f (x, u) in Ω ,

u = 0 on ∂Ω ,
(P)

where Ω is a smooth bounded domain in R
N , N ≥ 2, 1 < p < q < N , and

q
p

< 1 +
1
N

, a : Ω �→ [0, +∞) is Lipschitz continuous, (2)

and f : Ω ×R �→R is a Carathéodory function satisfying the following assumptions:
(h1) f (x, t) = o(|t|p–2t) as t → 0 uniformly in x ∈ Ω ;
(h2) there exist q < r < p∗ and some positive constant C such that

∣∣f (x, t)
∣∣ ≤ C

(
1 + |t|r–1),

where p∗ = Np
N–p is the critical exponent.

(h3) lim|t|→+∞ F(x,t)
|t|q = +∞ uniformly in x ∈ Ω , where F(x, t) =

∫ t
0 f (x, s) ds;

(h4) the function t �→ f (x,t)
|t|q–1 is nondecreasing on (–∞, 0) ∪ (0, +∞) for a.e. x ∈ Ω .

The solution of (P) is understand in the weak sense, that is, u ∈ W 1,H
0 (Ω) is a solution of

(P) if
∫

Ω

(|∇u|p–2∇u · ∇v + a(x)|∇u|q–2∇u · ∇v
)

dx

=
∫

Ω

f (x, u)v dx, ∀v ∈ W 1,H
0 (Ω),

where W 1,H
0 (Ω) will be defined in Sect. 2.

Note that energy functional ϕ associated with (P) is defined by

ϕ(u) =
∫

Ω

(
1
p
|∇u|p +

a(x)
q

|∇u|q
)

dx –
∫

Ω

F(x, u) dx.

It is a well-known consequence of (h1) and (h2) that ϕ ∈ C1(W 1,H
0 (Ω),R) and the critical

points of ϕ are weak solutions of (P). Furthermore, if u ∈ W 1,H
0 (Ω) is a solution of (P) and

u± �= 0, then u is a sign-changing solution of (P), where

u+(x) := max
{

u(x), 0
}

and u–(x) := min
{

u(x), 0
}

.

To facilitate the narrative, we set

M0 :=
{

u ∈ W 1,H
0 (Ω) : u± �= 0,

〈
ϕ′(u), u+〉

=
〈
ϕ′(u), u–〉

= 0
}

,

N0 :=
{

u ∈ W 1,H
0 (Ω) : u �= 0,

〈
ϕ′(u), u

〉
= 0

}
,

and put

m0 := inf
u∈M0

ϕ(u), n0 := inf
u∈N0

ϕ(u).
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Let us recall some previous results that led us to the present research. The first result
is due to Perera and Squassina [6], who considered the following form of (P) with the q-
superlinear nonlinearity:

⎧⎪⎪⎨
⎪⎪⎩

– div(|∇u|p–2∇u + a(x)|∇u|q–2∇u)

= λ|u|p–2u + |u|r–2u + h(x, u) in Ω ,

u = 0 on ∂Ω .

(P1)

Applying the Morse theory, they proved that (P1) has a nontrivial solution by assuming
that either

(T1) λ /∈ {λk}∞k=1; or
(T2) for some δ > 0, |t|r

r + H(x, t) ≤ 0 for a.e. x ∈ Ω and |t| ≤ δ; or
(T3) |t|r

r + H(x, t) ≥ c|t|s for a.e. x ∈ Ω and all t ∈R for some s ∈ (p, q) and c > 0.
Recently, Liu and Dai [1] investigated the sign-changing ground state solution of (P)

under (h1), (h2), (h3), and
(h4)′ the function t �→ f (x,t)

|t|q–1 is strictly increasing on (–∞, 0) ∪ (0, +∞).
Additionally, Liu and Dai [9] also obtained the existence of at least three ground state

solutions of (P) by using the strong maximum principle for the homogeneous double-
phase problem.

It is a well-known consequence of (h4)′ that there is unique tu > 0 such that tuu ∈N0 for
every u ∈ W 1,H

0 (Ω)\{0}, which implies that ϕ has at most one minimizer onM0. Moreover,
(h4)′ plays a crucial role in [1]. In fact, condition (h4)′ implies that every minimizer of ϕ on
M0 is a critical point. However, if t �→ f (x,t)

|t|q–1 is nonstrictly increasing, then tu and minimizer
of ϕ on M0 may not be unique, and their arguments become invalid.

Motivated by the aforementioned works, in the present paper, our goal is to generalize
the results mentioned to (P) under a weaker assumption. Precisely, we obtain following
results.

Theorem 1.1 Assume that (h1)–(h4) hold. Then problem (P) has a sign-changing solution
u0 ∈M0 such that

ϕ(u0) = inf
u∈M0

ϕ(u).

Furthermore, suppose that

1
q

f (x, t)t – F(x, t) > 0, ∀x ∈ Ω , t �= 0, (3)

then u0 has precisely two nodal domains.

Theorem 1.2 Assume that (h1)–(h4) hold. Then m0 ≥ 2n0.

The rest of this paper is organized as follows. In Sect. 2, we present some necessary
preliminary knowledge on space W 1,H

0 (Ω). In Sect. 3, we give some preliminary lemmas
needed for the proofs of our main results. We complete the proofs of Theorems 1.1–1.2
in Sect. 4.
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2 Preliminaries
To discuss problem (P), we need some facts on the space W 1,H

0 (Ω), which is called the
Musielak–Orlicz–Sobolev space. For this reason, we recall some properties involving the
Musielak–Orlicz spaces, which can be found in [10–14] and references therein.

Denote by N(Ω) the set of all generalized N-functions. For 1 < p < q and 0 ≤ a(·) ∈
L1(Ω), we define

H(x, t) = tp + a(x)tq, (x, t) ∈ Ω × [0, +∞).

It is clear that H ∈ N(Ω) is locally integrable and

H(x, 2t) ≤ 2qH(x, t), (x, t) ∈ Ω × [0, +∞),

which is called condition (�2).
The Musielak–Orlicz space LH (Ω) is defined by

LH (Ω) =
{

u : Ω →R measurable :
∫

Ω

H
(
x, |u|)dx < +∞

}
,

endowed with the Luxemburg norm

|u|H = inf
{
λ > 0 :

∫
Ω

H
(

x,
∣∣∣∣u
λ

∣∣∣∣
)

dx ≤ 1
}

.

