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Abstract
In this paper, we study the existence of multiple positive solutions for boundary value
problems of high-order Riemann–Liouville fractional differential equations involving
the p-Laplacian operator. Not only new existence conclusions of two positive
solutions are obtained by employing functional-type cone expansion-compression
fixed point theorem, but also some sufficient conditions for existence of at least three
positive solutions are established by applying the Leggett–Williams fixed point
theorem. In addition, we demonstrate the effectiveness of the main result by using an
example.
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1 Introduction
In this paper, we study the high-order Riemann–Liouville fractional differential equations
with p-Laplacian operator as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R
0 Dα

t (ϕp(R
0 Dα

t u(t))) = f (t, u(t), R
0 Dα

t u(t)), 0 ≤ t ≤ 1;

u(i)(0) = 0, [ϕp(R
0 Dα

t u)](i)(0) = 0, i = 0, 1, 2, . . . , n – 2;

[R
0 Dβ

t u(t)]t=1 = 0, 0 < β ≤ α – 1;

[R
0 Dβ

t (ϕp(R
0 Dα

t u(t)))]t=1 = 0;

(1.1)

where n – 1 < α ≤ n, R
0 Dα

t is the standard Riemann–Liouville fractional derivative, ϕp is the
p-Laplacian operator, p > 1 and ϕp(s) = |s|p–2s, ϕ–1

p = ϕq, 1
p + 1

q = 1, f ∈ C([0, 1] × [0, +∞) ×
(–∞, 0], [0, +∞)). By using some fixed point theorems, we establish sufficient conditions
that ensure the existence of multiple positive solutions for system (1.1).

Fractional calculus has been applied to various areas of engineering, physics, chemistry,
etc.; it is due to the fact that fractional derivatives provide power tools for describing mem-
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ory and hereditary characteristics. There are many papers and monographs that deal with
all kinds of problems in fractional calculus (see [1–6]).

It is well known that the p-Laplacian operator is also used in analyzing dynamic sys-
tems, physics, mechanics, and the related fields of mathematical modeling. For studying
the turbulent flow problem in a porous medium, Leibenson [7] introduced the model of
a differential equation with the p-Laplacian operator. Since then, p-Laplacian differential
equations have been widely applied in different fields of physics and natural phenomena,
see [8–11] and the references therein. In recent years, the topic of fractional-order bound-
ary value problems with the p-Laplacian operator has been intensively studied by several
researchers, many important results related to the boundary value problems of fractional
p-Laplacian equations have been obtained. We refer the reader to [12–14].

In [15], the author is concerned with the existence and uniqueness of positive solutions
for the following boundary value problem with p-Laplacian operator:

⎧
⎨

⎩

(ϕp(Dα
0+u(t)))′ + f (t, u(t)) = 0, 0 < t < 1,

u(0) = Dα
0+u(0) = 0, CDβ

0 u(0) = CDβ

0 u(1) = 0,
(1.2)

where 0 < β ≤ 1, 2 < α ≤ 2 + β are real numbers, Dα
0+ and CDβ

0 are the Riemann–Liouville
fractional derivative and Caputo fractional derivative of order α, β , respectively, p > 1,
and f : [a, b] ×R→R is a continuous function. By using the Banach contraction mapping
principle and the Guo–Krasnosel’skii fixed point theorem, respectively, three theorems
on the existence and uniqueness of nontrivial positive solutions for fractional boundary
value problems (FBVP) (1.2) were obtained.

Chen et al. [12] investigated Caputo fractional differential equation boundary value
problems with p-Laplacian operator at resonance:

⎧
⎨

⎩

Dβ
0+(ϕp(Dα

0+x(t))) = f (t, x(t), Dα
0+x(t)), t ∈ [0, 1];

Dα
0+x(0) = Dα

0+x(1) = 0,
(1.3)

where 0 < α,β ≤ 1, 1 < α + β ≤ 2, Dα
0+ and Dβ

0+ are standard Caputo fractional derivatives.
The existence of solutions for boundary value problem (1.3) was obtained by means of the
coincidence degree theory.

Lu et al. [16] studied the following Riemann–Liouville fractional differential equations
boundary problems with p-Laplacian operator:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ
0+(ϕp(Dα

0+u(t))) = f (t, u(t)), 0 ≤ t ≤ 1;

u(0) = u′(0) = u′(1) = 0;

Dα
0+u(0) = Dα

0+u(1) = 0,

(1.4)

where 2 < α ≤ 3, ϕp(s) = |s|p–2s, p > 1, ϕ–1
p = ϕq, 1

p + 1
q = 1, Dα

0+, Dβ
0+ are standard Riemann–

Liouville fractional derivatives. By using the Guo–Krasnosel’skii fixed point theorem and
upper-lower solutions method, some new results on the existence of positive solutions
were obtained.
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Recently, in [17], we studied the high-order conformable differential equations with p-
Laplacian operator as follows:

⎧
⎪⎪⎨

⎪⎪⎩

T0+
α (ϕp(T0+

α u(t))) = f (t, u(t), T0+
α u(t)),

u(i)(0) = 0, [ϕp(T0+
α u)](i)(0) = 0,

[T0+
β u(t)]t=1 = 0, [T0+

β (ϕp(T0+
α u(t)))]t=1 = 0,

(1.5)

where n – 1 ≤ α < n and T0+
α is a new fractional derivative called “the conformable frac-

tional derivative”. By means of the Guo–Krasnosel’skii fixed point theorem, we established
sufficient conditions that ensure the existence of positive solutions to boundary value
problem (1.5).

