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Abstract
In this paper, we consider the following nonhomogeneous fractional
Schrödinger–Poisson equations:

{
(–�)su + V(x)u + φu = f (x,u) + g(x) in R

3,

(–�)tφ = u2 in R
3,

where s, t ∈ (0, 1], 2t + 4s > 3, (–�)s denotes the fractional Laplacian. By assuming
more relaxed conditions on the nonlinear term f , using some new proof techniques
on the verification of the boundedness of Palais–Smale sequence, existence and
multiplicity of solutions are obtained.
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1 Introduction
In this paper, we are concerned with nontrivial solutions for the following nonhomoge-
neous fractional Schrödinger–Poisson system:

⎧⎨
⎩(–�)su + V (x)u + φu = f (x, u) + g(x) in R

3,

(–�)tφ = u2 in R
3,

(E)

where s, t ∈ (0, 1], 2t + 4s > 3, (–�)s denotes the fractional Laplacian.
The nonlinear fractional Schrödinger–Poisson system (E) comes from the following

fractional Schrödinger equation:

(–�)su + V (x)u = m(x, u), x ∈R
3,
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used to study the standing wave solutions ψ(x, t) = u(x)e–iwt for the equation

i�
∂ψ

∂t
= �(–�)αψ + W (x)ψ – m(x,ψ), x ∈R

3,

where � is Planck’s constant, W : R3 →R is an external potential, and m is a suitable non-
linearity. In the research of fractional quantum mechanics, this equation is an important
model; therefore, it has been extensively studied, for example, see [4, 5, 13, 20, 22, 25, 26,
29, 32, 33] and their references.

When s = t = 1, system (E) reduces to the following Schrödinger–Poisson type equa-
tions:

⎧⎨
⎩–�u + V (x)u + φu = m(x, u) in R

3,

–�φ = u2 in R
3.

(E′)

This problem was first introduced by Benci and Fortunato in [2]. They took it as a physical
model describing solitary waves for nonlinear Schrödinger type equations interacting with
a known electrostatic field. The first equation of (E′) is coupled with a Poisson equation,
which means that the potential is determined by the charge of the wave function. The term
φu is nonlocal and concerns the interaction with the electric field. We refer the readers
to [1, 16, 17] and the references for the details about the physical background. Moreover,
equation (E′) has been dealt with by several papers, for example, [3, 7, 14, 15, 21, 24, 27,
30, 34, 35]. The authors in [27] researched the case when m was asymptotically linear
at infinity. In [34], when m is superlinear at infinity, the authors proved the existence of
ground state solutions. In [21], the researcher considered the existence of infinitely many
solutions via the fountain theorem.

However, the fractional Schrödinger–Poisson system was first introduced by Giammetta
in [12] and the diffusion is fractional only in the Poisson equation. In the last decades,
there have been many papers devoted to the existence and multiplicity of solutions for the
system like

⎧⎨
⎩(–�)su + V (x)u + φu = f (x, u) in R

3,

(–�)tφ = u2 in R
3.

(E′′)

Under different assumptions on the potential V (x) and the nonlinearity f , the tools are
variational methods and critical point theory, see [5, 10, 11, 31] and the references therein.
In [31], with the following super-quadratic conditions, the researcher proved the existence
of infinitely many solutions for the fractional Schrödinger–Poisson equation:

(A1) V ∈ C(R3,R) and infx∈R3 V (x) ≥ V0 > 0, where V0 is a positive constant. Moreover,
for each b > 0, |{x ∈R

3|V (x) ≤ b}| < +∞, where | · | is the Lebesgue measure;
(A2) f ∈ C(R3 ×R,R) for every x ∈ R

3 and u ∈R, there exists a constant C > 0 such that

∣∣f (x, u)
∣∣ ≤ C

(
1 + |u|p–1)

for some p ∈ (2, 2∗
s ), where 2∗

s = 6
3–2s is the fractional critical Sobolev exponent.

Moreover, f (x, t) = o(|u|), |u| → 0, uniformly on R
3;
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(A3) F(x,u)
|u|4 → +∞ as |u| → ∞ uniformly on R

3;
(A4) There exists a constant θ ≥ 1 such that

θF(x, u) ≥ F(x, τu), ∀(x, u) ∈ R
3 ×R, τ ∈ [0, 1],

where F(x, u) = 1
4 uf (x, u) – F(x, u);

(A5) There exists r1 > 0 such that

4F(x, u) ≤ uf (x, u), ∀(x, u) ∈R
3 ×R, |u| ≥ r1;

(A6) f (x, –u) = –f (x, u),∀(x, u) ∈R
3 ×R.

Under conditions (A1)–(A4), (A6) or (A1)–(A3), (A5), and (A6), the author obtained in-
finitely many solutions for (E′′).

In [6], in order to prove the existence of high energy solutions, the following Ambrosetti
and Rabinowitz condition was assumed:

(A0) (Also known as (AR) condition) There exist μ > 4 and r1 > 0 such that

0 < μF(x, u) ≤ uf (x, u), ∀(x, u) ∈ R
3 ×R, |u| ≥ r1.

