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Abstract
We investigate the following nonlinear parabolic equations with nonlocal source and
nonlinear boundary conditions:

⎧
⎪⎨

⎪⎩

(g(u))t =
∑N

i,j=1(a
ij(x)uxi )xj + γ1um(

∫

D u
l dx)p – γ2ur in D× (0, t∗),

∑N
i,j=1 a

ij(x)uxiνj = h(u) on ∂D× (0, t∗),
u(x, 0) = u0(x) ≥ 0 in D,

where p and γ1 are some nonnegative constants,m, l, γ2, and r are some positive
constants, D ⊂ R

N (N ≥ 2) is a bounded convex region with smooth boundary ∂D. By
making use of differential inequality technique and the embedding theorems in
Sobolev spaces and constructing some auxiliary functions, we obtain a criterion to
guarantee the global existence of the solution and a criterion to ensure that the
solution blows up in finite time. Furthermore, an upper bound and a lower bound for
the blow-up time are obtained. Finally, some examples are given to illustrate the
results in this paper.
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1 Introduction
There has been a vast amount of literature to discuss the global solutions, the blow-up
solutions, and the bounds for the blow-up time for nonlinear parabolic equations. We re-
fer the readers to [1–16]. The global and blow-up solutions for the parabolic problems
with nonlinear boundary conditions have been studied in [1–7]. Recently, some authors
have already considered the blow-up phenomena of the parabolic equations with nonlo-
cal source. We recommend the literature [8–10] and the references therein. In the present
work, we study the following nonlinear parabolic equations with nonlocal source and non-
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linear boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

(g(u))t =
∑N

i,j=1(aij(x)uxi )xj + γ1um(
∫

D ul dx)p – γ2ur in D × (0, t∗),
∑N

i,j=1 aij(x)uxiνj = h(u) on ∂D × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in D,

(1.1)

where p and γ1 are some nonnegative constants, m, l, γ2, and r are some positive constants,
D ⊂R

N (N ≥ 2) is a bounded convex region, the boundary ∂D is smooth, t∗ is the blow-up
time when blow-up occurs, or t∗ = +∞, and ν = (ν1,ν2, . . . ,νN ) is the unit outward normal
vector on ∂D. Moreover, (aij(x))N×N is a differentiable positive definite matrix; that is, for
all z = (z1, z2, . . . , zN ) ∈R

N , there exists a constant θ > 0 such that

N∑

i,j=1

aijzizj ≥ θ |z|2. (1.2)

Set R+ = (0, +∞). We assume that g is a C2(R+) function which satisfies g ′(s) > 0 for all
s ∈ R+, h is a nonnegative C1(R+) function, and u0(x) is a nonnegative C1(D) function
which satisfies the compatibility condition. Our study is motivated by the following three
papers. Li et al. [1], Baghaei et al. [11], and Zhang et al. [2] studied the following parabolic
equations with local source and nonlinear boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

ut =
∑N

i,j=1(aij(x)uxi )xj + k(t)f (u) in D × (0, t∗),
∑N

i,j=1 aij(x)uxiνj = h(u) on ∂D × (0, t∗),

u(x, 0) = u0(x) ≥ 0 in D,

(1.3)

where D is a bounded convex region in R
N (N ≥ 2), and the boundary ∂D is smooth.

When the function k(t) ≡ –1, Li et al. [1] obtained the conditions to ensure that the global
solution exists and the solution blows up in finite time t∗. Moreover, they derived upper
bounds of the blow-up time in D ⊂R

N (N ≥ 2). Using the three-dimensional Sobolev type
inequality that Payne and Schaefer had proven in [7], they got lower bounds in D ⊂ R

3.
When k(t) ≡ –1, in [11], Baghaei et al. used the embedding theorems in Sobolev spaces
to get a lower bound of the blow-up time in D ⊂ R

N (N ≥ 3). Recently, Zhang et al. [2]
considered problem (1.3) when k(t) > 0. Their main contribution was to extend the three-
dimensional Sobolev type inequality obtained by Payne and Schaefer in [7] to the higher
dimensional one. They used this Sobolev inequality in multidimensional space to derive a
lower bound of the blow-up time in D ⊂R

N (N ≥ 3). In addition, they obtained the global
existence of the solution and an upper bound of the blow-up time when blow-up occurs
in D ⊂R

N (N ≥ 2).
In the present paper, we study problem (1.1). In the process of getting lower bounds of

the blow-up time, the key of our work is to deal with the nonlocal source. We discuss the
blow-up problems of (1.1) by constructing some suitable auxiliary functions and making
use of the embedding theorems in Sobolev spaces and differential inequality technique.
The present work is organized as follows. In Sect. 2, we establish some conditions on the
data g and h to obtain that the solution u(x, t) exists globally in D ⊂R

N (N ≥ 2). In Sect. 3,
we develop conditions on the data of (1.1) to guarantee the blow-up of the solution and
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derive an upper bound of blow-up time in D ⊂ R
N (N ≥ 2). When blow-up does occur,

we derive a lower bound of t∗ for D ⊂ R
N (N ≥ 3) in Sect. 4 and a lower bound of t∗ for

D ⊂ R
2 in Sect. 5. In Sect. 6, some examples are presented to illustrate the results in this

paper.