However, in [17], we only obtained the existence of a positive solution for system (1.5).
Similarly, in [16] and [12], the authors only got the existence and uniqueness of a nontriv-
ial solution to systems (1.4) and (1.3), respectively. But so far, we have not investigated the
multiplicity of positive solutions for fractional p-Laplacian differential equations. To the
best of our knowledge, there are few studies that consider the existence of multiple pos-
itive solutions on nonlinear Riemann–Liouville high-order fractional differential equa-
tions, especially with the p-Laplacian operator. Motivated greatly by the above mentioned
excellent works and in order to fill this gap in the literature, in this paper, we investigate the
multiple positive solutions of boundary value problems for high-order Riemann–Liouville
fractional differential equations with p-Laplacian operator.

The rest of this paper is organized as follows. In Sect. 2, we briefly introduce some neces-
sary basic definitions and preliminary results which are used to prove our main results. In
Sect. 3, by means of the properties of the Green’s function, Leggett–Williams fixed point
theorem, and functional-type cone expansion-compression fixed point theorem, we in-
vestigate multiple positive solutions for boundary value problem of Riemann–Liouville
fractional differential p-Laplacian equation systems on n – 1 < α ≤ n, our work estab-
lishes some novel results on a nonlinear Riemann–Liouville fractional-order boundary
value problem. Finally, in Sect. 4, we demonstrate the effectiveness of the main results by
one example.

2 Preliminaries
For the convenience of the reader, we give some background material from cone theory
and fractional calculus to facilitate the analysis of FBVP (1.1).

A nonempty closed convex set P ⊂ E is a cone if it satisfies:
(I1) x ∈ P, λ ≥ 0 ⇒ λx ∈ P;
(I2) x ∈ P, –x ∈ P ⇒ x = θ .

Suppose that (E,‖·‖) is a real Banach space which is partially ordered by a cone P ⊂ E, that
is, x ≤ y if and only if y – x ∈ P. If x ≤ y and x �= y, then we denote x < y or y > x. θ denotes
the zero element of E. In addition, if x1, x2 ∈ E, the set [x1, x2] = {x ∈ E | x1 < x < x2} is called
the order interval between x1 and x2.

Definition 2.1 ([1]) Putting P̊ := {x ∈ P | x is interior point of P}, P is said to be a solid
cone if its interior P̊ is nonempty. Moreover, P is called normal if there exists a constant
M > 0 such that, for all x, y ∈ E, θ ≤ x ≤ y implies ‖x‖ ≤ M‖y‖; in this case M is called the
normality constant of P.
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Definition 2.2 ([16]) The fractional integral of order α > 0 of a function y : [0, +∞) → R

is given by

0Iα
t y(t) =

1
Γ (α)

∫ t

0
(t – s)α–1y(s) ds,

provided the right-hand side is pointwise defined on [0, +∞).

Definition 2.3 ([12]) The Riemann–Liouville fractional derivative of order α > 0 of a
function y : [0, +∞) →R is given by

R
0 Dα

t y(t) =
1

Γ (n – α)
dn

dtn

∫ t

0
(t – s)n–α–1y(s) ds,

where n = [α] + 1, [α] denotes the integer part of number α, provided the right-hand side
is pointwise defined on [0, +∞).

Definition 2.4 ([18]) Let p > 1, the p-Laplacian operator is given by

ϕp(x) = |x|p–2x.

Obviously, ϕp is continuous, increasing, invertible and its inverse operator is ϕq, where
q > 1 is a constant such that 1

p + 1
q = 1.

Lemma 2.1 ([12])
(1) Let h(t) ∈ C[0, 1] ∩ L1[0, 1], α > 0, then

0Iα
t

R
0 Dα

t h(t) = h(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈ R, i = 1, 2, 3, . . . , n (n = [α] + 1).
(2) If u ∈ L1(0, 1), α > β > 0, then

0Iα
t 0Iβ

t u(t) = 0Iα+β
t u(t), R

0 Dβ

t 0Iα
t u(t) = 0Iα–β

t , R
0 Dβ

t 0Iβ
t u(t) = u(t).

(3) If ρ > 0, μ > 0, then

R
0 Dρ

t tμ–1 =
Γ (μ)

Γ (μ – ρ)
tμ–ρ–1.

Lemma 2.2 Let g be a continuous function on (0, 1). Then the Riemann–Liouville frac-
tional boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

R
0 Dα

t u(t) + g(t) = 0, t ∈ (0, 1), n – 1 < α ≤ n;

u(i)(0) = 0, i = 0, 1, 2, . . . , n – 2;

[R
0 Dβ

t u(t)]t=1 = 0, 0 < β ≤ α – 1;

(2.1)

has a unique positive solution

u(t) =
∫ 1

0
G(t, s)g(s) ds, (2.2)
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where

G(t, s) =

⎧
⎨

⎩

(1–s)α–β–1tα–1–(t–s)α–1

Γ (α) , 0 ≤ s ≤ t ≤ 1;
(1–s)α–β–1tα–1

Γ (α) , 0 ≤ t ≤ s ≤ 1;
(2.3)

is the Green’s function for this problem.