It is known that the (AR) condition is important to verify the boundedness of a (PS)c

(c ∈ R) sequence of the corresponding functional. Without the (AR) condition, the prob-
lem becomes more complicated. In order to overcome the difficulty, we will assume that
f (x, u) in problem (E) satisfies some weaker conditions. We also use the conditions on
the potential V (x) to get the boundedness; to the best of our knowledge, about this, little
information could be found in the existing references. In this paper, we assume that the
functions V and f satisfy the following conditions:

(V0) V ∈ C(R3,R) and infx∈R3 V (x) ≥ V0 > 0, where V0 is a positive constant;
(V1) For each b > 0, |{x ∈ R

3|V (x) ≤ b}| < +∞, where | · | is the Lebesgue measure;
(f1) f ∈ C(R3 ×R,R) for every x ∈R

3 and t ∈R, there exists a constant C > 0 such that

∣∣f (x, t)
∣∣ ≤ C

(
1 + |t|p–1)

for some p ∈ (2, 2∗
s ), where 2∗

s = 6
3–2s is the fractional critical Sobolev exponent;

(f2) f (x, t) = o(|t|), |t| → 0, uniformly on R
3;

(f3) F(x,t)
t4 → +∞ as |t| → ∞ uniformly on R

3;
(f4) There exist L > 0 and d ∈ [0, V0

2 ] such that

4F(x, t) – f (x, t)t ≤ d|t|2

for a.e. x ∈R
3 and ∀|t| ≥ L. Now we state our results as follows.

Theorem 1.1 Assume that s, t ∈ (0, 1], 2t + 4s > 3, g ∈ L2(R3), g 
= 0, (V0), (V1), and (f1)–
(f4) hold. Then there exists a constant g0 such that problem (E) has at least two different
solutions whenever |g|2 < g0, one is a negative energy solution, and the other is a positive
energy solution.
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Remark 1.2 Note that condition (f3) is more general than the condition

0 < μF(x, t) ≤ tf (x, t), μ > 4, t 
= 0.

(Similar to the proof of Lemma 2.2 of [9].)

Theorem 1.3 Assume that t ∈ (0, 1], s ∈ (3/4, 1), 2t + 4s > 3, g ∈ L2(R3), g 
= 0, (V0), (V1),
and (f2) and

(f ′
1) f ∈ C(R3 ×R,R) for every x ∈R

3 and t ∈ R, there exists a constant C > 0 such that

∣∣f (x, t)
∣∣ ≤ C

(
1 + |t|p–1)

for some p ∈ (4, 2∗
s ), where 2∗

s = 6
3–2s is the fractional critical Sobolev exponent;

(f ′
3) infx∈R3,|t|=1 F(x, t) > 0, where F(x, t) =

∫ t
0 f (x, s) ds;

(f ′
4) There exist μ > 4 and r > 0 such that

μF(x, t) – f (x, t)t ≤ 0, ∀x ∈R
3, |t| ≥ r

hold. Then there exists a constant m0 such that problem (E) has at least two different
solutions whenever |g|2 < m0, one is a negative energy solution, and the other is a
positive energy solution.

Remark 1.4 Conditions (f ′
3) and (f ′

4) imply that the range of p in (f ′
1) should be (4, 2∗

s ) not
(2, 2∗

s ). If p ≤ 4, by (f ′
1), one has

∣∣F(x, t)
∣∣ ≤

∫ 1

0

∣∣f (x, st)t
∣∣ds ≤ C

∫ 1

0

(
1 + |st|p–1)|t|ds ≤ C

(|t| + |t|p)

for all (x, t) ∈R
3 ×R, then we conclude that

lim sup
|t|→+∞

F(x, t)
t4 ≤ C uniformly in x ∈R

3. (1.1)

For any x ∈R
3, r ∈R, define

m(t) := F
(
x, t–1r

)
tμ, t ≥ 1.

Then, by (f ′
4), one has

m′(t) = tμ–1[μF
(
x, t–1r

)
– t–1rf

(
x, t–1r

)] ≤ 0

for |r| ≥ 1, t ∈ [1, |r|]. That is, m(1) ≥ m(|r|). Therefore, by (f ′
3), we deduce

F(x, r) ≥ F
(

x,
r
|r|

)
|r|μ ≥ inf

x∈R3,|t|=1
F(x, t)|r|μ

for x ∈R
3 and |r| ≥ 1, which contradicts (1.1). That is, (f ′

3) and (f ′
4) imply that the range of

p in (f ′
1) should be (4, 2∗

s ).
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Theorem 1.5 Assume that g ∈ L2(R3), g 
= 0, (V0), (V1), (f1), (f2) and
(f ′′

3 ) there exists L′ > 0 such that

c′ = inf
x∈R3,|t|=L′

F(x, t) > 0;

(f ′′
4 ) there exist μ > 4 and d′ ∈ [0, c′(μ–2)

L′2 ) such that

μF(x, t) – f (x, t)t ≤ d′|t|2 for a.e. x ∈ R
3 and ∀|t| ≥ L′.