2 The global solution
In this section, we establish some conditions on the data of (1.1) to ensure that the global
solution exists. We define the auxiliary functions

Φ(t) =
∫

D
G(u) dx, G(s) = l

∫ s

0
yl–1g ′(y) dy, s ≥ 0. (2.1)

Now we state our main results as follows.

Theorem 2.1 Let u be a nonnegative classical solution of problem (1.1). Suppose that the
functions g and h satisfy

g ′(s) ≤ ζ , h(s) ≤ γ sq, s ≥ 0, (2.2)

where ζ , γ , and q are some positive constants. Assume

l > 2, q > max

{

1,
m + 1 + lp

2

}

, r > 2q – 1. (2.3)

Then u(x, t) exists for all t > 0 in the measure Φ(t).

Proof It follows from (2.2) that

Φ(t) = l
∫

D

∫ u

0
yl–1g ′(y) dy dx ≤ ζ

∫

D
ul dx;

that is,

∫

D
ul dx ≥ 1

ζ
Φ(t). (2.4)

Using (1.2), (2.2), and the divergence theorem, we have

Φ ′(t) = l
∫

D
ul–1g ′(u)ut dx = l

∫

D
ul–1

( N∑

i,j=1

(
aij(x)uxi

)

xj
+ γ1um

(∫

D
ul dx

)p

– γ2ur

)

dx

= l
∫

D

N∑

i,j=1

(
ul–1aij(x)uxi

)

xj
dx – l(l – 1)

∫

D
ul–2

N∑

i,j=1

aij(x)uxi uxj dx

+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx

= l
∫

∂D
ul–1

N∑

i,j=1

aij(x)uxiνj dS – l(l – 1)
∫

D
ul–2

N∑

i,j=1

aij(x)uxi uxj dx
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+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx

≤ l
∫

∂D
ul–1h(u) dS – θ l(l – 1)

∫

D
ul–2|∇u|2 dx

+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx

≤ lγ
∫

∂D
ul+q–1 dS –

4θ (l – 1)
l

∫

D

∣
∣∇u

l
2
∣
∣2 dx

+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx. (2.5)

By the divergence theorem, we get the inequality (see [5])

∫

∂D
ul+q–1 dS ≤ N

ρ0

∫

D
ul+q–1 dx +

(l + q – 1)d
ρ0

∫

D
ul+q–2|∇u|dx, (2.6)

where

ρ0 = min
x∈∂D

(x · ν), d = max
x∈D

|x|.

Applying the Hölder inequality and the Young inequality to the right-hand side of (2.6)
yields

N
ρ0

∫

D
ul+q–1 dx ≤

(∫

D

(
u

l
2
)2 dx

) 1
2
(∫

D

(
N
ρ0

u
l+2q–2

2

)2

dx
) 1

2

≤ 1
2

∫

D
ul dx +

N2

2ρ2
0

∫

D
ul+2q–2 dx (2.7)

and

(l + q – 1)d
ρ0

∫

D
ul+q–2|∇u|dx

≤
(∫

D

1
ε

(
(l + q – 1)d

ρ0
u

l+2q–2
2

)2

dx
) 1

2
(∫

D
ε
(
u

l–2
2 |∇u|)2 dx

) 1
2

≤ (l + q – 1)2d2

2ερ2
0

∫

D
ul+2q–2 dx +

ε

2

∫

D
ul–2|∇u|2 dx

=
(l + q – 1)2d2

2ερ2
0

∫

D
ul+2q–2 dx +

2ε

l2

∫

D

∣
∣∇u

l
2
∣
∣2 dx (2.8)

with

ε =
2θ (l – 1)

γ
> 0. (2.9)
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Hence, substituting (2.7) and (2.8) into (2.6), we get

∫

∂D
ul+q–1 dS ≤ 1

2

∫

D
ul dx +

(
N2

2ρ2
0

+
(l + q – 1)2d2

2ερ2
0

)∫

D
ul+2q–2 dx

+
2ε

l2

∫

D

∣
∣∇u

l
2
∣
∣2 dx. (2.10)

Inserting (2.10) into (2.5) and using (2.9), we obtain

Φ ′(t) ≤ 1
2

lγ
∫

D
ul dx + lγ

(
N2

2ρ2
0

+
(l + q – 1)2d2

2ερ2
0

)∫

D
ul+2q–2 dx

+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx. (2.11)