Proof For boundary value problems (2.1), by using Lemma 2.1, we can get

0Iα
0

R
0 Dα

t u(t) = u(t) + c1tα–1 + cα–2
2 + · · · + cntα–n

= –0Iα
0 g(t)

= –
1

Γ (α)

∫ t

0
(t – s)α–1g(s) ds.

From u(i)(0) = 0, (i = 0, 1, . . . , n – 2), it is easy to know cn = cn–1 = · · · = c2 = 0. So, we obtain

u(t) = –c1tα–1 – 0Iα
0 g(t) = –c1tα–1 –

1
Γ (α)

∫ t

0
(t – s)α–1g(s) ds.

For 0 < β ≤ α – 1, applying the Riemann–Liouville fractional derivative operator R
0 Dβ

t on
both sides of the above equation, we can know

R
0 Dβ

t u(t) = –R
0 Dβ

t
(
c1tα–1) – R

0 Dβ

t
(

0Iα
t g(t)

)

= –c1
Γ (α)

Γ (α – β)
tα–β–1 – R

0 Iα–β

t g(t)

= –c1
Γ (α)

Γ (α – β)
tα–β–1 –

1
Γ (α – β)

∫ t

0
(t – s)α–β–1g(s) ds.

Setting t = 1 in the above equation, by the condition [R
0 Dβ

t u(t)]t=1 = 0, we can know

c1 = –
1

Γ (α)

∫ 1

0
(1 – s)α–β–1g(s) ds.

From the above equations, we can get

u(t) =
1

Γ (α)

∫ 1

0
(1 – s)α–β–1tα–1g(s) ds –

1
Γ (α)

∫ t

0
(t – s)α–1g(s) ds

=
∫ 1

0
G(t, s)g(s) ds,

where

G(t, s) =

⎧
⎨

⎩

(1–s)α–β–1tα–1

Γ (α) – (t–s)α–1

Γ (α) , 0 ≤ s ≤ t ≤ 1;
(1–s)α–β–1tα–1

Γ (α) , 0 ≤ t ≤ s ≤ 1;

is the Green’s function of FBVP (2.1). �
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Lemma 2.3 For (t, s) ∈ (0, 1) × (0, 1), Green’s function (2.3) has the following properties:
(1) G(t, s) is a continuous function;
(2) G(t, s) ≥ 0;
(3) G(t, s) ≤ (1–s)α–β–1tα–1

Γ (α) ;

(4) G(t, s) ≥ (1–s)α–β–1tα–1

Γ (α) – (1–s)α–1

Γ (α) tα–1.

Proof It is evident that G(t, s) is a continuous function and inequality (3) holds. So, we
only need to prove inequality (4) and G(t, s) ≥ 0.

If 0 ≤ s ≤ t ≤ 1, then we have 0 ≤ t –s ≤ t – ts = (1–s)t, and thus (t –s)α–1 ≤ (1–s)α–1tα–1.
Hence, if 0 ≤ s ≤ t ≤ 1,

G(t, s) =
(1 – s)α–β–1tα–1

Γ (α)
–

(t – s)α–1

Γ (α)

≥ (1 – s)α–β–1tα–1

Γ (α)
–

(1 – s)α–1

Γ (α)
tα–1.

If 0 ≤ t ≤ s ≤ 1, we have

G(t, s) =
(1 – s)α–β–1tα–1

Γ (α)

≥ (1 – s)α–β–1tα–1

Γ (α)
–

(1 – s)α–1

Γ (α)
tα–1.

In addition, for ∀s ∈ (0, 1), from 0 < β ≤ α – 1 and n – 1 ≤ α ≤ n, we get (1 – s)α–β–1 ≥
(1 – s)α–1. In other words, for ∀(t, s) ∈ (0, 1) × (0, 1), we obtain

G(t, s) ≥ (1 – s)α–β–1tα–1

Γ (α)
–

(1 – s)α–1

Γ (α)
tα–1

=
tα–1

Γ (α)
[
(1 – s)α–β–1 – (1 – s)α–1]

≥ 0.

Therefore, the proof is done. �

Lemma 2.4 ([19]) Let E be an ordered Banach space, P ⊂ E be a cone, and suppose that
Ω1, Ω2, Ω3 are bounded open subsets of E with θ ∈ Ω1, Ω1 ⊂ Ω2, Ω2 ⊂ Ω3, and let Φ :
P ∩ (Ω3 \ Ω1) → P be a completely continuous operator such that

(A1) ‖Φu‖ ≥ ‖u‖ for ∀u ∈ P ∩ ∂Ω1;
(A2) ‖Φu‖ ≤ ‖u‖, Φu �= u for ∀u ∈ P ∩ ∂Ω2;
(A3) ‖Φu‖ ≥ ‖u‖ for ∀u ∈ P ∩ ∂Ω3.

Then Φ has at least two fixed points u∗
1, u∗

2 such that u∗
1 ∈ P ∩Ω2\Ω1 and u∗

2 ∈ P ∩Ω3\Ω2.