Then there exists a constant g0 such that problem (E) has at least two different solu-
tions whenever |g|2 < g0, one is a negative energy solution, and the other is a positive
energy solution.

2 Preliminaries
In this paper, we make use of the following notations: the Lr-norm (1 ≤ r ≤ +∞) by | · |r .
C denotes various positive constants, which may vary from line to line.

We define the Gagliardo seminorm by

[u]s,p =
(∫

R3

∫
R3

|u(x) – u(y)|p
|x – y|3+sp dx dy

)1/p

,

where u : R3 → R is a measurable function. Then we define a fractional Sobolev space by

W s,p(
R

3) =
{

u ∈ Lp(
R

3) : u is measurable and [u]s,p < ∞}

endowed with the norm

‖u‖s,p =
(
[u]p

s,p + |u|pp
)1/p,

where |u|p = (
∫
R3 |u(x)|p dx)1/p.

For p = 2, the space W s,2(R3) is an equivalent definition of the fractional Sobolev spaces,
which is based on the Fourier analysis, that is,

Hs(
R

3) = W s,2(
R

3) =
{

u ∈ L2(
R

3) :
∫
R3

(
1 + |ξ |2s)|ũ|2 dξ < ∞

}

endowed with the norm

‖u‖Hs =
(∫

R3
|ξ |2s|ũ|2 dξ +

∫
R3

|ũ|2 dξ

)1/2

,

where ũ denotes the usual Fourier transform of u.
Furthermore, we know that ‖ · ‖Hs is equivalent to the norm

‖u‖Hs =
(∫

R3

∣∣(–�)s/2u
∣∣2 dx +

∫
R3

u2 dx
)1/2

.
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In view of the potential V (x), we consider the subspace

X =
{

u ∈ Hs(
R

3) :
∫
R3

V (x)u2 dx < ∞
}

.

Thus, X is a Hilbert space with the inner product

(u, v) =
∫
R3

(|ξ |2sũ(ξ )ṽ(ξ ) + ũ(ξ )ṽ(ξ )
)

dξ +
∫
R3

V (x)u(x)v(x) dx

and the norm

‖u‖X =
(∫

R3

(|ξ |2s∣∣ũ(ξ )
∣∣2 +

∣∣ũ(ξ )
∣∣2)dξ +

∫
R3

V (x)u2(x) dx
)1/2

.

Moreover, ‖ · ‖X is equivalent to the norm

‖u‖ := ‖u‖X =
(∫

R3

∣∣(–�)s/2u
∣∣2 dx +

∫
R3

V (x)u2 dx
)1/2

,

where the corresponding inner product is

(u, v)X =
∫
R3

(
(–�)s/2u(–�)s/2v +

∫
R3

V (x)uv
)

dx.

The homogeneous Sobolev space Ds,2(R3) is defined by

Ds,2(
R

3) =
{

u ∈ L2∗
s
(
R

3) : |ξ |sũ(ξ ) ∈ L2(
R

3)},

which is the completion of C∞
0 (R3) under the norm

‖u‖Ds,2 =
(∫

R3

∣∣(–�)s/2u
∣∣2 dx

)1/2

=
(∫

R3
|ξ |2s∣∣ũ(ξ )

∣∣2 dξ

)1/2

endowed with the inner product

(u, v)Ds,2 =
∫
R3

(–�)s/2u(–�)s/2v dx.

Then Ds,2(R3) ↪→ L2∗
s (R3), that is, there exists a constant C0 > 0 such that

|u|2∗
s ≤ C0‖u‖Ds,2 .

Lemma 2.1 ([5]) Space X is continuously embedded in Lp(R3) for 2 ≤ p ≤ 2∗
s and com-

pactly embedded in Lp(R3) for all p ∈ [2, 2∗
s ).

By Lemma 2.1, one obtains that there exists a constant νp > 0 such that

|u|p ≤ νp‖u‖, (2.1)

where |u|p denotes the usual norm in Lp(R3) for 2 ≤ p ≤ 2∗
s .
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Lemma 2.2 (Theorem 2.1, [8]) For any s ∈ (0, 3
2 ), Ds,2(R3) is continuously embedded in

L2∗
s (R3), that is, there exists cs > 0 such that

(∫
R3

|u|2∗
s dx

)2/2∗
s
≤ cs

∫
R3

∣∣(–�)
s
2 u

∣∣2 dx, u ∈ Ds,2(
R

3).

If 2t + 4s > 3, then X ↪→ L 12
3+2t (R3). For u ∈ X, the linear operator Tu : Dt,2(R3) → R is

defined as

Tu(v) =
∫
R3

u2v dx.