The Musielak–Orlicz–Sobolev space W 1,H(Ω) is defined by

W 1,H(Ω) =
{

u ∈ LH (Ω) : |∇u| ∈ LH (Ω)
}

and is equipped with the norm

‖u‖ = |u|H + |∇u|H . (4)

We denote by W 1,H
0 (Ω) the completion of C∞

0 (Ω) in W 1,H(Ω). With these norms, the
spaces LH (Ω), W 1,H

0 (Ω) and W 1,H(Ω) are separable reflexive Banach spaces; see [10] for
the details.

Proposition 2.1 ([1, Proposition 2.1]) Set ρH (u) =
∫
Ω

(|u|p + a(x)|u|q) dx. For u ∈ LH (Ω),
we have:

(i) For u �= 0, |u|H = λ ⇔ ρH ( u
λ

) = 1;
(ii) |u|H < 1(= 1; > 1) ⇔ ρH (u) < 1(= 1; > 1);

(iii) If |u|H ≥ 1, then |u|pH ≤ ρH (u) ≤ |u|qH ;
(iv) If |u|H ≤ 1, then |u|qH ≤ ρH (u) ≤ |u|pH .

Proposition 2.2 ([11, Propositions 2.15 and 2.18])
(1) If 1 ≤ ϑ ≤ p∗, then the embedding from W 1,H

0 (Ω) to Lϑ (Ω) is continuous. In
particular, if ϑ ∈ [1, p∗), then the embedding W 1,H

0 (Ω) ↪→ Lϑ (Ω) is compact.
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(2) Assume that (2) holds. Then the Poincaré’s inequality holds, that is, there exists a
positive constant C0 such that

|u|H ≤ C0|∇u|H , u ∈ W 1,H
0 (Ω).

By this lemma there exists cϑ > 0 such that

|u|ϑ ≤ cϑ‖u‖, ∀u ∈ W H
0 (Ω),

where |u|s denotes the usual norm in Lϑ (Ω) for 1 ≤ ϑ < p∗. It follows from (2) of Proposi-
tion 2.2 that |∇u|H is an equivalent norm in W 1,H

0 (Ω). We will use the equivalent norm in
the following discussion and write ‖u‖ = |∇u|H for simplicity.

To discuss problem (P), we need to define a functional in W 1,H
0 (Ω):

J(u) =
∫

Ω

(
1
p
|∇u|p +

a(x)
q

|∇u|q
)

dx.

We know that (see [15, p. 63, example]) J ∈ C1(W 1,H
0 (Ω),R) and the double-phase operator

– div(|∇u|p–2∇u + a(x)|∇u|q–2∇u) is the derivative operator of J in the weak sense. We
denote L = J ′ : W 1,H

0 (Ω) → (W 1,H
0 (Ω))∗. Then

〈
L(u), v

〉
=

∫
Ω

(|∇u|p–2∇u · ∇v + a(x)|∇u|q–2∇u · ∇v
)

dx

for all u, v ∈ W 1,H
0 (Ω). Here (W 1,H

0 (Ω))∗ denotes the dual space of W 1,H
0 (Ω), and 〈·, ·〉 de-

notes the pairing between W 1,H
0 (Ω) and (W 1,H

0 (Ω))∗. Then we have the following:

Proposition 2.3 ([1, Proposition 3.1]) Let E = W 1,H
0 (Ω), and let L be as before. Then

(1) L : E → E∗ a continuous, bounded, and strictly monotone operator.
(2) L : E → E∗ is a mapping of type (S)+, that is, if un ⇀ u in E and

lim supn→+∞〈L(un) – L(u), un – u〉 ≤ 0, then un → u in E.
(3) L : E → E∗ is a homeomorphism.

3 Some preliminary lemmas
In this section, we give some preliminary lemmas crucial for proving our results.

Lemma 3.1 If assumptions (h1)–(h4) hold, then

ϕ(u) ≥ ϕ
(
su+ + tu–)

+
1 – sq

q
〈
ϕ′(u), u+〉

+
1 – tq

q
〈
ϕ′(u), u–〉

+
∫

Ω

g(s)
∣∣∇u+∣∣p dx +

∫
Ω

g(t)
∣∣∇u–∣∣p dx,

∀u = u+ + u– ∈ E, s, t ≥ 0, (5)

where g(τ ) = 1–τp

p – 1–τq

q , τ ≥ 0.
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Proof By condition (h4) we have

1 – tq

q
τ f (x, τ ) + F(x, tτ ) – F(x, τ )

=
∫ 1

t
f (x, τ )sq–1τ ds –

∫ 1

t
f (x, τ s)τ ds

=
∫ 1

t

[
f (x, τ )
|τ |q–1 –

f (x, τ s)
|τ s|q–1

]
sq–1|τ |q–1τ ds

≥ 0, t ≥ 0, τ ∈R \ {0}. (6)

Clearly, g(t) ≥ g(1) = 0 for any t ≥ 0. Hence from (6) it follows that

ϕ(u) – ϕ
(
su+ + tu–)

=
∫

Ω

(
1
p
∣∣∇u+∣∣p +

a(x)
q

∣∣∇u+∣∣q
)

dx –
∫

Ω

F
(
x, u+)

dx

+
∫

Ω

(
1
p
∣∣∇u–∣∣p +

a(x)
q

∣∣∇u–∣∣q
)

dx –
∫

Ω

F
(
x, u–)

dx

–
∫

Ω

(
sp

p
∣∣∇u+∣∣p +

a(x)sq

q
∣∣∇u+∣∣q

)
dx +

∫
Ω

F
(
x, su+)

dx

–
∫

Ω

(
tp

p
∣∣∇u–∣∣p +

a(x)tq

q
∣∣∇u–∣∣q

)
dx +

∫
Ω

F
(
x, tu–)

dx

–
1 – sq

q
〈
ϕ′(u), u+〉

–
1 – tq

q
〈
ϕ′(u), u–〉

+
1 – sq

q
〈
ϕ′(u), u+〉

+
1 – tq

q
〈
ϕ′(u), u–〉

=
∫

Ω

g(s)
∣∣∇u+∣∣p dx +

∫
Ω

g(t)
∣∣∇u–∣∣p dx

+
1 – sq

q
〈
ϕ′(u), u+〉

+
1 – tq

q
〈
ϕ′(u), u–〉

+
∫

Ω

[
1 – sq

q
f
(
x, u+)

u+ + F
(
x, su+)

– F
(
x, u+)]

dx

+
∫

Ω

[
1 – tq

q
f
(
x, u–)

u– + F
(
x, tu–)

– F
(
x, u–)]

dx

≥ 1 – sq

q
〈
ϕ′(u), u+〉

+
1 – tq

q
〈
ϕ′(u), u–〉

+
∫

Ω

g(s)
∣∣∇u+∣∣p dx +

∫
Ω

g(t)
∣∣∇u–∣∣p dx.