Let 0 < a < b be given, and let γ be a nonnegative continuous concave functional on P.
Define the convex sets Pr and P(γ , a, b) by Pr = {x ∈ P | ‖x‖ < r} and P(γ , a, b) = {x ∈ P |
γ (x) ≥ a,‖x‖ ≤ b}.
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Proposition 2.5 ([20]) Let A : Pc → Pc be a completely continuous operator, and let γ

be a nonnegative continuous concave functional on P such that γ (x) ≤ ‖x‖ for all x ∈ Pc.
Suppose that there exist 0 < a < b < d ≤ c such that

(B1) {x ∈ P(γ , b, d) | γ (x) > b} �= φ and γ (Ax) > b for x ∈ P(γ , b, d);
(B2) ‖Ax‖ ≤ a for ‖x‖ ≤ a;
(B3) γ (Ax) > b for x ∈ P(γ , b, c) with ‖Ax‖ > d.

Then A has at least three fixed points x1, x2, and x3 such that ‖x1‖ < a, γ (x2) > b, and
‖x3‖ > a with γ (x3) < b.

3 Main results
Lemma 3.1 If g ∈ C[0, 1] is given, then the Riemann–Liouville fractional boundary value
problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

R
0 Dα

t (ϕp(R
0 Dα

t u(t))) = g(t), 0 ≤ t ≤ 1, n – 1 < α ≤ n;

u(i)(0) = 0, [ϕp(R
0 Dα

t u)](i)(0) = 0, i = 0, 1, 2, . . . , n – 2;

[R
0 Dβ

t u(t)]t=1 = 0, 0 < β ≤ α – 1;

[R
0 Dβ

t (ϕp(R
0 Dα

t u(t)))]t=1 = 0

(3.1)

has a unique positive solution

u(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )g(τ ) dτ

)

ds, (3.2)

where G(t, s) is given in (2.3).

Proof Applying the fractional integral operator 0Iα
t on both sides of the first equation of

(3.1), we have

0Iα
t

R
0 Dα

t
(
ϕp

(R
0 Dα

t u(t)
))

= ϕp
(R

0 Dα

t u(t)
)

+ d1tα–1 + dα–2
2 + · · · + dntα–n

= 0Iα
t g(t)

=
1

Γ (α)

∫ t

0
(t – s)α–1g(s) ds.

From the boundary value conditions [ϕp(R
0 Dα

t u)](i)(0) = 0 (i = 0, 1, 2, . . . , n–2), we can know
that dn = dn–1 = · · · = d3 = d2 = 0. So, we obtain

ϕp
(R

0 Dα

t u(t)
)

= –d1tα–1 +
1

Γ (α)

∫ t

0
(t – s)α–1g(s) ds.

For 0 < β ≤ α – 1, applying the fractional derivative operator R
0 Dβ

t on both sides of the
equation above, we have

R
0 Dβ

t
(
ϕp

(R
0 Dα

t u(t)
))

= R
0 Dβ

t
(
–d1tα–1) + R

0 Dβ

t 0Iα
t g(t)

= –d1
Γ (α)

Γ (α – β)
tα–β–1 + R

0 Iα–β

t g(t)

= –d1
Γ (α)

Γ (α – β)
tα–β–1 +

1
Γ (α – β)

∫ t

0
(t – s)α–β–1g(s) ds.
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Letting t = 1, by the condition [R
0 Dβ

t (ϕp(R
0 Dα

t u(t)))]t=1 = 0, we can get

d1 =
1

Γ (α)

∫ 1

0
(1 – s)α–β–1g(s) ds.

Furthermore, we can obtain

ϕp
(R

0 Dα

t u(t)
)

= –
1

Γ (α)

∫ 1

0
(1 – s)α–β–1tα–1g(s) ds +

1
Γ (α)

∫ t

0
(t – s)α–1g(s) ds

= –
∫ 1

0
G(t, s)g(s) ds.

By using the Laplacian operator ϕq on both sides of the equation above, we get

R
0 Dα

t u(t) + ϕq

(∫ 1

0
G(t, s)g(s) ds

)

= 0. (3.3)

In addition, setting g̃(t) = ϕq(
∫ 1

0 G(t, s)g(s) ds), thus, the high-order Riemann–Liouville
fractional differential systems with p-Laplacian operator (3.1) is equivalent to the problem

⎧
⎪⎪⎨

⎪⎪⎩

R
0 Dα

t u(t) + g̃(t) = 0, t ∈ (0, 1), n – 1 < α ≤ n;

u(i)(0) = 0, 0 ≤ i ≤ n – 2;

[R
0 Dβ

t u(t)]t=1 = 0, 0 < β ≤ α – 1.

(3.4)

Applying Lemma 2.2, we know that the Riemann–Liouville fractional differential system
(3.4) has a unique integral solution

u(t) =
∫ 1

0
G(t, s)̃g(s) ds

=
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )g(τ ) dτ

)

ds. (3.5)

Moreover, by (3.3), we can easily know that

R
0 Dα

t u(t) = –ϕq

(∫ 1

0
G(t, s)g(s) ds

)

. (3.6)

This constitutes the complete proof. �

Now, we denote that E = Cα[0, 1] := {u | u ∈ C[0, 1], R
0 Dα

t u ∈ C[0, 1]} and endowed with
the norm ‖u‖α = max{‖u‖∞,‖R

0 Dα

t u‖∞}, where ‖u‖∞ = max0≤t≤1 |u(t)| and ‖R
0 Dα

t u‖∞ =
max0≤t≤1 |R0 Dα

t u(t)|. Then (E,‖ · ‖α) is a Banach space. Let P = {u ∈ E | u(t) ≥ 0, R
0 Dα

t u(t) ≤
0}. Then P is a cone on the space E.