By Hölder’s inequality and Lemma 2.2,

∣∣Tu(v)
∣∣ ≤ ‖u‖2

12/(3+2t)‖v‖2∗
t ≤ C‖u‖2‖v‖Dt,2 . (2.2)

Set

η(u, v) =
∫
R3

(–�)
t
2 u · (–�)

t
2 v dx, u, v ∈ Dt,2(

R
3).

It is clear that η(u, v) is bilinear, bounded, and coercive. The Lax–Milgram theorem implies
that, for every u ∈ X, there exists unique φt

u ∈ Dt,2(R3) such that Tu(v) = η(φu, v) for any
v ∈ Dt,2(R3), that is,

∫
R3

(–�)
t
2 φt

u · (–�)
t
2 v dx =

∫
R3

u2v dx. (2.3)

Therefore, (–�)tφt
u = u2 in a weak sense. Moreover,

∥∥φt
u
∥∥

Dt,2 ≤ C‖u‖2. (2.4)

Since t ∈ (0, 1] and 2t + 4s > 3, then 12
3+2t ∈ (2, 2∗

s ). From Lemma 2.2, (2.2), and (2.3), it
follows that

∥∥φt
u
∥∥

Dt,2 =
∫
R3

∣∣(–�)
t
2 φt

u
∣∣2 dx =

∫
R3

u2φt
u dx ≤ C|u|212

3+2t

∥∥φt
u
∥∥

Dt,2 . (2.5)

Then

∥∥φt
u
∥∥

Dt,2 ≤ C|u|212
3+2t

. (2.6)

For x ∈R
3, we have

φt
u(x) = ct

∫
R3

u2(y)
|x – y|3–2t dy,

which is the Riesz potential [23], where

ct =
Γ ( 3–2t

2 )
π3/222tΓ (t)

.
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Substituting φt
u in (E), we have the fractional Schrödinger equation

(–�)su + V (x)u + φt
uu = f (x, u) + g(x), x ∈R

3. (2.7)

The energy functional I : X →R corresponding to problem (2.7) is defined by

I(u) =
1
2

∫
R3

[∣∣(–�)su
∣∣2 + V (x)u2]dx +

1
4

∫
R3

φt
uu2 dx –

∫
R3

F(x, u) dx –
∫
R3

g(x)u dx

=
1
2
‖u‖2 +

1
4

∫
R3

φt
uu2 dx –

∫
R3

F(x, u) dx –
∫
R3

g(x)u dx, u ∈ X. (2.8)

We say that (u,φ) ∈ X × Dt,2(R3) is a weak solution of problem (E) if u is a weak solution
of (2.7). By a similar argument as [28], we also can get the following lemma, which is
important for our research.

Lemma 2.3 Assume that g ∈ L2(R3), (V0), (V1) and (f1), (f2) hold. Then I is well defined in
X and I ∈ C1(R3,R), and

〈
I ′(u), v

〉
=

∫
R3

[
(–�)

s
2 u(–�)

s
2 v + V (x)uv

]
dx +

∫
R3

φt
uuv dx

–
∫
R3

f (x, u)v dx –
∫
R3

g(x)v dx, u, v ∈ X. (2.9)

Moreover, let Ψ (u) =
∫
R3 F(x, u) dx +

∫
R3 g(x)u dx, then Ψ ′ : X → X∗ is compact.

In order to get a negative energy solution, our tool is Ekeland’s variational principle. For
readers’ convenience, we give it in the following.

Lemma 2.4 (Theorem 4.1, [18]) Let M be a complete metric space with metric d, and
let I : M → (–∞, +∞] be a lower semicontinuous function, bounded from below and not
identical to +∞. Let ε > 0 be given and u ∈ M be such that

I(u) ≤ inf
M

I + ε.

Then there exists v ∈ M such that

I(v) ≤ I(u), d(u, v) ≤ 1,

and for each w ∈ M, one has

I(v) ≤ I(w) + εd(v, w).

At the end of this section, we recall the mountain pass theorem, which is necessary to
obtain the main results. This theorem allows us to find a Palais–Smale type sequence. Recall
that a sequence {un} ⊂ X is said to be a Palais–Smale sequence at the level c ∈ R ((PS)c-
sequence for short) if Iλ(un) → c and I ′

λ(un) → 0 as n → ∞. Iλ is said to satisfy the (PS)c

condition if any (PS)c-sequence has a convergent subsequence.
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Lemma 2.5 (Theorem 2.2, [19]) Let X be a real Banach space and I ∈ C1(X,R) satisfying
(PS) conditions. Suppose I(0) = 0 and

(i) there are constants ρ,α > 0 such that I|∂Bρ ≥ α,
(ii) there is u1 ∈ X \ B̄ρ such that I(u1) ≤ 0.

Then I possesses a critical value c ≥ α. Moreover, c can be characterized as

c = inf
γ∈Γ

max
u∈γ ([0,1])

I(u),

where Γ = {γ ∈ C([0, 1], X) : γ (0) = 0,γ (1) = u1}.