The proof is completed. �

From Lemma 3.1 we immediately have the following two corollaries.

Corollary 3.2 Assume that (h1)–(h4) hold. If u = u+ + u– ∈M0, then

ϕ(u) = ϕ
(
u+ + u–)

= max
s,t≥0

ϕ
(
su+ + tu–)

.
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Corollary 3.3 Assume that (h1)–(h4) hold. If u ∈N0, then

ϕ(u) = max
t≥0

ϕ(tu).

Lemma 3.4 Assume that (h1)–(h3) and (h4)′ hold. If u ∈ E and u± �= 0, then there exists a
unique pair (su, tu) of positive numbers such that

suu+ + tuu– ∈ M0.

Proof For any u ∈ E with u± �= 0, we consider the functions g(s, t), h(s, t) : [0, +∞) ×
[0, +∞) →R given by

g(s, t) =
〈
ϕ′(su+ + tu–)

, su+〉
and h(s, t) =

〈
ϕ′(su+ + tu–)

, tu–〉
.

We directly compute that

g(s, t) =
〈
ϕ′(su+ + tu–)

, su+〉
=

∫
Ω

(
sp∣∣∇u+∣∣p + a(x)sq∣∣∇u+∣∣q)dx –

∫
Ω

f
(
x, su+)

su+ dx,

h(s, t) =
〈
ϕ′(su+ + tu–)

, tu–〉
=

∫
Ω

(
tp∣∣∇u–∣∣p + a(x)tq∣∣∇u–∣∣q)dx –

∫
Ω

f
(
x, tu–)

tu– dx.

(7)

Using assumptions (h1) and (h2), we deduce that, for any ε > 0, there is Cε > 0 such that,
for all (x, t) ∈ Ω ×R,

∣∣f (x, t)
∣∣ ≤ ε|t|p–1 + Cε|t|r–1,∣∣F(x, t)
∣∣ ≤ ε|t|p + Cε|t|r ,

(8)

where r ∈ [1, p∗) was given in (h2).
Thus, for s > 0 sufficiently small, by (8) and Proposition 2.2(2) we have

g(s, t) =
∫

Ω

(
sp∣∣∇u+∣∣p + a(x)sq∣∣∇u+∣∣q)dx –

∫
Ω

f
(
x, su+)

su+ dx

≥ sq
∫

Ω

(∣∣∇u+∣∣p + a(x)
∣∣∇u+∣∣q)dx

–
∫

Ω

(
εsp∣∣u+∣∣p + Cεsr∣∣u+∣∣r)dx

≥
⎧⎨
⎩sq‖u+‖q – εcp

psp‖u+‖p – Cεcr
rsr‖u+‖r if ‖u+‖ < 1,

sq‖u+‖p – εcp
psp‖u+‖p – Cεcr

rsr‖u+‖r if ‖u+‖ > 1,
(9)

and

h(s, t) =
∫

Ω

(
tp∣∣∇u–∣∣p + a(x)tq∣∣∇u–∣∣q)dx –

∫
Ω

f
(
x, tu–)

tu– dx

≥ tq
∫

Ω

(∣∣∇u–∣∣p + a(x)
∣∣∇u–∣∣q)dx
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–
∫

Ω

(
εtp∣∣u–∣∣p + Cεtr∣∣u–∣∣r)dx

≥
⎧⎨
⎩tq‖u–‖q – εcp

ptp‖u–‖p – Cεcr
rtr‖u–‖r if ‖u–‖ < 1,

tq‖u–‖p – εcp
ptp‖u–‖p – Cεcr

rtr‖u–‖r if ‖u–‖ > 1.
(10)

By (9), (10), and the arbitrariness of ε, it is easy to prove that g(s, s) > 0 and h(s, s) > 0 for
s > 0 small.

Moreover, using (6), we have

1
q
τ f (x, τ ) – F(x, τ ) ≥ 0, τ ∈R \ {0}. (11)

Hence by (11) and (h3) we have that, for s > 1,

g(s, t) =
∫

Ω

(
sp∣∣∇u+∣∣p + a(x)sq∣∣∇u+∣∣q)dx –

∫
Ω

f
(
x, su+)

su+ dx

≤ sq
∫

Ω

(∣∣∇u+∣∣p + a(x)
∣∣∇u+∣∣q)dx – q

∫
Ω

F
(
x, su+)

dx

= sq
∫

Ω

(∣∣∇u+∣∣p + a(x)
∣∣∇u+∣∣q)dx – q

∫
Ω

F(x, su+)
|su+|q

∣∣su+∣∣q dx

= sq
(∫

Ω

(∣∣∇u+∣∣p + a(x)
∣∣∇u+∣∣q)dx – q

∫
u+ �=0

F(x, su+)
|su+|q

∣∣u+∣∣q dx
)

(12)

and, for t > 1,

g(s, t) =
∫

Ω

(
tp∣∣∇u–∣∣p + a(x)tq∣∣∇u–∣∣q)dx –

∫
Ω

f
(
x, tu–)

tu– dx

≤ tq
∫

Ω

(∣∣∇u–∣∣p + a(x)
∣∣∇u–∣∣q)dx – q

∫
Ω

F
(
x, tu+)

dx

= tq
∫

Ω

(∣∣∇u–∣∣p + a(x)
∣∣∇u–∣∣q)dx – q

∫
Ω

F(x, tu–)
|tu–|q

∣∣tu–∣∣q dx

= tq
(∫

Ω

(∣∣∇u–∣∣p + a(x)
∣∣∇u–∣∣q)dx – q

∫
u– �=0

F(x, tu+)
|tu–|q

∣∣u–∣∣q dx
)

, (13)

which yields that g(t, t) < 0 and h(t, t) < 0 for t > 0 large. Thus there are 0 < T < R such that

g(T , T), h(T , T) > 0 and g(R, R), h(R, R) < 0. (14)

This fact, combined with (7), implies that

g(T , t) = g(T , T) > 0, g(R, t) = g(R, R) < 0, t ∈ [r, R],

and

h(T , t) = h(T , T) > 0, h(R, t) = h(R, R) < 0, t ∈ [r, R].