In addition, we define the operator Φ : P → E by

(Φu)(t) =
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds, (3.7)
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and for any u ∈ E, it is easy to show that Φu ∈ E and

R
0 Dα

t (Φu)(t) = –ϕq

(∫ 1

0
G(t, s)f

(
s, u(s), R

0 Dα

t u(s)
)

ds
)

. (3.8)

Obviously, the function u is a positive solution of boundary value problem (1.1) if and only
if u is a fixed point of the operator Φ in P.

Lemma 3.2 Suppose that f ∈ C([0, 1] × [0, +∞) × [–∞, 0), [0, +∞)). Then Φ : P → P is a
completely continuous operator.

Proof Firstly, for ∀u ∈ P, by (3.7) and Lemma 2.3, it is easy to know that Φ : P → P. Let
{uj} ⊂ P and limj→∞ uj = u ∈ P, so there exists a constant γ0 > 0 such that ‖uj‖α ≤ γ0 and
‖u‖α ≤ γ0 for j = 1, 2, . . . .

Letting M0 = max(t,u,v)∈[0,1]×[–γ0,γ0]×[–γ0,γ0] f (t, u, v), for (t, u, v) ∈ [0, 1] × [–γ0,γ0] ×
[–γ0,γ0], we can get 0 ≤ f (t, u, v) ≤ M0 and

lim
j→∞ f

(
t, uj, R

0 Dα

t uj(t)
)

= f
(
t, u, R

0 Dα

t u(t)
)
, for t ∈ [0, 1].

In addition, for ∀(t, s) ∈ (0, 1) × (0, 1), from Lemma 2.3 we can get that

(1 – s)α–β–1tα–1

Γ (α)
–

(1 – s)α–1

Γ (α)
tα–1 ≤ G(t, s) ≤ (1 – s)α–β–1tα–1

Γ (α)
.

Then, from the Lebesgue dominated convergence theorem, we get

lim
j→∞(Φuj)(t) = lim

j→∞

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , uj(τ ), R

0 Dα

t uj(τ )
)

dτ

)

ds

=
∫ 1

0
G(t, s)ϕq

(∫ 1

0
lim

j→∞ G(s, τ )f
(
τ , uj(τ ), R

0 Dα

t uj(τ )
)

dτ

)

ds

=
∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds

= (Φu)(t) (3.9)

and

lim
j→∞

R
0 Dα

t (Φuj)(t) = –ϕq

(

lim
j→∞

∫ 1

0
G(t, s)f

(
τ , uj(s), R

0 Dα

t uj(s)
)

ds
)

= –ϕq

(∫ 1

0
G(t, s)f

(
τ , u(s), R

0 Dα

t u(s)
)

ds
)

= R
0 Dα

t (Φu)(t). (3.10)

Equations (3.9) and (3.10) imply that limj→∞(Φuj)(t) = (Φu)(t) uniformly on [0, 1]. Hence,
Φ is continuous.

Secondly, let A ⊂ P be any bounded set. Then there exists a constant γ1 > 0 such that
‖u‖α ≤ γ1 for each u ∈ A, which implies that |u(t)| ≤ γ1 and |R0 Dα

t u(t)| ≤ γ1 for t ∈ [0, 1].
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Because f is continuous, there exists M1 > 0 such that 0 ≤ f (t, u(t), R
0 Dα

t u(t)) ≤ M1 for t ∈
[0, 1]. Let L = M1

Γ (α)(α–β) . Then

0 ≤ ∣
∣(Φu)(t)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0
G(t, s)ϕq

(∫ 1

0

(1 – τ )α–β–1

Γ (α)
M1 dτ

)

ds

≤ ϕq

(
M1

Γ (α)(α – β)

)∫ 1

0
G(t, s) ds

≤ 1
Γ (α)(α – β)

ϕq(L)

=
L

M1
ϕq(L)

and

0 ≤ ∣
∣R
0 Dα

t (Φu)(t)
∣
∣ =

∣
∣
∣
∣–ϕq

(∫ 1

0
G(t, s)f

(
s, u(s), R

0 Dα

t u(s)
)

ds
)∣

∣
∣
∣

≤ ϕq

(
M1

Γ (α)(α – β)

)

= ϕq(L), (3.11)

which implies that Φ(A) is uniformly bounded in P.
Finally, because G(t, s) is continuous on [0, 1] × [0, 1], then G(t, s) is uniformly continu-

ous. Hence, for any ε > 0, there exists δ1 > 0, whenever t1, t2 ∈ [0, 1] and |t2 – t1| < δ1,

∣
∣G(t2, s) – G(t1, s)

∣
∣ <

ε

ϕq(L) + 1
.

Furthermore, for any u ∈ P, we have

∣
∣(Φu)(t2) – (Φu)(t1)

∣
∣

=
∣
∣
∣
∣

∫ 1

0
G(t2, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds

–
∫ 1

0
G(t1, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣G(t2, s) – G(t1, s)

∣
∣ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds

≤ ϕq(L)
∫ 1

0

∣
∣G(t2, s) – G(t1, s)

∣
∣ds

< ε.

In addition, setting (Fu)(t) =
∫ 1

0 G(t, s)f (s, u(s), R
0 Dα

t u(s)) ds, so we have

0 ≤ (Fu)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), R

0 Dα

t u(s)
)

ds ≤ L.