3 Proof of Theorem 1.1
Lemma 3.1 Assume that g ∈ L2(R3) and (f1), (f2) hold. Then there exist some constants ρ ,
α, and β > 0 such that I(u) ≥ α whenever ‖u‖X = ρ and |g|2 < β .

Proof For any ε > 0, by (f1), (f2), there exists C(ε) > 0 such that

∣∣f (x, u)
∣∣ ≤ ε|u| + C(ε)|u|p–1, ∀(x, u) ∈R

3 ×R, (3.1)

∣∣F(x, u)
∣∣ ≤

∫ 1

0

∣∣f (x, st)t
∣∣ds ≤ ε|u|2 + C(ε)|u|p, ∀(x, u) ∈R

3 ×R. (3.2)

By (2.1), (2.8), (3.2), and Hölder’s inequality,

I(u) =
1
2
‖u‖2 +

1
4

∫
R3

φt
uu2 dx –

∫
R3

F(x, u) dx –
∫
R3

g(x)u dx

≥ 1
2
‖u‖2 –

∫
R3

F(x, u) dx –
∫
R3

g(x)u dx

≥ 1
2
‖u‖2 –

(
ε|u|22 + C(ε)|u|pp

)
– |g|2|u|2

≥ 1
2
‖u‖2 –

(
ν2

2ε‖u‖2 + νp
p C(ε)‖u‖p) – ν2|g|2‖u‖

= ‖u‖
[(

1
2

– ν2
2ε

)
‖u‖ – νp

p C(ε)‖u‖p–1 – ν2|g|2
]

.

Choose ε = 1
4ν2

2
> 0, and take

m(t) =
1
4

t – νp
p C(ε)tp–1, ∀t ≥ 0.

Note that 2 < p < 2∗
s , we can conclude that there exists a constant ρ > 0 such that h(ρ) =

maxt≥0 h(t) > 0. Therefore, take β = 1
2ν2

m(ρ) > 0, it follows that

I(u) ≥ 1
2
ρm(ρ) =: α > 0

wherever ‖u‖ = ρ and |g|2 < β . This completes the proof. �

Lemma 3.2 Let assumptions (f1)–(f3) be satisfied. Then there exists a function e ∈ X with
‖e‖ > ρ such that I(e) < 0.
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Proof For every M > 0, by (f1)–(f3), there exists C(M) > 0 such that

F(x, u) ≥ M|u|4 – C(M)|u|2 ∀(x, u) ∈R
3 ×R. (3.3)

Choose ϕ ∈ X with |ϕ|4 = 1, then

I(tϕ) =
t2

2

∫
R3

[∣∣(–�)
s
2 ϕ

∣∣2 + V (x)ϕ2]dx +
t4

4

∫
R3

φt
ϕϕ2 dx –

∫
R3

F(x, tϕ) dx

– t
∫
R3

g(x)ϕ dx, u ∈ X.

By (2.3) and (2.4), then

∫
R3

φt
ϕϕ2 dx =

∣∣φt
ϕ

∣∣2
Dt,2 ≤ C0‖ϕ‖4,

combining with (2.8), (3.3) and Hölder’s inequality, one has

I(tϕ) ≤ t2

2
‖ϕ‖2 +

t4

4
C‖ϕ‖4 – M|ϕ|44t4 + C(M)|ϕ|22t2 – t

∫
R3

g(x)ϕ dx

≤
(

C0

4
‖ϕ‖4 – M

)
t4 +

(
1
2
‖ϕ‖2 + C(M)|ϕ|22

)
t2 + |g|2|ϕ|2t,

which implies I(tϕ) → –∞ as t → +∞ by taking M > C0
4 ‖ϕ‖4. Hence, there exists e = t0ϕ

with t0 sufficiently large such that ‖e‖ > ρ and I(e) < 0. The proof is completed. �

Lemma 3.3 Assume that (V0), (V1), (f1), (f2) hold. Then any bounded Palais–Smale se-
quence of I has a strongly convergent subsequence in X.

Proof Let {un} ⊂ X be any bounded Palais–Smale sequence of I . Then, up to a subse-
quence, there exists c1 ∈R such that

I(un) → c1, I ′(un) → 0 and sup
n

‖un‖ < +∞. (3.4)

Since the embedding X ↪→ Lp(R3), 2 ≤ p < 2∗
s , is compact, going if necessary to a subse-

quence, we can assume that there is u ∈ X such that

un ⇀ u, weakly in X;

un → u, strongly in Lp(
R

3);

un(x) → u(x), a.e. in R
3.