So, by the Miranda theorem in [16] we can find (su, tu) ∈ (T , R)× (T , R) such that g(su, tu) =
h(su, tu) = 0. Therefore suu+ + tuu– ∈M0.
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Next, we prove the uniqueness. Let (si, ti) be such that siu+ + tiu– ∈M0, i = 1, 2, that is,

g(s1, t1) = h(s1, t1) = g(s2, t2) = h(s2, t2) = 0. (15)

Then from (5), (7), and (15) it follows that

ϕ
(
s1u+ + t1u–) ≥ sq

1 – sq
2

qsq
1

〈
ϕ′(s1u+ + t1u–)

, s1u+〉

+
tq
1 – tq

2

qtq
1

〈
ϕ′(s1u+ + t1u–)

, t1u–〉
+ ϕ

(
s2u+ + t2u–)

+
(

sp
1 – sp

2
p

–
sq

1 – sq
2

qsq
1

sp
1

)∫
Ω

∣∣∇u+∣∣p dx

+
(

tp
1 – tp

2
p

–
tq
1 – tq

2

qtq
1

tp
1

)∫
Ω

∣∣∇u–∣∣p dx

= ϕ
(
s2u+ + t2u–)

+
(

sp
1 – sp

2
p

–
sq

1 – sq
2

qsq
1

sp
1

)∫
Ω

∣∣∇u+∣∣p dx

+
(

tp
1 – tp

2
p

–
tq
1 – tq

2

qtq
1

tp
1

)∫
Ω

∣∣∇u–∣∣p dx (16)

and

ϕ
(
s2u+ + t2u–) ≥ sq

2 – sq
1

qsq
2

〈
ϕ′(s2u+ + t2u–)

, s2u+〉

+
tq
2 – tq

1

qtq
2

〈
ϕ′(s2u+ + t2u–)

, t2u–〉
+ ϕ

(
s1u+ + t1u–)

+
(

sp
2 – sp

1
p

–
sq

2 – sq
1

qsq
2

sp
2

)∫
Ω

∣∣∇u+∣∣p dx

+
(

tp
2 – tp

1
p

–
tq
2 – tq

1

qtq
2

tp
2

)∫
Ω

∣∣∇u–∣∣p dx

= ϕ
(
s1u+ + t1u–)

+
(

sp
2 – sp

1
p

–
sq

2 – sq
1

qsq
2

sp
2

)∫
Ω

∣∣∇u+∣∣p dx

+
(

tp
2 – tp

1
p

–
tq
2 – tq

1

qtq
2

tp
2

)∫
Ω

∣∣∇u–∣∣p dx. (17)

Both (16) and (17) imply that s1 = s2 and t1 = t2, which in turn implies that (su, tu) is the
unique pair of positive numbers such that suu+ + tuu– ∈M0. We end the proof. �

Furthermore we have the following:
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Lemma 3.5 Assume that (h1)–(h3) and (h4)′ hold. Then

m0 = inf
u∈M0

ϕ(u) = inf
u∈E,u±�=0

max
s,t≥0

ϕ
(
su+ + tu–)

.

Proof By Corollary 3.2 we conclude that

inf
u∈E,u±�=0

max
s,t≥0

ϕ
(
su+ + tu–) ≤ inf

u∈M0
max
s,t≥0

ϕ
(
su+ + tu–)

= inf
u∈M0

ϕ(u) = m0. (18)

Moreover, for any u ∈ E with u± �= 0, from Lemma 3.4 we deduce that

max
s,t≥0

ϕ
(
su+ + tu–) ≥ ϕ

(
suu+ + tuu–) ≥ inf

u∈M0
ϕ(u) = m0,

which implies

inf
u∈E,u±�=0

max
s,t≥0

ϕ
(
su+ + tu–) ≥ inf

u∈M0
ϕ(u) = m0. (19)

Therefore the conclusion directly follows from (18) and (19). �

Lemma 3.6 Assume that (h1)–(h3) and (h4)′ hold. Then m0 > 0 can be achieved.

Proof Firstly, we will show that m0 > 0. Indeed, for every u ∈ M0, we have u ∈ N0 and
〈ϕ′(u), u〉 = 0. Then by (h1)–(h2) and Propositions 2.1 and 2.2 we get

εcp
p‖u‖p + Cεcr

r‖u‖r

≥ ε|u|pp + Cε|u|rr
≥

∫
Ω

f (x, u)u dx

=
∫

Ω

(|∇u|p + a(x)|∇u|q)dx

≥
⎧⎨
⎩‖u‖q if ‖u‖ < 1,

‖u‖p if ‖u‖ > 1.

Thus, for any u ∈N0 with ‖u‖ < 1, we have that

1
2
‖u‖q ≤ Cεcr

r‖u‖r ,

which implies that

‖u‖ ≥
(

1
2Cεcr

r

) 1
r–q

=: α0.

Therefore we obtain that m0 = infu∈M0 ϕ(u) ≥ α0 > 0.
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It remains to prove that u0 ∈ M0 and ϕ(u0) = m0. Let {un} ⊂ M0 be a sequence of func-
tions such that ϕ(un) → m0 as n → +∞. Firstly, we claim that {un} is bounded. Suppose,
by contradiction, that ‖un‖ → +∞ and let vn = un

‖un‖ . Without loss of generality, we may
assume that vn ⇀ v in E. By the Sobolev embedding theorem we have

vn → v in Lϑ (Ω), 1 ≤ ϑ < p∗, vn → v a.e. on Ω .

If v = 0, then vn → 0 in Lϑ (Ω) for 1 ≤ ϑ < p∗. Fix R > [q(m0 + 1)]
1
p (> 1). By (h1)–(h2) there

exists C1 > 0 such that

F(x, t) ≤ |t|p + C1|t|r , x ∈ Ω , t ∈R.