Since (2.3) implies the fact that 0 < l
l+2q–2 < 1, 0 < l+m–1

l+2q–2 < 1, and 0 < l+2q–2
l+s–1 < 1, it follows

from the Hölder inequality that

∫

D
ul dx ≤ |D| 2(q–1)

l+2q–2

(∫

D
ul+2q–2 dx

) l
l+2q–2

, (2.12)

∫

D
ul+m–1 dx ≤ |D| 2q–m–1

l+2q–2

(∫

D
ul+2q–2 dx

) l+m–1
l+2q–2

, (2.13)

and

∫

D
ul+2q–2 dx ≤ |D| r–2q+1

l+r–1

(∫

D
ul+r–1 dx

) l+2q–2
l+r–1

, (2.14)

where |D| is the volume of D. By virtue of (2.14), we have

∫

D
ul+r–1 dx ≥ |D| 2q–r–1

l+2q–2

(∫

D
ul+2q–2 dx

) l+r–1
l+2q–2

. (2.15)

We insert (2.12)–(2.13) and (2.15) into (2.11) to derive

Φ ′(t) ≤ 1
2

lγ |D| 2(q–1)
l+2q–2

(∫

D
ul+2q–2 dx

) l
l+2q–2

+ lγ
(

N2

2ρ2
0

+
(l + q – 1)2d2

2ερ2
0

)∫

D
ul+2q–2 dx

+ lγ1|D| 2q–m–1+2p(q–1)
l+2q–2

(∫

D
ul+2q–2 dx

) l+m–1+lp
l+2q–2

– lγ2|D| 2q–r–1
l+2q–2

(∫

D
ul+2q–2 dx

) l+r–1
l+2q–2

=
∫

Ω

ul+2q–2 dx
(

lγ
(

N2

2ρ2
0

+
(l + q – 1)2d2

2ερ2
0

)

+
lγ
2

|D| 2(q–1)
l+2q–2

(∫

D
ul+2q–2 dx

) 2(1–q)
l+2q–2

+ lγ1|D| 2q–m–1+2p(q–1)
l+2q–2

(∫

D
ul+2q–2 dx

) m–2q+1+lp
l+2q–2

– lγ2|D| 2q–r–1
l+2q–2

(∫

D
ul+2q–2 dx

) r–2q+1
l+2q–2

)

. (2.16)
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It follows from (2.12) and (2.4) that

∫

D
ul+2q–2 dx ≥ |D| 2(1–q)

l

(∫

D
ul dx

) l+2q–2
l ≥ ζ

2–2q–l
l |D| 2(1–q)

l Φ
l+2q–2

l (t). (2.17)

By (2.3), we know 2(1–q)
l+2q–2 < 0, m–2q+1+lp

l+2q–2 < 0, and r–2q+1
l+2q–2 > 0. Substituting (2.17) into (2.16),

we deduce

Φ ′(t) ≤
∫

D
ul+2q–2 dx

[

lγ
(

N2

2ρ2
0

+
(l + q – 1)2d2

2ερ2
0

)

+
lγ
2

ζ
2(q–1)

l |D| 2(q–1)
l Φ

2(1–q)
l (t)

+ lγ1ζ
2q–m–1

l –p|D| 2q–m–1
l Φp+ m–2q+1

l (t) – lγ2ζ
2q–r–1

l |D| 2q–r–1
l Φ

r–2q+1
l (t)

]

=
∫

D
ul+2q–2 dx

(
C1 + C2Φ

2(1–q)
l (t) + C3Φ

p+ m–2q+1
l (t) – C4Φ

r–2q+1
l (t)

)
, (2.18)

where C1 = lγ ( N2

2ρ2
0

+ (l+q–1)2d2

2ερ2
0

), C2 = lγ
2 ζ

2(q–1)
l |D| 2(q–1)

l , C3 = lγ1ζ
2q–m–1

l –p|D| 2q–m–1
l , and C4 =

lγ2ζ
2q–r–1

l |D| 2q–r–1
l .

Thus, (2.18) implies that u(t) cannot blow up for all time t > 0 in the measure Φ(t). In
fact, if u(x, t) blows up at finite time t∗ in the measure Φ(t), we have

lim
t→t∗–

Φ(t) = +∞.

It follows from (2.3) that 2–2q
l < 0, p + m–2q+1

l < 0, and r–2q+1
l > 0. From (2.18), we obtain

that Φ ′(t) < 0 in some interval (t0, t∗). So, for any t ∈ [t0, t∗), we get Φ(t) ≤ Φ(t0). We take
the limit as t → t∗– to get

+∞ = lim
t→t∗–

Φ(t) ≤ Φ(t0).