In view of (2.9), then

〈
I ′(un) – I ′(u), un – u

〉
= ‖un – u‖2 +

∫
R3

(
φt

un un – φt
uu

)
(un – u) dx

–
∫
R3

[
f (x, un) – f (x, u)

]
(un – u) dx,
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and thus

‖un – u‖2 =
〈
I ′(un) – I ′(u), un – u

〉
–

∫
R3

(
φt

un un – φt
uu

)
(un – u) dx

+
∫
R3

[
f (x, un) – f (x, u)

]
(un – u) dx. (3.5)

Clearly, we have

〈
I ′(un) – I ′(u), un – u

〉 → 0 as n → ∞. (3.6)

By the generalization of Hölder’s inequality, Lemma 2.2, and (2.6), it follows that

∣∣∣∣
∫
R3

φt
un un(un – u) dx

∣∣∣∣ ≤ ∣∣φt
un

∣∣
2∗

t
|un| 12

3+2t
|un – u| 12

3+2t

≤ C
∥∥φt

un

∥∥
Dt,2 |un| 12

3+2t
|un – u| 12

3+2t

≤ C|un|312
3+2t

|un – u| 12
3+2t

≤ C‖un‖3|un – u| 12
3+2t

.

Similarly,

∣∣∣∣
∫
R3

φt
uu(un – u) dx

∣∣∣∣ ≤ C‖u‖3|un – u| 12
3+2t

.

Then we have∣∣∣∣
∫
R3

(
φt

un un – φt
uu

)
(un – u) dx

∣∣∣∣ ≤
∣∣∣∣
∫
R3

φt
un un(un – u) dx

∣∣∣∣ +
∣∣∣∣
∫
R3

φt
uu(un – u) dx

∣∣∣∣
→ 0, (3.7)

as n → ∞. By (3.1) and using Hölder’s inequality, we can conclude

∣∣[f (x, un) – f (x, u)
]
(un – u) dx

∣∣
≤ [

ε + C(ε)
] ∫

R3

[|un| + |u| + |un|p–1 + |u|p–1]|un – u|dx

≤ [
ε + C(ε)

](|un|2 + |u|2
)|un – u|2 +

[
ε + C(ε)

](|un|p–1
p + |u|p–1

p
)|un – u|p,

therefore, for p ∈ (2, 2∗
s ), we deduce

∫
R3

[
f (x, un) – f (x, u)

]
(un – u) dx → 0, (3.8)

as n → ∞. Consequently, (3.6)–(3.8) imply that

‖un – u‖ → 0,

as n → ∞. This completes the proof. �
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In order to get a negative energy solution for (E), we will use Ekeland’s variational prin-
ciple. We consider a minimization of I constrained in a neighborhood of zero and find a
critical point of I which achieves the local minimum of I . Furthermore, the level of this
local minimum is negative.

Lemma 3.4 Assume that g ∈ L2(R3), g 
= 0, and (f1)–(f3) hold. Then

–∞ < inf
{

I(u) : u ∈ B̄ρ

}
< 0,

where B̄r := {u ∈ X : ‖u‖ ≤ r}.

Proof By (f1)–(f3), it follows from the proof of Lemma 3.2 that

F(x, t) ≥ C1|t|4 – C2|t|2, ∀(x, t) ∈R
3 ×R,

where C1 and C2 are positive constants. Since g(x) ∈ L2(R3) and g 
= 0, we can choose a
function v ∈ X such that∫

R3
g(x)v(x) > 0.

Thus,

I(tv) =
t2

2

∫
R3

[∣∣(–�)
s
2 v

∣∣2 + V (x)v2]dx +
t4

4

∫
R3

φt
vv2 dx –

∫
R3

F(x, tv) dx

– t
∫
R3

g(x)v dx

≤ t2

2
‖v‖2 +

t4

4

∫
R3

φt
vv2 dx – C1|v|44t4 + C2|v|22t2 – t

∫
R3

g(x)v dx

< 0

for t > 0 small enough, which implies inf{I(u) : u ∈ B̄ρ} < 0. In addition, by (2.1), (2.8), (3.2),
and Hölder’s inequality,

I(u) =
1
2

∫
R3

[∣∣(–�)
s
2 u

∣∣2 + V (x)u2]dx +
1
4

∫
R3

φt
uu2 dx –

∫
R3

F(x, u) dx

–
∫
R3

g(x)u dx

≥ –
∫
R3

F(x, u) dx –
∫
R3

g(x)u dx

≥ –
(
ε|u|22 + C(ε)|u|pp

)
– |g|2|u|2

≥ – ν2
2ε‖u‖2 – νp

p C(ε)‖u‖p – ν2|g|2‖u‖,

which implies I is bounded below in B̄ρ . Therefore, we obtain

–∞ < inf
{

I(u) : u ∈ B̄ρ

}
< 0.

The proof is completed. �
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In the following, we give the results about the negative energy solution for problem (E).

Lemma 3.5 Assume that g ∈ L2(R3), g 
= 0, (V0), (V1) and (f1)–(f3) hold. Then there exists
a constant g0 > 0 such that problem (E) has a negative energy solution whenever |g|2 < g0,
that is, there exists a function u0 ∈ X such that I ′(u0) = 0 and I(u0) < 0.