Then we have that

lim sup
n→∞

∫
Ω

F(x, Rvn) dx ≤ Rp lim
n→∞

(|vn|pp + C1Rr|vn|rr
)

= 0. (20)

Let tn = R
‖un‖ . Hence by (20) and Corollary 3.3 we get that

m0 + o(1) = ϕ(un)

≥ ϕ(tnun)

= ϕ(Rvn)

=
∫

Ω

(
1
p

Rp|∇vn|p +
a(x)

q
Rq|∇vn|q

)
dx –

∫
Ω

F(x, Rvn) dx

≥ 1
q

Rp –
∫

Ω

F(x, Rvn) dx

≥ 1
q

Rp + o(1)

> m0 + 1 + o(1),

which yields a contradiction. Thus v �= 0.
For x ∈ {y ∈ R

N : v(y) �= 0}, it is clear that limn→+∞ |un(x)| = +∞. By hypotheses (h1) and
(h2) we can find C2 ∈R such that

F(x, t) ≥ C2, (x, t) ∈ Ω ×R. (21)

Hence by using (21), (h3), Proposition 2.1, and Fatou’s lemma we have

0 = lim
n→+∞

m + o(1)
‖un‖q = lim

n→+∞
ϕ(un)
‖un‖q

≤ lim
n→+∞

[
1
p

∫
Ω

(|∇un|p + a(x)|∇un|q) dx
‖un‖q –

∫
Ω

F(x, un)
‖un‖q dx

]

≤ 1
p

– lim
n→+∞

∫
Ω

F(x, un)
‖un‖q dx

=
1
p

– lim
n→+∞

∫
Ω

F(x, un) – C2

‖un‖q dx
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≤ 1
p

– lim inf
n→+∞

∫
Ω

F(x, un) – C2

‖un‖q dx

=
1
p

– lim inf
n→+∞

∫
Ω

F(x, un)
‖un‖q dx

≤ 1
p

–
∫

Ω

lim inf
n→+∞

F(x, un(x))
|un(x)|q

∣∣vn(x)
∣∣q dx

= –∞.

This contradiction shows that {un} is bounded in E. Going if necessary to a subsequence,
we can assume that u±

n ⇀ u±
0 in E. Then u±

n → u±
0 in Lϑ (Ω) for ϑ ∈ [1, p∗) and un → u0

a.e. on Ω .
Our next goal is to prove that u0 ∈M0 and ϕ(u0) = m0. Firstly, we claim that infu∈N0 ϕ(u) >

0. Indeed, for every u ∈N0, we have 〈ϕ′(u), u〉 = 0. Then by (h1), (h2), and Propositions 2.1
and 2.2 we get

εcp
p‖u‖p + Cεcr

r‖u‖r

≥ ε|u|pp + Cε|u|rr
≥

∫
Ω

f (x, u)u dx

=
∫

Ω

(|∇u|p + a(x)|∇u|q)dx

≥
⎧⎨
⎩‖u‖q if ‖u‖ < 1,

‖u‖p if ‖u‖ > 1.

Thus, for any u ∈N0 with ‖u‖ < 1, we have that

1
2
‖u‖q ≤ Cεcr

r‖u‖r ,

which implies that ‖u‖ ≥ α0. This implies that infu∈N0 ϕ(u) > 0. Note that {un}n∈N ⊂ M0.
Then it is obvious that {u±

n }n∈N ⊂N0, that is,

∫
Ω

(∣∣∇u±
n
∣∣p + a(x)

∣∣∇u±
n
∣∣q)dx =

∫
Ω

f
(
x, u±

n
)
u±

n dx and
∥∥u±

n
∥∥ ≥ α0.

By (h1) and (h2), for any ε > 0, there exists Cε > 0 such that

∣∣f (x, t)
∣∣ ≤ ε|t|p–1 + Cε|t|r–1 (22)

for all (x, t) ∈ Ω ×R, where r ∈ [1, p∗) was given in (h2). Thus

min
{
α

p
0 ,αq

0
}

≤ min
{∥∥u±

n
∥∥p,

∥∥u±
n
∥∥q}

≤
∫

Ω

(∣∣∇u±
n
∣∣p + a(x)

∣∣∇u±
n
∣∣q)dx
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=
∫

Ω

f
(
x, u±

n
)
u±

n dx

≤ ε

∫
Ω

∣∣u±
n
∣∣p dx + Cε

∫
Ω

∣∣u±
n
∣∣r dx. (23)

Because of the boundedness of un, there is C1 > 0 such that

min
{
α

p
0 ,αq

0
} ≤ εC1 + Cε

∫
Ω

∣∣u±
n
∣∣r dx.

Choosing ε = min{αp
0 ,αq

0 }
2C1

, we get

∫
Ω

∣∣u±
n
∣∣r dx ≥ min{αp

0 ,αq
0}

2Cε

.

By the compactness of the embedding E ↪→ Lr(Ω) for p < q < r < p∗ we get

∫
Ω

∣∣u±
0
∣∣r dx ≥ min{αp

0 ,αq
0}

2Cε

,

which yields u±
0 �= 0. Moreover, note that u±

n → u±
0 in Lϑ (Ω), ϑ ∈ [1, p∗). By conditions

(h1) and (h2), combined with the Hölder inequality and Lebesgue theorem, we have

lim
n→+∞

∫
Ω

f
(
x, u±

n
)
u±

n dx =
∫

Ω

f
(
x, u±

0
)
u±

0 dx,

lim
n→+∞

∫
Ω

F
(
x, u±

n
)

dx =
∫

Ω

F
(
x, u±

0
)

dx.
(24)

Hence by the weak lower semicontinuity of the norm we conclude that

〈
ϕ′(u0), u±

0
〉

=
∫

Ω

(∣∣∇u±
0
∣∣p + a(x)

∣∣∇u±
0
∣∣q)dx –

∫
Ω

f
(
x, u±

0
)
u±

0 dx

≤ lim inf
n→+∞

∫
Ω

(∣∣∇u±
n
∣∣p + a(x)

∣∣∇u±
n
∣∣q)dx

– lim
n→+∞

∫
Ω

f
(
x, u±

n
)
u±

n dx

= lim inf
n→+∞

〈
ϕ′(un), u±

n
〉

= 0, (25)

because u±
n ∈ N0. Thus by Lemma 3.4 there exist s0, t0 > 0 such that s0u+

0 + t0u–
0 ∈ M0.