This is a contradiction. �

3 Upper bounds of the blow-up time t∗

In this section, we set up some conditions on g and k to guarantee that the solution of (1.1)
blows up in finite time. An upper bound of the blow-up time t∗ is obtained in D ⊂ R

N

(N ≥ 2). The auxiliary functions of this section are defined as follows:

Ψ (t) =
∫

D
g(u) dx, t ≥ 0. (3.1)

Our main result is the following Theorem 3.1.

Theorem 3.1 Let u(x, t) be a nonnegative classical solution of problem (1.1). Suppose that
the function g satisfies

0 ≤ g(s) ≤ s, s ≥ 0. (3.2)

Assume

1 < r < min{m, l} and Ψ (0) >
(

M2

M1

) 1
m+lp

(3.3)
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with

M1 =
γ1

2
|D|1+p–m–lp, M2 =

γ2(m + lp – r)
m + lp

δ
r

r–m–lp ,

δ =
γ1(m + lp)

2rγ2
|D|1+p– m+lp

r .
(3.4)

Then the solution u(x, t) must blow up in the measure Ψ (t) in finite time t∗ and

t∗ ≤
∫ +∞

Ψ (0)

dτ

M1τm+lp – M2
.

Proof Making use of the divergence theorem, we get

Ψ ′(t) =
∫

D
g ′(u)ut dx =

∫

D

( N∑

i,j=1

(
aij(x)uxi

)

xj
+ γ1um

(∫

D
ul dx

)p

– γ2ur

)

dx

=
∫

∂D

N∑

i,j=1

aij(x)uxiνj dS + γ1

∫

D
um dx

(∫

D
ul dx

)p

– γ2

∫

D
ur dx

=
∫

∂D
h(u) dS + γ1

∫

D
um dx

(∫

D
ul dx

)p

– γ2

∫

D
ur dx

≥ γ1

∫

D
um dx

(∫

D
ul dx

)p

– γ2

∫

D
ur dx. (3.5)

By the Hölder inequality and (3.3), we can compute

∫

D
ur dx ≤ |D|1– r

m

(∫

D
um dx

) r
m

,
∫

D
ur dx ≤ |D|1– r

l

(∫

D
ul dx

) r
l
,

∫

D
u dx ≤ |D|1– 1

r

(∫

D
ur dx

) 1
r
;

that is,

∫

D
um dx ≥ |D|1– m

r

(∫

D
ur dx

) m
r

,
∫

D
ul dx ≥ |D|1– l

r

(∫

D
ur dx

) l
r
,

∫

D
ur dx ≥ |D|1–r

(∫

D
u dx

)r

.

(3.6)

Substituting (3.6) into (3.5) and applying the Young inequality and (3.2)–(3.4), we deduce

Ψ ′(t) ≥ γ1|D|1+p– m+lp
r

(∫

D
ur dx

) m+lp
r

– γ2

∫

D
ur dx

= γ1|D|1+p– m+lp
r

(∫

D
ur dx

) m+lp
r

– γ2

(

δ

(∫

D
ur dx

) m+lp
r

) r
m+lp (

δ
r

r–m–lp
) m+lp–r

m+lp

≥
(

γ1|D|1+p– m+lp
r –

δrγ2

m + lp

)(∫

D
ur dx

) m+lp
r

–
γ2(m + lp – r)

m + lp
δ

r
r–m–lp
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≥
(

γ1|D|1+p– m+lp
r –

δrγ2

m + lp

)

|D| (1–r)(m+lp)
r

(∫

D
u dx

)m+lp

–
γ2(m + lp – r)

m + lp
δ

r
r–m–lp

= M1

(∫

D
u dx

)m+lp

– M2 ≥ M1

(∫

D
g(u) dx

)m+lp

– M2

= M1Ψ
m+lp(t) – M2. (3.7)

We know that (3.3) implies

M1Ψ
m+lp(t) – M2 > 0, t ≥ 0. (3.8)

In fact, if (3.8) does not hold, we let

t′ = min
{

M1Ψ
m+lp(t) – M2 ≤ 0

}
. (3.9)

From (3.9), we have

M1Ψ
m+lp(t) – M2 > 0, 0 < t < t′. (3.10)

It follows from (3.7) and (3.10) that Ψ ′(t) > 0, 0 < t < t′, and Ψ (t′) > Ψ (0). By (3.3), we derive

M1Ψ
m+lp(t′) – M2 > 0,

which contradicts with (3.9).
Integrating (3.7) over [0, t], we obtain

t ≤
∫ Ψ (t)

Ψ (0)

dτ

M1τm+lp – M2
, (3.11)

which implies that the solution u must blow up at some finite time t∗ in the measure Ψ (t).
In fact, if u does not blow up at t∗ in the measure Ψ (t), we get

Ψ (t) < +∞, t ≥ 0.