Proof By Lemma 3.1 and Lemma 3.4, taking g0 = β > 0, we know that

–∞ < inf
B̄ρ

I < 0 < α ≤ inf
∂Bρ

I,

whenever |g|2 < g0. Set 1
n ∈ (0, inf∂Bρ I – infB̄ρ

I), n ∈N. Then there is un ∈ B̄ρ such that

I(un) ≤ inf
B̄ρ

I +
1
n

. (3.9)

By Ekeland’s variational principle, it follows that

I(un) ≤ I(u) +
1
n

‖un – u‖, ∀u ∈ B̄ρ . (3.10)

Note that I(un) ≤ infB̄ρ
I + 1

n < inf∂Bρ I . Thus, un ∈ Bρ . Define Mn : X →R by

Mn(u) = I(u) +
1
n

‖u – un‖.

By (3.10), we have that un ∈ Bρ minimizes Mn on B̄ρ . Therefore, for all ϕ ∈ X with ‖ϕ‖ = 1,
taking t > 0 small enough such that un + tϕ ∈ B̄ρ , then

Mn(un + tϕ) – Mn(un)
t

≥ 0,

which implies that

I(un + tϕ) – I(un)
t

+
1
n

≥ 0.

Thus, 〈I ′(un),ϕ〉 ≥ – 1
n . Hence,

∥∥I ′(un)
∥∥ ≤ 1

n
. (3.11)

Passing to the limit in (3.9) and (3.11), we deduce that

I(un) → inf
B̄ρ

I and
∥∥I ′(un)

∥∥ → 0, (3.12)

as n → ∞. Note that ‖un‖ ≤ ρ , hence {un} ⊂ X is a bounded Palais–Smale sequence of
I . By Lemma 3.3, {un} has a strongly convergent subsequence, still denoted by {un} and
un → u0 ∈ B̄ρ , as n → ∞. Consequently, it follows from (3.12) that

I(u0) = inf
B̄ρ

I < 0 and I ′(u0) = 0.

This completes the proof. �
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Next, by using the mountain pass theorem, we give the positive energy solution.

Lemma 3.6 Let assumptions (V0), (V1) and (f1)–(f4) be satisfied. Then any Palais–Smale
sequence of I is bounded.

Proof Let {un} ⊂ X be any Palais–Smale sequence of I . Then, up to a subsequence, there
exists c1 ∈R such that

I(un) → c1 and I ′(un) → 0, (3.13)

as n → ∞. Combining (2.1), (2.8), (2.9), (3.13), (V0), (V1) with (f4), we have

c1 + 1 + ‖u‖ ≥ I(un) –
1
4
〈
I ′(un), un

〉
=

1
4

∫
R3

∣∣(–�)sun
∣∣2 +

1
4

∫
R3

V (x)u2
n dx

+
∫
R3

F̃(x, un) dx –
3
4

∫
R3

g(x)un dx

≥ 1
4

∫
R3

∣∣(–�)sun
∣∣2 +

1
4

∫
R3

V (x)u2
n dx –

d
4

∫
R3

u2
n dx

+
∫

An

F̃(x, un) dx –
3
4
ν2|g|2‖un‖

≥ 1
4

∫
R3

∣∣(–�)sun
∣∣2 +

1
4

∫
R3

V (x)u2
n dx –

1
8

∫
R3

V0u2
n dx

+
∫

An

F̃(x, un) dx –
3
4
ν2|g|2‖un‖

≥ 1
16

‖un‖2 +
1

16

∫
R3

V (x)u2
n dx +

∫
R3

F̃(x, un) dx –
3
4
ν2|g|2‖un‖,

where F̃(x, un) = 1
4 f (x, un)un – F(x, un) and An = {x ∈R

3 : |un| ≤ L}. Hence

c1 + 1 +
(

1 +
3
4
ν2|g|2

)
‖un‖ ≥ 1

16
‖un‖2 +

1
16

∫
R3

V (x)u2
n dx +

∫
R3

F̃(x, un) dx. (3.14)

For x ∈R
3 and |un| ≤ L, by (3.1) and (3.2),

∣∣F̃(x, un)
∣∣ ≤ 1

4
∣∣f (x, un)

∣∣|un| +
∣∣F(x, un)

∣∣
≤ 5

4
ε|un|2 +

5
4

C(ε)|un|p

=
5
4
[
ε + C(ε)|un|p–2]|un|2

≤ 5
4
[
ε + C(ε)Lp–2]|un|2.