Consequently, from (24) and Lemma 3.1 we have

m0 = lim
n→+∞

[
ϕ(un) –

1
q
〈
ϕ′(un), un

〉]

= lim
n→+∞

∫
Ω

(
1
p

–
1
q

)
|∇un|p dx + lim

n→+∞

∫
Ω

[
1
q

f (x, un)un – F(x, un)
]

dx

≥ lim inf
n→+∞

∫
Ω

(
1
p

–
1
q

)
|∇un|p dx + lim

n→+∞

∫
Ω

[
1
q

f (x, un)un – F(x, un)
]

dx

≥
∫

Ω

(
1
p

–
1
q

)
|∇u0|p dx +

∫
Ω

[
1
q

f (x, u0)u0 – F(x, u0)
]

dx
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= ϕ(u0) –
1
q
〈
ϕ′(u0), u0

〉

≥ ϕ
(
s0u+

0 + t0u–
0
)

+
1 – sq

0
q

〈
ϕ′(u0), u+

0
〉
+

1 – tq
0

q
〈
ϕ′(u0), u–

0
〉

–
1
q
〈
ϕ′(u0), u0

〉

= ϕ
(
s0u+

0 + t0u–
0
)

–
sq

0
q

〈
ϕ′(u0), u+

0
〉
–

tq
0
q

〈
ϕ′(u0), u–

0
〉

≥ m0 –
sq

0
q

〈
ϕ′(u0), u+

0
〉
–

tq
0
q

〈
ϕ′(u0), u–

0
〉
.

This shows that

sq
0
q

〈
ϕ′(u0), u+

0
〉
+

tq
0
q

〈
ϕ′(u0), u–

0
〉 ≥ 0.

From this and from (25) we conclude that

〈
ϕ′(u0), u±

0
〉

= 0 and ϕ(u0) = m0. �

Similarly to the proof of [1, Theorem 1.4], we can prove the following lemma.

Lemma 3.7 Assume that (h1)–(h3) and (h4)′ hold. If u0 ∈M0 and ϕ(u0) = m0, then u0 is a
critical point of ϕ.

Proof It is clear that 〈ϕ′(u±
0 ), u±

0 〉 = 0 = 〈ϕ′(u0), u±
0 〉. It follows from assumption (h4)′ that,

for 0 < s �= 1 and 0 < t �= 1,

ϕ
(
su+

0 + tu–
0
)

= ϕ
(
su+

0
)

+ ϕ
(
tu–

0
)

< ϕ
(
u+

0
)

+ ϕ
(
u–

0
)

= ϕ(u0) = m0. (26)

If ϕ′(u0) �= 0, then there exist δ > 0 and ν > 0 such that

‖v – u0‖ ≤ 3δ ⇒ ∥∥ϕ′(v)
∥∥ ≥ ν.

Let D = ( 1
2 , 3

2 ) × ( 1
2 , 3

2 ) and g(s, t) = su+
0 + tu–

0 . By (26) we have

β = max
(s,t)∈∂D

ϕ
(
g(s, t)

)
< m0. (27)

Let ε := min{m0–β

4 , λδ
8 } and B(u, δ) := {v ∈ E : ‖v – u‖ ≤ δ}. Then [17, Lemma 2.3] yields a

deformation η such that
(a) η(1, v) = v if ϕ(v) < m0 – 2ε or ϕ(v) > m0 + 2ε,
(b) η(1,ϕm0+ε ∩ B(u, δ)) ⊂ ϕm0–ε , and
(c) ϕ(η(1, v)) ≤ ϕ(v) for all v ∈ E,

where ϕm0±ε := {v ∈ E : ϕ(v) ≤ m0 ± ε}.



Hou et al. Boundary Value Problems         (2020) 2020:24 Page 15 of 21

It is easy to see that

max
(s,t)∈D

ϕ
(
η
(
1, g(s, t)

))
< m0.

Next, we show that η(1, g(D)) ∩ M0 �= ∅, contradicting the definition of m0. Let h(s, t) =
η(1, g(s, t)), ϕ0(s, t) = 〈ϕ′(su+

0 )u+
0 ,ϕ′(su–

0 )u–
0 〉, and ϕ1(s, t) = 〈 1

s ϕ
′(h+(s, t)), 1

t ϕ
′(h–(s, t))〉. Note

that

〈
ϕ′(tu±

0
)
, u±

0
〉

> 0 if 0 < t < 1,〈
ϕ′(tu±

0
)
, u±

0
〉

< 0 if t > 1.

Hence we have that deg(ϕ0, D, 0) = 1. On the other hand, using (27) and property (a) of η,
we have that g = h on ∂D. Hence ϕ1 = ϕ0 on ∂D and deg(ϕ1, D, 0) = deg(ϕ0, D, 0) = 1. This
show that ϕ1(s, t) = 0 for some (s, t) ∈ D, and so η(1, g(s, t)) = h(s, t) ∈ M0. Therefore u0 is a
critical point of ϕ. �

4 Sign-changing solutions
For any λ > 0, let fλ(x, t) = f (x, t) + λr|t|r–2t and

ϕλ(u) = ϕ(u) – λ|u|rr , u ∈ E.

Similarly, we define

Mλ :=
{

u ∈ E : u± �= 0,
〈
ϕ′

λ(u), u+〉
=

〈
ϕ′

λ(u), u–〉
= 0

}
,

Nλ :=
{

u ∈ E : u �= 0,
〈
ϕ′

λ(u), u
〉

= 0
}

,

and

mλ := inf
u∈Mλ

ϕλ(u), nλ := inf
u∈Nλ

ϕλ(u).

Lemma 4.1 Assume that (h1)–(h4) hold. Then there exists a constant α > 0, which does not
depend on λ ∈ (0, 1], such that

ϕλ(u) ≥ α, u ∈Nλ,λ ∈ (0, 1].

Proof For any ε > 0, by (h1), (h2), and Propositions 2.1 and 2.2, for any λ ∈ (0, 1] and u ∈Nλ,
we have

εcp
p‖u‖p + (Cε + 1)cr

r‖u‖r

≥ ε|u|pp + (Cε + 1)|u|rr
≥

∫
Ω

fλ(x, u)u dx

=
∫

Ω

(|∇u|p + a(x)|∇u|q)dx

≥
⎧⎨
⎩‖u‖q if ‖u‖ < 1,

‖u‖p if ‖u‖ > 1.
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Thus for any u ∈Nλ with ‖u‖ < 1, we have that

1
2
‖u‖q ≤ (Cε + 1)cr

r‖u‖r ,

which implies that

‖u‖ ≥
(

1
2(Cε + 1)cr

r

) 1
r–q

.

