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Abstract
In this paper we consider global weak conservative solutions of a μ-Camassa–Holm
equation. By employing a technique of change of variables on the Lagrangian
variable, we successfully construct global weak conservative solutions of the
μ-Camassa–Holm equation.
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1 Introduction
In this paper, we are concerned with the Cauchy problem of the following periodic μ-
Camassa–Holm (μCH) equation [1]:

{
μ(ut) – uxxt = –2μ(u)ux + 2uxuxx + uuxxx, t > 0, x ∈ S1 = R/Z,
u(0, x) = u0(x), x ∈ S1 = R/Z,

(1)

where u(t, x) is a real-valued spatially periodic function and μ(u) =
∫

S1 u(t, x) dx denotes
its mean. This equation was introduced in [1] as an integrable equation arising in the study
of the diffeomorphism group of the circle, and it can be viewed as a natural generalization
of the famous Camassa–Holm (CH) equation [2]

ut – utxx + 3uux – 2uxuxx – uuxxx = 0. (2)

Moreover, μCH equation (1) has some properties similar to CH equation (2). For instance,
like CH equation (2), μCH equation (1) is also completely integrable in the sense that it
has a Lax pair representation, a bi-Hamiltonian structure, an infinite sequence of conser-
vation laws, and peaked soliton solutions (called peakons). μCH equation (1) also arises
geometrically as equations for geodesic flow in the context of the diffeomorphism group
of the circle Diff(S1) endowed with a right-invariant Riemannian metric induced by the μ

inner product 〈u, v〉 = μ(u)μ(v) +
∫

S1 uxvx dx.
Recently, well-posedness and wave breaking of the CH equation have been studied ex-

tensively. More precisely, it was shown in [3, 4] that the CH equation has a unique solution
in C([0, T), Hs(R)) with s > 3

2 . It was proved in [5] that the CH equation is locally well posed
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in Besov spaces C([0, T), Bs
p,r(R)) with s > max( 3

2 , 1 + 1
p ), 1 ≤ p ≤ +∞, 1 ≤ r < +∞. It was

shown in [6–8] that the strong solutions of CH equation will blow up in finite time when
the slope of initial data was bounded by a negative quantity. Also, well-posedness and wave
breaking of the μCH equation were studied and some results about the local and global
existence and uniqueness in Sobolev spaces were established in [1]. Moreover, the μCH
equation admits a similar phenomenon as the CH equation, that is, the solutions break
down in finite time when the initial data satisfy some proper conditions. In particular, it
was shown in [9] that μCH equation (1) also admits peakons u(x, t) = cφ(x – ct), where
φ(x) = 1

26 (12x2 + 23) for x ∈ [– 1
2 , 1

2 ], and φ is extended periodically to the real line. Chen,
Lenells, and Liu [10] showed that the above periodic peakons are orbitally stable.

In order to study solutions of CH equation (2) after the time of break-down, Bressan and
Constantin [11, 12] introduce some new variables to resolve the singularities formed by
wave breaking, and they successfully obtain a semigroup of global solutions by returning
to the original variables. Holden and Raynaud [13, 14] also study solutions of CH equation
(2) after the formation of singularities, but they introduce a set of different new variables,
and this can establish a bijective map between Eulerian and Lagrangian coordinates for
CH equation (2). Motivated by the works of Lenells [15], who constructed global weak
conservative solutions of the so-called periodic Hunter–Saxton (HS) equation

utxx + 2uxuxx + uuxxx = 0, (3)

Lee [16] constructs global weak conservative solutions of CH equation (2) by using trans-
formation of variables on the Lagrangian variable η:

ρ =
√

ηx. (4)

It is interesting that the author obtains the same global results for CH equation (2) as those
presented by Bressan and Constantin [11] and also improves the corresponding results
on the persistence of the smoothness of Lagrangian trajectories presented in [17]. More
recently, following closely the ideas used in [12, 14], Tiğlay [18] studies the periodic Cauchy
problem for μCH equation (1) and proves the existence and uniqueness of conservative
weak solutions.

In this paper, we investigate the global weak conservative solutions of μCH equation (1).
We closely follow the main ideas of Lee [16] in the study of conservative weak solutions of
CH equation (2). We show that the wave breaking singularities of μCH equation (1) can be
removed by introducing the same transformation (4) about the new Lagrangian variable
ρ , even though the structure of the μCH equation is in some sense different from the CH
equation and the HS equation. Also, we obtain the global results of the μCH equation due
to Tiğlay [18] in much simpler way.