Take A > max{20[ε + C(ε)Lp–2], V0}, then

F̃(x, un) ≥ –
A
16

|un|2, ∀x ∈R
3, |un| ≤ L. (3.15)
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Let Ã = {x ∈R
3 : V (x) ≤ A}. By (V0), (V1), and (3.15), one has

1
16

∫
R3

V (x)u2
n dx +

∫
An

F̃(x, un) dx ≥ 1
16

∫
|un|≤L

(
V (x) – A

)|un|2 dx

≥ 1
16

∫
Ã

⋂
An

(
V (x) – A

)
L2 dx

≥ 1
16

(V0 – A)L2meas(Ã ∩ An)

≥ 1
16

(V0 – A)L2meas(Ã). (3.16)

Note that meas(Ã) < +∞ due to (V1), it follows from (3.14) and (3.16) that

c1 + 1 +
(

1 +
3
4
ν2|g|2

)
‖un‖ ≥ 1

16
‖un‖2 +

1
16

(V0 – A)L2meas(Ã),

which implies {un} ⊂ X is bounded in X. Hence, the proof is completed. �

Lemma 3.7 Assume that g ∈ L2(R3), g 
= 0, (V0), (V1) and (f1)–(f4) hold. Then problem (E)
has a positive energy solution whenever |g|2 < g0, that is, there exists a function u1 ∈ X such
that I ′(u1) = 0 and I(un) > 0.

Proof In order to prove this lemma, we will use Lemma 2.5. In the following, we shall
verify that all conditions of Lemma 2.5 are satisfied. By Lemma 3.5, we know that g0 =
β > 0. Then, by Lemma 3.1, when |g|2 < g0, I satisfies condition (i). Lemma 3.2 implies
that I satisfies condition (ii). By virtue of Lemma 3.3 and Lemma 3.6, I satisfies the (PS)
condition. It is easy to verify that I ∈ C1(X,R) and I(0) = 0. Hence, by Lemma 2.5, there
exists a function u1 ∈ X such that I ′(u1) = 0 and I(u1) ≥ α > 0. The proof is completed. �

Proof of Theorem 1.1 By Lemma 3.5 and Lemma 3.7, we can get the conclusion. �

Proof of Theorem 1.3 We only need to prove that (f ′
3) and (f ′

4) imply (f3) and (f4). By Re-
mark 1.4, we have

F(x, t)
t4 ≥ c|t|μ–4, ∀x ∈R

3, |t| ≥ 1,

which implies (f3). Moreover, note that μ > 4, then by (f ′
4) one has

4F(x, t) – f (x, t)t = μF(x, t) – f (x, t)t + (4 – μ)F(x, t)

≤ (4 – μ)F(x, t) ≤ (4 – μ)c|t|μ

< 0 ≤ d|t|2

for all x ∈ R
3 and |t| ≥ 1. This implies that (f4) holds by taking L = 1. That is, (f ′

3) and
(f ′

4) imply (f3) and (f4). Then, similar to the proof of Theorem 1.1, we can get the conclu-
sion. �
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Proof of Theorem 1.5 It is sufficient to prove that (f ′′
3 ), (f ′′

4 ) imply (f3), (f4) by applying The-
orem 1.1. In fact, for any (x, r) ∈R

3 ×R, define

h(t) := F
(

x,
r
t

)
tμ, ∀t ≥ 1.

Then, for |r| ≥ L′ and t ∈ [1, |r|
L′ ], (f ′′

4 ) implies that

h′(t) = f
(

x,
r
t

)(
–

r
t2

)
tμ + μF

(
x,

r
t

)
tμ–1,

tμ–1
[
μF

(
x,

r
t

)
– f

(
x,

r
t

)
r
t

]
≤ d′tμ–1

∣∣∣∣ r
t

∣∣∣∣
2

= d′tμ–3|r|2.

Thus,

h
( |r|

L′

)
– h(1) ≤

∫ |r|
L′

1
d′tμ–3|r|2 dt =

d′|r|μ
(μ – 2)L′μ–2 –

d′|r|2
μ – 2

.

Hence, for any x ∈R
3 and |r| ≥ L′, by (f ′′

3 ), one has

F(x, r) = h(1) ≥ h
( |r|

L′

)
–

d′|r|μ
(μ – 2)L′μ–2 +

d′|r|2
μ – 2

,

[
inf

x∈R3,|t|=L′
F(x, t)

]( |r|
L′

)μ

–
d′|r|μ

(μ – 2)L′μ–2 +
d′|r|2
μ – 2

≥
(

c′

L′μ –
d′

(μ – 2)L′μ–2

)
|r|μ.

By (f ′′
4 ), let C0 = c′

L′μ – d′
(μ–2)L′μ–2 > 0, it has F(x, r) ≥ C0|r|μ for x ∈ R

3 and |r| ≥ L′. Hence,

F(x, r)
r4 ≥ C0|r|μ–4, ∀x ∈ R3, |r| ≥ L′,

which implies (f3) due to μ > 4. Moreover, combined with (f ′′
4 ), we also get

4F(x, r) – f (x, r)r ≤ d′|r|2 – (μ – 4)C0|r|μ

for all x ∈R
3 and |r| ≥ L′. Together with μ > 4, there exists L > 0 such that

4F(x, r) – f (x, r)r < 0, x ∈R
3, |r| ≥ L,

which implies (f4). Hence, the proof is completed. �
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