The proof is completed. �

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Clearly, for every λ > 0, fλ satisfies conditions (h1)–(h3) and (h4)′,
and Lemmas 3.6 and 3.7 imply that there exists uλ ∈Mλ such that

ϕλ(uλ) = mλ and ϕ′
λ(uλ) = 0. (28)

Furthermore, under assumptions (h1)–(h3), we easily obtain that M0 �= ∅. Let v0 ∈ M0.
Then ϕ(v0) := κ > 0 and 〈ϕ′(v0), v±

0 〉 = 0. Therefore by Lemma 3.4 there exist sλ > 0 and
tλ > 0 such that sλv+

0 + tλv–
0 ∈Mλ. Then from Corollary 3.2 and Lemma 4.1 we have

κ = ϕ(v0)

≥ ϕ
(
sλv+

0 + tλv–
0
)

≥ ϕλ

(
sλv+

0 + tλv–
0
)

≥ mλ ≥ c∗, λ ∈ (0, 1). (29)

Hence, we can choose a sequence {λn} such that λn → 0 as n → +∞ and

uλn ∈ Mλn , ϕλn (uλn ) = mλn → m, ϕ′
λn (uλn ) = 0. (30)

Thus we only need to prove the following claims to complete the proof of Theorem 1.1.

Claim 1 {uλn} is bounded in E.

Arguing by contradiction, suppose that ‖uλn‖ → +∞ as n → +∞. We define the se-
quence vn = uλn

‖uλn ‖ , n = 1, 2, . . . . It is clear that {vn} ⊂ E and ‖vn‖ = 1 for any n ∈ N . There-
fore, going if necessary to a subsequence, we may assume that

vn ⇀ v in E,

vn → v in Lϑ (Ω), 1 ≤ ϑ < p∗,

vn(x) → v(x) a.e. on Ω .

(31)
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If v = 0, then vn → 0 in Lϑ (Ω) for 1 ≤ ϑ < p∗. Fix R > [q(m0 + 1)]
1
p . Using conditions (h1)–

(h2) and the Lebesgue dominated convergence theorem, we deduce that

lim sup
n→∞

∫
Ω

F(x, Rvn) dx ≤ Rp lim
n→∞

(|vn|pp + C3Rr|vn|rr
)

= 0 (32)

for some constant C3 > 0.
Let tn = R

‖un‖ . Then by (32) and Corollary 3.3 we get that

mλn = ϕλn (uλn ) ≥ ϕλn (tnuλn ) = ϕλn (Rvn)

=
∫

Ω

(
1
p

Rp|∇vn|p +
a(x)

q
Rq|∇vn|q

)
dx

–
∫

Ω

(
F(x, Rvn) + λnRr|vn|r

)
dx

≥ 1
q

Rp –
∫

Ω

(
F(x, Rvn) + λnRr|vn|r

)
dx

=
1
q

Rp + o(1) > m0 + 1 + o(1),

which yields a contradiction. Thus v �= 0.
By (h3) we get

lim
k→+∞

F(x, uλn (x))
‖uλn‖q = lim

k→+∞
F(x, uλn (x))
|uλn (x)|q

∣∣vn(x)
∣∣q = +∞

for all x ∈ Ω0 := {x ∈ Ω : v(x) �= 0}. Therefore, using (21), (30), and Fatou’s lemma, we have

0 ≤ lim
n→∞

ϕλn (uλn )
‖uλn‖q

≤ lim
n→∞

[
1
p

∫
Ω

(|∇uλn |p + a(x)|∇uλn |q) dx
‖un‖q

–
∫

Ω

F(x, uλn ) + λn|uλn |r
‖uλn‖q dx

]

≤ lim
n→∞

[
1
p

∫
Ω

(|∇uλn |p + a(x)|∇uλn |q) dx
‖uλn‖q –

∫
Ω

F(x, uλn )
‖uλn‖q dx

]

≤ 1
p

– lim
n→∞

∫
Ω

F(x, uλn )
‖uλn‖q dx

=
1
p

– lim
n→∞

∫
Ω

F(x, uλn ) – C2

‖uλn‖q dx

≤ 1
p

– lim inf
n→∞

∫
Ω0

F(x, uλn ) – C2

‖uλn‖q dx

=
1
p

– lim inf
n→∞

∫
Ω0

F(x, uλn (x))
|uλn (x)|q

∣∣vn(x)
∣∣q dx

→ –∞, (33)
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which is contradiction. The proof of Claim 1 is complete. Thus there exist a subsequence
of {λn}, still denoted by {λn}, and u0 ∈ E such that

uλn ⇀ u0 in E.

Claim 2 ϕ(u0) = m0 and ϕ′(u0) = 0.

By the Sobolev embedding theorem, uλn → u0 in Lϑ (Ω), 1 ≤ ϑ < p∗, and uλn (x) → u0(x)
a.e. on Ω . By (h2) and the Hölder inequality it is easy to directly compute that

∫
Ω

∣∣f (x, uλn )
∣∣|un – u0|dx

≤
∫

Ω

C
(
1 + |uλn |r–1)|un – u0|dx

≤ C
∫

Ω

|un|r–1|uλn – u0|dx + C
∫

Ω

|un – u0|dx

≤ C
(∫

Ω

|uλn |(r–1)r′ dx
) 1

r′
(∫

Ω

|uλn – u0|r dx
) 1

r

+ C
∫

Ω

|uλn – u0|dx

= C
(∫

Ω

|uλn |r dx
) r–1

r
(∫

Ω

|uλn – u0|r dx
) 1

r
+ C

∫
Ω

|uλn – u0|dx

= C|uλn |r–1
r |uλn – u0|r + C|uλn – u0|1

→ 0 as n → ∞, (34)

where 1
r + 1

r′ = 1. Then, using (30), (34), and (h2), we deduce

〈
L(uλn ) – L(u0), uλn – u0

〉
=

〈
ϕ′

λn (uλn ) – ϕ′(u0), uλn – u0
〉

+
∫

Ω

[
f (x, uλn ) + λnr|uλn |r–2uλn

]
(uλn – u0) dx

–
∫

Ω

f (x, u0)(uλn – u0) dx

→ 0 as n → +∞.