The paper is organized as follows. In Sect. 2, we use the Lagrangian variable ρ defined
by (4) to change μCH equation (1) into an abstract ODE system which admits global so-
lutions. In Sect. 3, we construct global weak conservative solutions of the original μCH
equation by using this global solution in ρ variables. Moreover, by putting together all the
previous results obtained, we give and prove the main result of the paper. Finally, some
conclusions and discussions are presented in Sect. 4.
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2 The setting
Firstly, the Cauchy problem for periodic μCH equation (1) can be rewritten in the weak
form

{
ut + uux = –(μ – ∂2

x )–1∂x(2μ(u)u + 1
2 u2

x),
u(0, x) = u0(x).

(5)

By taking methods analogous to those in [16], we define the following flow equation in
terms of Lagrangian variable η:

∂η

∂t
= u

(
t,η(t, x)

)
, (6)

then Cauchy problem (5) can be written in η variable as follows:

{
ηtt = –[Λ–1∂x(2μηt ◦ η–1 + 1

2 ( ηtx
ηx

◦ η–1)2)] ◦ η,
η(0, x) = x, ηt(0, x) = u0(x),

(7)

where Λ–1 = (μ – ∂2
x )–1 is the operator defined by

Λ–1u(x) =
∫

S1
g(x – y)u(y) dy,

and the kernel g(x) of the elliptic operator Λ–1 is given by g(x) = 1
2 (x2 – |x|) + 13

12 .
Now our main aim is to write Eq. (7) in terms of the new variable ρ defined by (4). For

this purpose, we take full advantage of the conserved quantities μ(u) of the μCH equation
to finish our work. More precisely, note that μ(u) =

∫ 1
0 u(t, x) dx =

∫ 1
0 u0(x) dx is a constant

determined by the initial condition u0, so in view of (4) and (6) we have

μ =
∫ 1

0
(u ◦ η) · ηx dx =

∫ 1

0
ηtηx dx =

∫ 1

0
ηtρ

2 dx. (8)

By carrying out exactly similar arguments as those given in [16], we can determine ηt in
terms of μ, ρ , and ρt . That is,

ηt := G(μ,ρ,ρt)(t, x) =
∫ x

0
2ρρt dy + μ –

∫ 1

0

∫ y

0
2ρρt dzρ2 dy. (9)

Also, notice that ρ = √
ηx and ηtx = 2ρρt , then we have η2

tx
2ηx

= 2ρ2
t .

Next, we begin to rewrite Eq. (7) in ρ variables. By differentiating Eq. (7) with respect to
x, we have

ηttx = 2μηtηx +
η2

tx
2ηx

–
[∫ 1

0

(
2μηtηy +

η2
ty

2ηy

)
dy

]
· ηx, (10)

where we have applied the chain rule and the identity Λ–1(–∂2
x ) = 1 – μ. For convenience,

we denote that

F(μ,ρ,ρt)(t) :=
∫ 1

0
2μρ2G + 2ρ2

t dx, (11)
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so Eq. (10) becomes

2ρρtt = 2μGρ2 – Fρ2, (12)

since ηttx – η2
tx

2ηx
= 2ρρtt . Thus, we can derive the following Cauchy problem with respect to

ρ variables:

{
ρtt = ρ(μG – 1

2 F),
ρ(0, x) = 1, ρt(0, x) = 1

2 u′
0(x).

(13)

If we assume that ρ and ρt are just functions in L2(S1) satisfying Eq. (13), then this equa-
tion can be used to describe the integral curve of the vector field (ρ,ρt) 
→ f (ρ,ρt) :=
ρ(μG(ρ,ρt) – 1

2 F(ρ,ρt)). According to the smoothness of f with respect to ρ and ρt vari-
ables, we can conclude that the solutions of (13) are locally well posed.

Proposition 2.1 The planar system

{ dρ

dt = ρt ,
dρt
dt = f (ρ,ρt) := ρ(μG(ρ,ρt) – 1

2 F(ρ,ρt))
(14)

with initial conditions ρ(0, ·) = 1 and ρt(0, ·) = 1
2 u′

0 describes the flow of a C∞ vector field
on TL2(S1) = L2(S1) × L2(S1), and there exists T > 0 such that it has a unique solution
(ρ,ρt) ∈ C([0, T]; TL2(S1)).