Zhou et al. Boundary Value Problems         (2020) 2020:26 Page 11 of 17

Because ϕq(x) is continuous on [0, L], we can get ϕq(x) is uniformly continuous on [0, L].
For ε > 0 above, there exists η > 0 such that

∣
∣ϕq(x2) – ϕq(x1)

∣
∣ < ε, whenever x1, x2 ∈ [0, L] and |x2 – x1| < η. (3.12)

In view of that G(t, s) is uniformly continuous, for η > 0, there exists δ2 > 0, whenever
t1, t2 ∈ [0, 1], s ∈ [0, 1] and |t2 – t1| < δ2, we have |G(t2, s) – G(t1, s)| < η

M+1 . Furthermore,

∣
∣(Fu)(t2) – (Fu)(t1)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
G(t2, s)f

(
s, u(s), R

0 Dα

t u(s)
)

ds

–
∫ 1

0
G(t1, s)f

(
s, u(s), R

0 Dα

t u(s)
)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣G(t2, s) – G(t1, s)

∣
∣f

(
s, u(s), R

0 Dα

t u(s)
)

ds

≤ M1
η

M1 + 1
< η. (3.13)

By (3.12) and (3.13), it is easy to see that

∣
∣
(R

0 Dα

t Φu
)
(t2) –

(R
0 Dα

t Φu
)
(t1)

∣
∣ =

∣
∣
∣
∣ϕq

(∫ 1

0
G(t2, s)f

(
s, u(s), R

0 Dα

t u(s)
)

ds
)

– ϕq

(∫ 1

0
G(t1, s)f

(
s, u(s), R

0 Dα

t u(s)
)

ds
)∣

∣
∣
∣

=
∣
∣ϕq

(
Fu(t2)

)
– ϕq

(
Fu(t1)

)∣
∣

< ε.

Thus, Φ(A) is equicontinuous. By Arzela–Ascoli theorem, we can show that Φ is com-
pletely continuous. �

For convenience, we introduce the following notations:

A–1 = max

{

max
0≤t≤1

tα–1

Γ (α)

∫ 1

0
(1 – s)α–β–1ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds,

max
0≤t≤1

ϕq

(∫ 1

0
G(t, s) ds

)}

,

B–1 = min

{

max
0≤t≤1

tα–1

Γ (α)

∫ 1

0

(
(1 – s)α–β–1 – (1 – s)α–1)ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds,

max
0≤t≤1

ϕq

(∫ 1

0
G(t, s) ds

)}

,

C–1 = min
0≤t≤1

∫ 1

0

(
(1 – s)α–β–1 – (1 – s)α–1

Γ (α)
tα–1

)

ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds,

φ(l) = max
{

f (t, u, v), (t, u, v) ∈ [0, 1] × [0, l] × [–l, 0]
}

,

ψ(l) = min
{

f (t, u, v), (t, u, v) ∈ [0, 1] × [0, l] × [–l, 0]
}

.

Theorem 3.1 Assume that the following assumptions hold:
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(H1) f ∈ C([0, 1] × [0, +∞) × (–∞, 0], [0, +∞));
(H2) There exist three positive constants a < b < c such that ψ(a) ≥ ϕp(aB), φ(b) ≤ ϕp(bA),

and ψ(c) ≥ ϕp(cB) for any t ∈ [0, 1].
Then problem (1.1) has at least two positive solutions u∗

1, u∗
2 ∈ P such that a ≤ ‖u∗

1‖ ≤ b
and b ≤ ‖u∗

2‖ ≤ c.

Proof We know that Φ : P → P is completely continuous by Lemma 3.2, we only need to
consider the existence of a fixed point of operator Φ in P. Now, we divide the proof into
the following three steps.

Step 1. Let Ωa := {u ∈ P | ‖u‖α < a}. For any u ∈ ∂Ωa, we have ‖u‖α = a and f (t, u(t),
R
0 Dα

t u(t)) ≥ ψ(a) ≥ ϕp(aB) ≥ 0 for (t, u, v) ∈ [0, 1] × [0, a] × [–a, 0]. Hence, we can know

‖Φu‖∞ = max
0≤t≤1

∣
∣(Φu)(t)

∣
∣ = max

0≤t≤1
(Φu)(t)

= max
0≤t≤1

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds

≥ max
0≤t≤1

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )ϕp(aB) dτ

)

ds

≥ aB max
0≤t≤1

∫ 1

0

(
(1 – s)α–β–1tα–1

Γ (α)
–

(1 – s)α–1

Γ (α)
tα–1

)

ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

≥ a

and
∥
∥R

0 Dα

t Φu
∥
∥∞ = max

0≤t≤1

∣
∣
(R

0 Dα

t Φu
)
(t)

∣
∣

= max
0≤t≤1

ϕq

(∫ 1

0
G(t, s)f

(
τ , u(s), R

0 Dα

t u(s)
)

ds
)

≥ max
0≤t≤1

ϕq

(∫ 1

0
G(t, s)ϕp(aB) ds

)

= aB max
0≤t≤1

ϕq

(∫ 1

0
G(t, s) ds

)

≥ a.

So

‖Φu‖α ≥ ‖u‖α , ∀u ∈ ∂Ωa.