Therefore,

t ≤
∫ Ψ (t)

Ψ (0)

dτ

M1τm+lp – M2
<

∫ +∞

Ψ (0)

dτ

M1τm+lp – M2
, t ≥ 0.

Letting t → +∞, we have

∫ +∞

Ψ (0)

dτ

M1τm+lp – M2
= +∞,

which contradicts with
∫ +∞

Ψ (0)

dτ

M1τm+lp – M2
< +∞.
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Hence, u blows up at t∗ in the measure Ψ (t). We pass to the limit as t → t∗– in (3.11) to
derive

t∗ ≤
∫ +∞

Ψ (0)

dτ

M1τm+lp – M2
. �

4 Lower bounds of the blow-up time t∗ in D ⊂ R
N (N ≥ 3)

In this section, we impose restriction D ⊂R
N (N ≥ 3). Assume that the functions h and g

satisfy

h(s) ≤ σ sq, g ′(s) ≥ ξ , s ≥ 0, (4.1)

where σ , q, and ξ are some positive constants and

q > 1. (4.2)

It follows from [17, Corollary 9.14] that

W 1,2 ↪→ L
2N

N–2 , where N ≥ 3,

from which we have the following Sobolev inequality:

(∫

D

(
u

l
2
) 2N

N–2 dx
) N–2

2N ≤ C
(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 1
2

, (4.3)

where C = C(N , D) is a Sobolev embedding constant depending on N (N ≥ 3) and D. In
order to derive a lower bound of the blow-up time t∗, we use inequality (4.3) and

(a + b)μ ≤ aμ + bμ, a ≥ 0, b ≥ 0, 0 < μ ≤ 1. (4.4)

We define auxiliary functions as follows:

A(t) =
∫

D
B(u) dx, t ≥ 0, B(s) = l

∫ s

0
yl–1g ′(y) dy, s ≥ 0. (4.5)

Now we present our main results in Theorem 4.1.

Theorem 4.1 Let u(x, t) be a nonnegative classical solution of (1.1) in D ⊂ R
N (N ≥ 3).

Suppose that (4.1)–(4.2) hold and

r > 1, m > 1, l > max

{

2,
N(m – 1)

2
, N(q – 1)

}

. (4.6)

If u(x, t) becomes unbounded at some finite time t∗ in the measure A(t), then we conclude
t∗ is bounded from below by

t∗ ≥
∫ +∞

A(0)

dτ

J1τ + J2τ
1+ 2(q–1)

l + J3τ
1+ 2(q–1)

l–N(q–1) + J4τ
(lp+m–1)(l+r–1)

l(r–1) + J5τ
1+ 2pl+2(m–1)

2l–N(m–1)

,
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where

J1 =
lσ
2ξ

, J2 =
lσ

2ρ2
0ξ 1+ 2(q–1)

l
C

2N(q–1)
l

(

N2 +
σ (l + q – 1)2d2

θ (l – 1)

)

, (4.7)

J3 =
l – N(q – 1)

ξ
1+ 2(q–1)

l–N(q–1)

(
θ (l – 1)

lN(q – 1)C2

) N(1–q)
l–N(q–1)

[
σ

2ρ2
0

(

N2 +
σ (l + q – 1)2d2

θ (l – 1)

)] l
l–N(q–1)

, (4.8)

J4 =
|D|(r – 1)

ξ
(lp+m–1)(l+r–1)

l(r–1)
γ

l
1–r

2

(
lγ1

l + r – 1
C

N(m–1)
l

)1+ l
r–1

, (4.9)

J5 =
2l – N(m – 1)

ξ
1+ 2pl+2(m–1)

2l–N(m–1)

(
γ1

2

) 2l
2l–N(m–1)

(
θ (l – 1)

lN(m – 1)C2

) N(1–m)
2l–N(m–1)

, (4.10)

ρ0 = min
x∈∂D

(x · ν), d = max
x∈D

|x|, (4.11)

and θ is defined in (1.2).

Proof We use (1.2), (4.1), and the divergence theorem to obtain

A′(t) = l
∫

D
ul–1g ′(u)ut dx = l

∫

D
ul–1

( N∑

i,j=1

(
aij(x)uxi

)

xj
+ γ1um

(∫

D
ul dx

)p

– γ2ur

)

dx

= l
∫

D

N∑

i,j=1

(
ul–1aij(x)uxi

)

xj
dx – l(l – 1)

∫

D
ul–2

N∑

i,j=1

aij(x)uxi uxj dx

+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx

≤ l
∫

∂D
ul–1

N∑

i,j=1

aij(x)uxiνj dS – lθ (l – 1)
∫

D
ul–2|∇u|2 dx

+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx

≤ l
∫

∂D
ul–1h(u) dS –

4θ (l – 1)
l

∫

D

∣
∣∇u

l
2
∣
∣2 dx

+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx

≤ lσ
∫

∂D
ul+q–1 dS –

4θ (l – 1)
l

∫

D

∣
∣∇u

l
2
∣
∣2 dx

+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx. (4.12)