Proof Firstly, note that

∂f
∂ρt

= ρ

(
μ

∂G
∂ρt

–
1
2

∂F
∂ρt

)
.

It is easy to see that G is smooth with respect to ρt since it is linear in ρt . On the other
hand, we have

∂F
∂ρt

=
∫ 1

0
2μρ2 ∂G

∂ρt
+ 4ρt dx,

and so we can observe that F is also smooth with respect to ρt . Thus, it implies that the
vector field f is smooth with respect to ρt . Similarly, we can check that the vector field f
is smooth with respect to ρ . �

Note that G is periodic on S1 if and only if
∫ 1

0 ρ2 dx = 0. The following proposition shows
that we need to restrict ρ to be on the unit sphere U := {ρ ∈ L2(S1) : ‖ρ‖L2 = 1} if we want
to obtain the global well-posedness of Cauchy problem (13).

Proposition 2.2 Let f (ρ,ρt) be the vector field on TL2(S1) defined by (13). If ρ ∈ U , then∫ 1
0 ρρt dx = 0 for all time. This implies that f restricts on the tangent bundle TU .

Proof When t = 0, we have
∫ 1

0 ρ(0, x)ρt(0, x) =
∫ 1

0
1
2 u′

0(x) dx = 1
2 (u0(1) – u0(0)) = 0. Note

that F does not depend on x and the assumption that ρ ∈ U , so we have
∫ 1

0 ρ2F dx = F .
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Thus, in view of (11), we have

d
dt

∫ 1

0
ρρt dx =

∫ 1

0
ρ2

t + ρρtt dx =
∫ 1

0
ρ2

t + ρ2
(

μG –
1
2

F
)

dx =
1
2

F –
1
2

F = 0.

This proves that
∫ 1

0 ρρt dx = 0 for all time since the integral is initially zero. �

It is well known that the Ḣ1 energy
∫ 1

0 u2
x dx is a conserved quantity for μCH equa-

tion (1). Next, we show that the Ḣ1 energy for the corresponding ρ equation is also con-
served.

Proposition 2.3 For the ρ equation, we have

d
dt

∫ 1

0
4ρ2

t dx = 0. (15)

Proof Recall that

Gx = 2ρρt .

Then we have

d
dt

∫ 1

0
4ρ2

t dx =
∫ 1

0
8ρtρtt dx

=
∫ 1

0
4ρρt(2μG – F) dx

= 2μ

∫ 1

0
2GGx dx – 2F

∫ 1

0
2ρρt dx

= 2μ

∫ 1

0
d
(
G2) – 2F

∫ 1

0
d(G) = 0,

since G is periodic with respect to x. �

Now, we can show that the solution of Eq. (13) is global when ρ is restricted on the unit
sphere.

Proposition 2.4 If ρ ∈ U , then the flow described by (13) exists for all time t.

Proof In view of Hölder’s inequality, we have

|2μG – F| ≤ 2μ|G| + |F| ≤ 4μ‖ρ‖L2‖ρt‖L2 + 4μ‖ρ‖3
L2‖ρt‖L2 + 2‖ρt‖2

L2 . (16)

It is easily seen that |2μG – F| is uniformly bounded since ‖ρ‖L2 = 1 and ‖ρt‖L2 is uni-
formly bounded by the energy conservation. This implies that the right-hand side of (13)
is uniformly bounded in (ρ,ρt). Thus, by Wintner’s theorem from the ODE theory [19],
we can conclude that the solutions of Cauchy problem (13) exist for all time. �
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3 Global weak solutions of the μCH equation
We want to construct global weak solutions for the original μCH equation (5) from the
global solution ρ . To do this, we first prove the following important lemma.

Lemma 3.1 Let G be defined by (9). Then Gt = –H , where

H(t, x) =
∫ 1

0

(∫ x

y
ρ2 dz

)(
2μGρ2 + 2ρ2

t
)

dy

+
1
2

∫ 1

x
2μρ2G + 2ρ2

t dy –
1
2

∫ x

0
2μρ2G + 2ρ2

t dy.