Step 2. Let Ωb := {u ∈ P | ‖u‖α < b}. For any u ∈ ∂Ωb, we have ‖u‖α = b and f (t, u(t),
R
0 Dα

t u(t)) ≤ φ(b) ≤ ϕp(bA) for (t, u, v) ∈ [0, 1] × [0, b] × [–b, 0]. So, we get

‖Φu‖∞ = max
0≤t≤1

∣
∣(Φu)(t)

∣
∣ = max

0≤t≤1
(Φu)(t)

= max
0≤t≤1

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds

≤ max
0≤t≤1

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )ϕp(bA) dτ

)

ds



Zhou et al. Boundary Value Problems         (2020) 2020:26 Page 13 of 17

≤ bA max
0≤t≤1

∫ 1

0

(1 – s)α–β–1tα–1

Γ (α)
ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

≤ b

and

∥
∥R

0 Dα

t Φu
∥
∥∞ = max

0≤t≤1

∣
∣
(R

0 Dα

t Φu
)
(t)

∣
∣

= max
0≤t≤1

ϕq

(∫ 1

0
G(t, s)f

(
τ , u(s), R

0 Dα

t u(s)
)

ds
)

≤ max
0≤t≤1

ϕq

(∫ 1

0
G(t, s)ϕp(bA) ds

)

= bA max
0≤t≤1

ϕq

(∫ 1

0
G(t, s) ds

)

≤ b.

So

‖Φu‖α ≤ ‖u‖α , ∀u ∈ ∂Ωa.

Step 3. Let Ωc := {u ∈ P | ‖u‖α < c}, if u ∈ ∂Ωc, we have ‖u‖α = c and f (t, u(t), R
0 Dα

t u(t)) ≥
ψ(c) ≥ ϕp(cB) ≥ 0 for (t, u, v) ∈ [0, 1] × [0, c] × [–c, 0]. Then we have

‖Φu‖∞ = max
0≤t≤1

∣
∣(Φu)(t)

∣
∣ = max

0≤t≤1
(Φu)(t)

= max
0≤t≤1

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds

≥ max
0≤t≤1

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )ϕp(cB) dτ

)

ds

≥ cB max
0≤t≤1

∫ 1

0

(
(1 – s)α–β–1tα–1

Γ (α)
–

(1 – s)α–1

Γ (α)
tα–1

)

ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

≥ c

and

∥
∥R

0 Dα

t Φu
∥
∥∞ = max

0≤t≤1

∣
∣
(R

0 Dα

t Φu
)
(t)

∣
∣

= max
0≤t≤1

ϕq

(∫ 1

0
G(t, s)f

(
τ , u(s), R

0 Dα

t u(s)
)

ds
)

≥ max
0≤t≤1

ϕq

(∫ 1

0
G(t, s)ϕp(cB) ds

)

= cB max
0≤t≤1

ϕq

(∫ 1

0
G(t, s) ds

)

≥ c.
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So

‖Φu‖α ≥ ‖u‖α , ∀u ∈ ∂Ωc.

By Lemma 2.4, Φ has at least two fixed points u∗
1, u∗

2 in P ∩ Ωc\Ωa, i.e., system (1.1) has
at least two positive solutions u∗

1, u∗
2 such that a ≤ ‖u∗

1‖ ≤ b and b ≤ ‖u∗
2‖ ≤ c. �

Now, we define a nonnegative continuous concave function on a cone P by γ (u) =
min0≤t≤1(u(t)). It is obvious that, for each u ∈ P, γ (u) ≤ ‖u‖α .

Theorem 3.2 Assume that condition (H1) holds and that there exist nonnegative numbers
a, b, c, and 0 < θ < 1 such that 0 < a < b ≤ b

θ
≤ c, and γ (u) ≥ θ‖u‖α for ∀u ∈ Pc. In addition,

the following assumptions hold:
(H3) f (t, u(t), R

0 Dα

t u(t)) ≤ ϕp(cA) for (t, u, v) ∈ [0, 1] × [0, c] × [–c, 0];
(H4) f (t, u(t), R

0 Dα

t u(t)) ≤ ϕp(aA) for (t, u, v) ∈ [0, 1] × [0, a] × [–a, 0];
(H5) f (t, u(t), R

0 Dα

t u(t)) ≥ ϕp(bC) for (t, u, v) ∈ [0, 1] × [b, b
θ

] × [– b
θ

, –b].
Then problem (1.1) has at least three positive solutions u∗

1, u∗
2, and u∗

3 such that ‖u∗
1‖α ≤ a,

γ (u∗
2) ≥ b, and ‖u∗

3‖α ≥ a with γ (u∗
3) < b.

Proof Firstly, we show that Φ : Pc → Pc is a completely continuous operator. In fact, if
u ∈ Pc, by condition (H3), we get

‖Φu‖∞ = max
0≤t≤1

∣
∣(Φu)(t)

∣
∣ = max

0≤t≤1
(Φu)(t)

= max
0≤t≤1

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds

≤ max
0≤t≤1

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )ϕp(cA) dτ

)

ds

≤ cA max
0≤t≤1

∫ 1

0

(1 – s)α–β–1tα–1

Γ (α)
ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

≤ c

and

∥
∥R

0 Dα

t Φu
∥
∥∞ = max

0≤t≤1

∣
∣
(R

0 Dα

t Φu
)
(t)

∣
∣ = max

0≤t≤1
ϕq

(∫ 1

0
G(t, s)f

(
τ , u(s), R

0 Dα

t u(s)
)

ds
)

≤ max
0≤t≤1

ϕq

(∫ 1

0
G(t, s)ϕp(cA) ds

)

= cA max
0≤t≤1

ϕq

(∫ 1

0
G(t, s) ds

)

≤ c.