Repeating the calculation process of (2.6)–(2.8), we have

∫

∂D
ul+q–1 dS ≤ 1

2

∫

D
ul dx +

(
N2

2ρ2
0

+
(l + q – 1)2d2

2ε1ρ
2
0

)∫

D
ul+2q–2 dx

+
2ε1

l2

∫

D

∣
∣∇u

l
2
∣
∣2 dx, (4.13)



Kou and Ding Boundary Value Problems         (2020) 2020:37 Page 11 of 21

where ρ0 and d are given in (4.11) and ε1 = θ (l–1)
σ

. Substituting (4.13) into (4.12), we de-
rive

A′(t) ≤ lσ
2

∫

D
ul dx + lσ

(
N2

2ρ2
0

+
(l + q – 1)2d2

2ε1ρ
2
0

)∫

D
ul+2q–2 dx

+
(

2ε1σ

l
–

4θ (l – 1)
l

)∫

D

∣
∣∇u

l
2
∣
∣2 dx

+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx. (4.14)

First we take into account the second term of (4.14). Assumptions (4.2) and (4.6) im-
ply 0 < (N–2)(q–1)

l < 1 and 0 < N(q–1)
l < 1. Now we apply the Hölder inequality, the Young

inequality, and inequalities (4.3)–(4.4) to deduce

∫

D
ul+2q–2 dx

≤
(∫

D
ul dx

)1– (N–2)(q–1)
l

(∫

D

(
u

l
2
) 2N

N–2 dx
) (N–2)(q–1)

l

=
(∫

D
ul dx

)1– (N–2)(q–1)
l

((∫

D

(
u

l
2
) 2N

N–2 dx
) N–2

2N
) 2N(q–1)

l

≤
(∫

D
ul dx

)1– (N–2)(q–1)
l

(

C
(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 1
2
) 2N(q–1)

l

= C
2N(q–1)

l

(∫

D
ul dx

)1– (N–2)(q–1)
l

(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) N(q–1)
l

≤ C
2N(q–1)

l

(∫

D
ul dx

)1– (N–2)(q–1)
l

((∫

D
ul dx

) N(q–1)
l

+
(∫

D

∣
∣∇u

l
2
∣
∣2 dx

) N(q–1)
l

)

= C
2N(q–1)

l

((∫

D
ul dx

)1+ 2(q–1)
l

+
(∫

D
ul dx

)1– (N–2)(q–1)
l

(∫

D

∣
∣∇u

l
2
∣
∣2 dx

) N(q–1)
l

)

= C
2N(q–1)

l

((∫

D
ul dx

)1+ 2(q–1)
l

+
(

ε

N(1–q)
l–N(q–1)
2

(∫

D
ul dx

)1+ 2(q–1)
l–N(q–1)

)1– N(q–1)
l

(

ε2

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) N(q–1)
l

)

≤ C
2N(q–1)

l

((∫

D
ul dx

)1+ 2(q–1)
l

+
(

1 –
N(q – 1)

l

)

ε

N(1–q)
l–N(q–1)
2

(∫

D
ul dx

)1+ 2(q–1)
l–N(q–1)

+
N(q – 1)

l
ε2

∫

D

∣
∣∇u

l
2
∣
∣2 dx

)

, (4.15)

where ε2 = θ (l–1)
I1N(q–1) , I1 = lσC

2N(q–1)
l ( N2

2ρ2
0

+ (l+q–1)2d2

2ε1ρ2
0

).

Then we deal with the fourth term of (4.14). Due to (4.6), we get 0 < (m–1)(N–2)
2l < 1,

0 < N(m–1)
2l < 1. Using the Hölder inequality, the Young inequality, and (4.3)–(4.4), we de-
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rive
∫

D
ul+m–1 dx

(∫

D
ul dx

)p

≤
(∫

D
ul dx

)1– (m–1)(N–2)
2l

(∫

D

(
u

l
2
) 2N

N–2 dx
) (m–1)(N–2)

2l
(∫

D
ul dx

)p

=
(∫

D
ul dx

)1+p– (m–1)(N–2)
2l

((∫

D

(
u

l
2
) 2N

N–2 dx
) N–2

2N
) N(m–1)

l

≤
(∫

D
ul dx

)1+p– (m–1)(N–2)
2l

(

C
(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 1
2
) N(m–1)

l

= C
N(m–1)

l

(∫

D
ul dx

)1+p– (m–1)(N–2)
2l

(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) N(m–1)
2l

≤ C
N(m–1)

l

(∫

D
ul dx

)1+p– (m–1)(N–2)
2l

((∫

D
ul dx

) N(m–1)
2l

+
(∫

D

∣
∣∇u

l
2
∣
∣2 dx

) N(m–1)
2l

)