Proof Note that

∂H
∂x

= ρ2F –
(
2μρ2G + 2ρ2

t
)

and

Hρ2 = Φx,

where

Φ(t, x) =
∫ 1

0

[(∫ x

y
ρ2 dz

)2

–
∣∣∣∣
∫ x

y
ρ2 dz

∣∣∣∣
](

μρ2G + ρ2
t
)

dy.

Denote

c(t) := μ –
∫ 1

0

∫ x

0
2ρρt dyρ2 dx. (17)

By differentiating G with respect to t, we have

Gt =
∫ x

0
2ρ2

t + 2ρρtt dy + c′(t)

=
∫ x

0
2ρ2

t + 2μρ2G – ρ2F dy + c′(t)

= –
∫ x

0

∂H
∂y

dy + c′(t)

= –H(t, x) + H(t, 0) + c′(t).

So we only need to show that H(t, 0) + c′(t) = 0. However, we have

c′(t) = –
∫ 1

0

∫ x

0
2ρ2

t + 2ρρtt dyρ2 dx

= –
∫ 1

0

∫ x

0
2ρ2

t + 2μρ2G – ρ2F dyρ2 dx

= –
∫ 1

0

(
2ρ2

t + 2μρ2G – ρ2F
)∫ 1

y
ρ2 dx dy
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=
∫ 1

0

∂H
∂y

∫ 1

y
ρ2 dx dy

=
∫ 1

0

[
ρ2

∫ x

0

∂H
∂y

dy
]

dx

=
∫ 1

0

[
ρ2H(t, x) – ρ2H(t, 0)

]
dx

=
∫ 1

0
Φx dx – H(t, 0)

∫ 1

0
ρ2 dx

= –H(t, 0),

since
∫ 1

0 ρ2 dx = 1 and Φ is periodic with respect to x. Therefore, we have Gt = –H . �

Define

K(t, x) :=
∫ x

0
ρ2 dy + tu0(0) –

∫ t

0

∫ τ

0
H(s, 0) ds dτ .

From Lemma 3.1, we can see that –H(t, 0) = c′(t), where c(t) is defined by (17). So the
relation ∂K

∂t = G holds true between K and G. Next, we will show that (K , G) satisfies the
second order equation (7).

Following [15, 16], we decompose S1 by S1 = N ∪ A ∪ Z where

N :=
{

x ∈ S1 : Kx = 0, i.e.,ρ(t, x) = 0
}

,

A :=
{

x ∈ S1 : Kx > 0, i.e.,ρ(t, x) > 0
}

,

and meas(Z) = 0. Performing the same argument as in [16], we can obtain that the set N
has a measure zero for almost all time. And then we have the following lemma.

Lemma 3.2
∫

N ρ2
t dy = 0 for almost all time t ∈R+.

Proof The proof is very similar to that of Lemma 8 in [16], and hence is omitted. �

Lemma 3.2 shows that ρ = 0 is satisfied only on a set of measure zero for almost all time.
Notice that Kx = ρ2, we can derive that K is generically a homeomorphism except for a set
of measure zero. In other words, K–1 is well defined for almost all time.

Proposition 3.3 For almost all time t, (K , G) satisfies the following equation:

Gt = –
[
Λ–1∂x

(
2μG ◦ K–1 +

1
2

(
Gx

Kx
◦ K–1

)2)]
◦ K . (18)

Proof It suffices to show that Gt = –H is equivalent to Eq. (7) in the weak sense. Note that
K is a diffeomorphism on the set A, so we have

Gt = –H = –
∫

S1

[∫ x

y
ρ2 dz –

1
2

sgn

(∫ x

y
ρ2 dz

)](
2μρ2G + 2ρ2

t
)

dy

= –
∫

A

[
K(x) – K(y) –

1
2

sgn
(
K(x) – K(y)

)](
2μKxG +

G2
x

2Kx

)
dy +

∫
N

ρ2
t dy
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= –
∫

K (A)

[
K(x) – y –

1
2

sgn
(
K(x) – y

)](
2μG ◦ K–1 +

1
2

(
Gx

Kx
◦ K–1

)2)
dy

+
∫

N
ρ2

t dy

= –∂x

[∫
K (A)

(
(x – y)2

2
–

|x – y|
2

+
13
12

)(
2μG ◦ K–1 +

1
2

(
Gx

Kx
◦ K–1

)2)
dy

]
◦ K

+
∫

N
ρ2

t dy.