Since L is of type (S)+, we see that

uλn → u0 in E, (35)

and so u±
λn → u±

0 in E. Thus from (30) it follows that ϕ(u0) = m.
Moreover, by Proposition 2.3, (30), and (35) we get

〈
ϕ′(u0),η

〉
=

〈
L(u0),η

〉
–

∫
Ω

f (x, u0)η dx

= lim
n→+∞

(〈
L(uλn ),η

〉
–

∫
Ω

[
f (x, uλn ) + λnr|uλn |r–2uλn

]
η dx

)
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= lim
n→+∞

〈
ϕ′

λn (uλn ),η
〉

= 0, η ∈ E. (36)

This shows that ϕ′(u0) = 0. Again from Lemma 4.1 and (35) we have

∫
Ω

[
1
q

f
(
x, u±

0
)
u±

0 – F
(
x, u±

0
)]

dx +
∫

Ω

(
1
p

–
1
q

)∣∣∇u±
0
∣∣p dx

= lim
n→+∞

∫
Ω

[
1
q

f
(
x, u±

λn

)
u±

λn – F
(
x, u±

λn

)]
dx

+ lim
n→+∞

∫
Ω

(
1
p

–
1
q

)∣∣∇u±
λn

∣∣p dx + lim
n→+∞

λn(r – q)
q

∣∣u±
λn

∣∣r
r

= lim
n→+∞

[
ϕλn

(
u±

λn

)
–

1
q
〈
ϕ′

λn

(
u±

λn

)
, u±

n
〉]

= lim
n→+∞ϕλn

(
u±

λn

)
≥ α > 0. (37)

This, together with (6) (t = 0), shows that u±
0 �= 0. Therefore

ϕ′(u0) = 0, u0 ∈M0, and ϕ(u0) = m ≥ m0.

Next, we will prove that ϕ(u0) = m0. Let ε be any positive number. Since m0 = infu∈M0 ϕ(u),
there exists vε ∈ M0 such that ϕ(vε) < m0 + ε. Then (h3) implies that there exists Mε > 1
such that, for s ≥ Mε or t ≥ Mε ,

ϕλn

(
sv+

ε + tv–
ε

)
=

∫
Ω

(
sp

p
∣∣∇v+

ε

∣∣p +
sq

q
∣∣∇v+

ε

∣∣q
)

dx –
∫

Ω

F
(
x, sv+

ε

)
dx

– λnsr
∫

Ω

∣∣v+
ε

∣∣r dx

+
∫

Ω

(
tp

p
∣∣∇v–

ε

∣∣p +
tq

q
∣∣∇v–

ε

∣∣q
)

dx –
∫

Ω

F
(
x, tv–

ε

)
dx

– λntr
∫

Ω

∣∣v–
ε

∣∣r dx

≤
∫

Ω

(
sp

p
∣∣∇v+

ε

∣∣p +
sq

q
∣∣∇v+

ε

∣∣q
)

dx –
∫

Ω

F
(
x, sv+

ε

)
dx

+
∫

Ω

(
tp

p
∣∣∇v–

ε

∣∣p +
tq

q
∣∣∇v–

ε

∣∣q
)

dx –
∫

Ω

F
(
x, tv–

ε

)
dx

< 0. (38)

In view of Lemma 3.4, there exists a pair (sn, tn) of positive numbers such that snv+
ε +

tnv–
ε ∈ Mλn , which, together with (38), implies 0 < sn, tn < Mε . Thus from Lemma 3.1 and

〈ϕ′(vε), v±
ε 〉 = 0 we have

m0 + ε > ϕ(vε) = ϕλn (vε) + λn|vε|rr
≥ ϕλn

(
snv+

ε + tnv–
ε

)
+

1 – sq
n

q
〈
ϕ′

λn (vε), v+
ε

〉
+

1 – tq
n

q
〈
ϕ′

λn (vε), v–
ε

〉
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+
∫

Ω

g(sn)
∣∣∇v+

ε

∣∣p dx +
∫

Ω

g(tn)
∣∣∇v–

ε

∣∣p dx

≥ mλn –
1 + Kq

ε

q
∣∣〈ϕ′

λn (vε), v+
ε

〉∣∣ –
1 + Kq

ε

q
∣∣〈ϕ′

λn (vε), v–
ε

〉∣∣
= mλn –

(1 + Kq
ε )rλn

q
∣∣v+

ε

∣∣r
r –

(1 + Kq
ε )rλn

q
∣∣v–

ε

∣∣r
r ,

which yields

m = lim
n→+∞ mλn ≤ m0 + ε. (39)

Since ε > 0 is arbitrary, we have m ≤ m0. Thus m = m0, that is, ϕ(u0) = m0.
Now we show that u0 has exactly two nodal domains. Let u0 = u1 + u2 + u3, where

u1 ≥ 0, u2 ≤ 0, Ω1 ∩ Ω2 = ∅,

u1|Ω\(Ω1∪Ω2) = u2|Ω\(Ω1∪Ω2) = u3|Ω1∪Ω2 ,

Ω1 :=
{

x ∈ Ω|u1(x) > 0
}

, Ω2 :=
{

x ∈ Ω|u1(x) < 0
}

,

(40)

and Ωi (i = 1, 2) are connected open subsets of Ω .
Setting v = u1 + u2, we see that v+ = u1 and v– = u2, that is, v± �= 0. Noting that ϕ′(u0) = 0,

by a simple computation we have

〈
ϕ′(v), v+〉

=
〈
ϕ′(v), v–〉

= 0. (41)

By Lemma 3.1 and again by (40) and (41) we conclude that

m0 = ϕ(u0) = ϕ(u0) –
1
q
〈
ϕ′(u0), u0

〉

= ϕ(v) + ϕ(u3) –
1
q
(〈
ϕ′(v), v

〉
+

〈
ϕ′(u3), u3

〉)

≥ sup
s,t≥0

[
ϕ
(
sv+ + tv–)

+
1 – sq

q
〈
ϕ′(v), v+〉

+
1 – tq

q
〈
ϕ′(v), v–〉

+
∫

Ω

g(s)
∣∣∇v+∣∣p dx +

∫
Ω

g(t)
∣∣∇v–∣∣p dx

]
+ ϕ(u3) –

1
q
〈
ϕ′(u3), u3

〉

≥ sup
s,t≥0

ϕ
(
sv+ + tv–)

+ ϕ(u3) –
1
q
〈
ϕ′(u3), u3

〉

≥ m0 +
∫

Ω

(
1
q

f (x, u3)u3 – F(x, u3)
)

dx +
(

1
p

–
1
q

)∫
Ω

|∇u3|p dx

≥ m0 +
∫

Ω

(
1
q

f (x, u3)u3 – F(x, u3)
)

dx,

which, together with (3), shows that u3 = 0. Therefore u0 has exactly two nodal domains. �

Proof of Theorem 1.2 By Theorem 1.1 there exists u0 ∈ M0 such that ϕ(u0) = m0. Since
u±

0 ∈N0, we have m0 = ϕ(u0) = ϕ(u+
0 ) + ϕ(u–

0 ) ≥ 2n0. �
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