= C
N(m–1)

l

((∫

D
ul dx

)1+p+ m–1
l

+
(∫

D
ul dx

)1+p– (m–1)(N–2)
2l

(∫

D

∣
∣∇u

l
2
∣
∣2 dx

) N(m–1)
2l

)

= C
N(m–1)

l

((

ε3

(∫

D
ul dx

) l+r–1
l

) l
l+r–1

(

ε
l

1–r
3

(∫

D
ul dx

) (lp+m–1)(l+r–1)
l(r–1)

) r–1
l+r–1

+
(

ε
N(1–m)

2l–N(m–1)
4

(∫

D
ul dx

)1+ 2pl+2(m–1)
2l–N(m–1)

)1– N(m–1)
2l

(

ε4

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) N(m–1)
2l

)

≤ C
N(m–1)

l

(
l

l + r – 1
ε3

(∫

D
ul dx

) l+r–1
l

+
r – 1

l + r – 1
ε

l
1–r
3

(∫

D
ul dx

) (lp+m–1)(l+r–1)
l(r–1)

+
(

1 –
N(m – 1)

2l

)

ε
N(1–m)

2l–N(m–1)
4

(∫

D
ul dx

)1+ 2pl+2(m–1)
2l–N(m–1)

+
N(m – 1)

2l
ε4

∫

D

∣
∣∇u

l
2
∣
∣2 dx

)

, (4.16)

where ε3 = γ2(l+r–1)
lγ1

C
N(1–m)

l |D| 1–r
l , ε4 = 2θ (l–1)

lγ1N(m–1) C
N(1–m)

l .
Finally we compute the last term of (4.14). Applying the Hölder inequality, we deduce

∫

D
ul dx ≤ |D| r–1

l+r–1

(∫

D
ul+r–1 dx

) l
l+r–1

;

that is,

∫

D
ul+r–1 dx ≥ |D| 1–r

l

(∫

D
ul dx

) l+r–1
l

. (4.17)

Substituting (4.15)–(4.17) into (4.14), we have

A′(t) ≤ lσ
2

∫

D
ul dx + I1

(∫

D
ul dx

)1+ 2(q–1)
l

+
I1[l – N(q – 1)]

l
ε

N(1–q)
l–N(q–1)
2

(∫

D
ul dx

)1+ 2(q–1)
l–N(q–1)
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+
lγ1(r – 1)
l + r – 1

C
N(m–1)

l ε
l

1–r
3

(∫

D
ul dx

) (lp+m–1)(l+r–1)
l(r–1)

+
γ1[2l – N(m – 1)]

2
C

N(m–1)
l ε

N(1–m)
2l–N(m–1)
4

(∫

D
ul dx

)1+ 2pl+2(m–1)
2l–N(m–1)

. (4.18)

By (4.1), we obtain

A(t) = l
∫

D

∫ u

0
yl–1g ′(y) dy dx ≥ ξ

∫

D
ul dx,

which implies

∫

D
ul dx ≤ 1

ξ
A(t). (4.19)

Now, inserting (4.19) into (4.18), we derive

A′(t) ≤ lσ
2ξ

A(t) +
I1

ξ 1+ 2(q–1)
l

A1+ 2(q–1)
l (t) +

I1[l – N(q – 1)]

lξ 1+ 2(q–1)
l–N(q–1)

ε

N(1–q)
l–N(q–1)
2 A1+ 2(q–1)

l–N(q–1) (t)

+
lγ1(r – 1)

(l + r – 1)ξ
(lp+m–1)(l+r–1)

l(r–1)
C

N(m–1)
l ε

l
1–r
3 A

(lp+m–1)(l+r–1)
l(r–1) (t)

+
γ1[2l – N(m – 1)]

2ξ
1+ 2pl+2(m–1)

2l–N(m–1)
C

N(m–1)
l ε

N(1–m)
2l–N(m–1)
4 A1+ 2pl+2(m–1)

2l–N(m–1) (t)

= J1A(t) + J2A1+ 2(q–1)
l (t) + J3A1+ 2(q–1)

l–N(q–1) (t)

+ J4A
(lp+m–1)(l+r–1)

l(r–1) (t) + J5A1+ 2pl+2(m–1)
2l–N(m–1) (t), (4.20)

where J1, J2, J3, J4, and J5 are defined in (4.7)–(4.10). Since limt→t∗– A(t) = +∞, we integrate
(4.20) from 0 to t∗ to get

t∗ ≥
∫ +∞

A(0)

dτ

J1τ + J2τ
1+ 2(q–1)

l + J3τ
1+ 2(q–1)

l–N(q–1) + J4τ
(lp+m–1)(l+r–1)

l(r–1) + J5τ
1+ 2pl+2(m–1)