In view of that meas(K(A)) = 1, we can observe that the first integral of the above is equiv-
alent to the right-hand side of Eq. (7). Moreover, we have

∫
N ρ2

t dy = 0 for almost all time
t from Lemma 3.2. Therefore, for almost all time t, (K , G) satisfies Eq. (18). �

Next, we check that the velocity field u satisfying flow equation (6) is well defined in H1

for all time. More precisely, we can obtain the following proposition. It should be remarked
here that the proofs for this proposition are omitted since it is exactly the same argument
as in [16].

Proposition 3.4 Let (K , G) be a weak solution of μCH equation (7) in the Lagrangian
form. Then the velocity field u ∈ C(R+, H1(S1)) ∩ Lip(R+, L2(S1)) is well defined by

u
(
t, K(t, x)

)
= G(t, x), (t, x) ∈ [0,∞) × S1. (19)

Now, we are in a position to state the main result of this paper.

Theorem 3.5 The function u defined by (19) is the global weak solution to the Cauchy
problem for periodic μCH equation (5). Moreover, this solution satisfies the following prop-
erty:

∫
S1 u2

x(t, x) dx =
∫

S1 (u′
0(x))2 dx.

Proof We want to show that the function u defined by (19) satisfies Eq. (5) in the weak
sense. That is, it suffices to prove that

∫
S1×R+

(ut + uux)ϕ dx dt =
∫

S1×R+

–pxϕ dx dt (20)

for all ϕ ∈ C∞
0 (S1 × R+), where p = Λ–1(2μ(u)u + 1

2 u2
x). By virtue of (19), we have

∫
S1×R+

(ut + uux)ϕ dx dt =
∫

S1×R+

–uϕt + uuxϕ dx dt

=
∫

S1×R+

–GKxϕt ◦ K + GGxϕ ◦ K dx dt.

Note that Kt = G and Ktx = Gx, so we have

(GKxϕ ◦ K)t –
(
G2ϕ ◦ K

)
x

= GtKxϕ ◦ K + GKtxϕ ◦ K + GKxϕt ◦ K + GKx(ϕx ◦ K)Kt

– 2GGxϕ ◦ K – G2(ϕx ◦ K)Kx
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= GtKxϕ ◦ K + GGxϕ ◦ K + GKxϕt ◦ K + G2Kx(ϕx ◦ K)

– 2GGxϕ ◦ K – G2(ϕx ◦ K)Kx

= GtKxϕ ◦ K – GGxϕ ◦ K + GKxϕt ◦ K .

Thus, in view of that ϕ has a compact support, we can get

∫
S1×R+

–GKxϕt ◦ K + GGxϕ ◦ K dx dt =
∫

S1×R+

GtKxϕ ◦ K dx dt.

On the other hand, from Proposition 3.3 we know that Gt = –[Λ–1∂x(2μG ◦ K–1

+ 1
2 ( Gx

Kx
◦ K–1)2)] ◦ K for almost all t. Also, note that u = G ◦ K–1 and ux = Gx

Kx
◦ K–1. There-

fore, we have
∫

S1×R+

GtKxϕ ◦ K dx dt =
∫

S1×R+

–pxϕ dx dt.

So we complete the proof of (20).
Next, we show that

∫
S1 u2

x(t, x) dx is a conserved quantity for μCH equation (5). Note
that Kx = ρ2 and Gx = 2ρρt , then

∫
S1

u2
x dx =

∫
K (A)

(
Gx

Kx
◦ K–1

)2

dx

=
∫

A

G2
x

Kx
dx

=
∫

S1
4ρ2

t dx

is conserved by virtue of Proposition 2.3. This proves that
∫

S1 u2
x(t, x) dx =

∫
S1 (u′

0(x))2 dx. �

4 Conclusions
In this paper, we successfully construct global weak conservative solutions of the μCH
equation by applying the so-called Lagrangian change of variable technique. We believe
that this technique could be extended to study other generalized μ-type equations with
different nonlocal nonlinearities which have similar remarkable properties as the μCH
equation. More recently, by virtue of an isometric embedding of the group of diffeomor-
phism group, Gallouët and Vialard [20] have rewritten the CH equation as an incom-
pressible Euler equation on the cone manifold. Following this geometric point of view
developed in [20], we think that the μCH equation can be also embedded in the incom-
pressible Euler equation on a non-compact Riemannian manifold. We leave these for fu-
ture research.
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