Therefore, ‖Φu‖α ≤ c, that is, Φ : Pc → Pc. The operator Φ is completely continuous by
an application of the Ascoli–Arzela theorem.

In a completely analogous way, condition (H4) implies that condition (B2) of Proposi-
tion 2.5 is satisfied.
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Secondly, we show that condition (B1) of Proposition 2.5 is satisfied. It is clear that {u ∈
P(γ , b, b

θ
) | γ (u) ≥ b} �= φ. If u ∈ P(γ , b, b

θ
), then b ≤ u(t) ≤ b

θ
for t ∈ (0, 1). By condition

(H5), we have

γ
(
(Φu)(t)

)
= min

0≤t≤1

(
(Φu)(t)

)

= min
0≤t≤1

(∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )f

(
τ , u(τ ), R

0 Dα

t u(τ )
)

dτ

)

ds
)

≥ min
0≤t≤1

∫ 1

0
G(t, s)ϕq

(∫ 1

0
G(s, τ )ϕp(bC) dτ

)

ds

≥ bC min
0≤t≤1

∫ 1

0

(
(1 – s)α–β–1 – (1 – s)α–1

Γ (α)
tα–1

)

ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

≥ b.

Therefore, condition (B1) of Proposition 2.5 is satisfied.
Finally, we show that condition (B3) of Proposition 2.5 is also satisfied. If u ∈ P(γ , b, c)

and ‖Φu‖α > b
θ

, then we get γ ((Φu)(t)) = min0≤t≤1(Φu)(t) ≥ θ‖Φu‖α > b. Therefore, con-
dition (B3) of Proposition 2.5 also holds. By Proposition 2.5, there exist three positive so-
lutions u∗

1, u∗
2, and u∗

3 such that ‖u∗
1‖α < a, γ (u∗

2) > b, and ‖u∗
3‖ > a with γ (u∗

3) < b. So we
get the conclusion. �

4 Applications
Example 4.1

⎧
⎪⎪⎨

⎪⎪⎩

R
0 D1.5

t (ϕ2(R
0 D1.5

t u(t))) = ( 3
2 )u + t2

8 , 0 ≤ t ≤ 1,

u(0) = [ϕ2(R
0 D1.5

t u)](0) = 0,

[R
0 D0.5

t u](1) = R
0 D0.5

t (ϕ2(R
0 D1.5

t u))(1) = 0.

(4.1)

In system (4.1), we see that α = 1.5, β = 0.5, p = 2, q = 2, n = 2. Moreover, we can calculate
that

max
0≤t≤1

tα–1

Γ (α)

∫ 1

0
(1 – s)α–β–1ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

=
1

Γ (α)

∫ 1

0
(1 – s)α–β–1

(
sα–1

(α – β)Γ (α)
–

sα

αΓ (α)

)

ds

= 0.5093,

max
0≤t≤1

tα–1

Γ (α)

∫ 1

0

(
(1 – s)α–β–1 – (1 – s)α–1)ϕq

(∫ 1

0
G(s, τ ) dτ

)

ds

=
1

Γ (α)

∫ 1

0

(
(1 – s)α–β–1 – (1 – s)α–1)

(
sα–1

(α – β)Γ (α)
–

sα

αΓ (α)

)

ds

= 0.176,

and

max
0≤t≤1

ϕq

(∫ 1

0
G(t, s) ds

)
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= max
0≤t≤1

ϕ2

(
tα–1

Γ (α)

∫ 1

0
(1 – s)α–β–1 ds –

1
Γ (α)

∫ t

0
(t – s)α–1 ds

)

= max
0≤t≤1

(
tα–1

(α – β)Γ (α)
–

tα

αΓ (α)

)

= 0.5319.

Then we obtain A–1 = 0.5319 and B–1 = 0.176. It is easy to know that A = 1.8801 and B =
5.6818.

Besides, let f (t, u) = ( 3
2 )u + t2

8 ≥ 0 for ∀t ∈ [0, 1], and choose a = 1
10 , b = 2, c = 12. We get

min

{(
3
2

)u

+
t2

8

}

> 1 ≥ ϕ2(aB) = 0.56818, for ∀t ∈ [0, 1] and ‖u‖ =
1

10
;

max

{(
3
2

)u

+
t2

8

}

≤ 2.375 ≤ ϕ2(bA) = 3.7602, for ∀t ∈ [0, 1] and ‖u‖ = 2;

min

{(
3
2

)u

+
t2

8

}

≥ 129.7 ≥ ϕ2(cB) = 68.1816, for ∀t ∈ [0, 1] and ‖u‖ = 12.

From the definitions of φ and ψ , we get ψ(a) ≥ ϕp(aB), φ(b) ≤ ϕp(bA), and ψ(c) ≥ ϕp(cB).
So, all conditions of Theorem 3.1 are satisfied. Then system (4.1) has at least two positive
solutions u∗

1, u∗
2 ∈ P such that 1

10 ≤ ‖u∗
1‖ ≤ 2 and 2 ≤ ‖u∗

2‖ ≤ 12.
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