2l–N(m–1)

. �

5 Lower bounds of the blow-up time t∗ in D ⊂ R
2

In this section, we search for a lower bound of t∗ in D ⊂R
2. Suppose that the functions h

and g satisfy

h(s) ≤ σ̃ sq̃, g ′(s) ≥ ξ̃ , s ≥ 0, (5.1)

where σ̃ , q̃, and ξ̃ are some positive constants and

q̃ > 1. (5.2)

By [17, Corollary 9.14], we have

W 1,2 ↪→ L4, where N = 2,
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which implies the following Sobolev inequality:

(∫

D

(
u

l
2
)4 dx

) 1
4 ≤ C̃

(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 1
2

, (5.3)

where C̃ is a Sobolev embedding constant depending on D. We need to use inequality (5.3)
to get a lower bound of t∗. Now, we define auxiliary functions as follows:

Ã(t) =
∫

D
B̃(u) dx, t ≥ 0, B̃(s) = l

∫ s

0
yl–1g ′(y) dy, s ≥ 0. (5.4)

The main result of this section is the following Theorem 5.1.

Theorem 5.1 Let u(x, t) be a nonnegative classical solution of (1.1) in D ⊂R
2. Assume that

(5.1)–(5.2) hold and

r > 1, m > 1, l > max
{

2, 2(m – 1), 4(q̃ – 1)
}

. (5.5)

In addition, we assume that u(x, t) blows up at some finite time t∗ in the measure Ã(t). Then
t∗ is bounded below by

t∗ ≥
∫ +∞

Ã(0)

dτ

J̃1τ + J̃2τ
1+ 2(q̃–1)

l + J̃3τ
1+ 2(q̃–1)

l–4(q̃–1) + J̃4τ
(lp+m–1)(l+r–1)

l(r–1) + J̃5τ
l(1+p)–(m–1)

l–2(m–1)

,

where

J̃1 =
lσ̃
2ξ̃

, J̃2 =
lσ̃

ρ2
0 ξ̃ 1+ 2(q̃–1)

l
C̃

8(q̃–1)
l

(

2 +
σ̃ (l + q̃ – 1)2d̃2

2θ (l – 1)

)

, (5.6)

J̃3 =
l – 4(q̃ – 1)

ξ̃
1+ 2(q̃–1)

l–4(q–1)

(
θ (l – 1)

4l(q̃ – 1)C̃2

) 4(1–q̃)
l–4(q̃–1)

[
σ̃

ρ̃2
0

(

2 +
σ̃ (l + q̃ – 1)2d̃2

2θ (l – 1)

)] l
l–4(q̃–1)

, (5.7)

J̃4 =
|D|(r – 1)

ξ̃
(lp+m–1)(l+r–1)

l(r–1)
γ

l
1–r

2

(
lγ1

l + r – 1
C̃

4(m–1)
l

)1+ l
r–1

, (5.8)

J̃5 =
l – 2(m – 1)

ξ̃
l(1+p)–(m–1)

l–2(m–1)
γ

l
l–2(m–1)

1

(
θ (l – 1)

2l(m – 1)C̃2

) 2(1–m)
l–2(m–1)

, (5.9)

ρ̃0 = min
x∈∂D

(x · ν), d̃ = max
x∈D

|x|, (5.10)

and θ is defined in (1.2).

Proof Repeating the calculation process of (4.12)–(4.14) and noting N = 2 in this section,
we get

Ã′(t) ≤ lσ̃
2

∫

D
ul dx + lσ̃

(
2
ρ̃2

0
+

(l + q̃ – 1)2d̃2

2ε̃1ρ̃
2
0

)∫

D
ul+2q̃–2 dx

+
(

2ε̃1σ̃

l
–

4θ (l – 1)
l

)∫

D

∣
∣∇u

l
2
∣
∣2 dx
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+ lγ1

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

– lγ2

∫

D
ul+r–1 dx, (5.11)

where ρ̃0 and d̃ are defined in (5.10) and ε̃1 = θ (l–1)
σ̃

.
First, we focus on the second term of (5.11). By (5.2) and (5.5), we get 0 < 2(q̃–1)

l < 1 and
0 < 4(q̃–1)

l < 1. Now we apply the Hölder inequality, the Young inequality, (4.4), and (5.3) to
deduce

∫

D
ul+2q̃–2 dx

≤
(∫

D
ul dx

)1– 2(q̃–1)
l

(∫

D

(
u

l
2
)4 dx

) 2(q̃–1)
l

=
(∫

D
ul dx

)1– 2(q̃–1)
l

((∫

D

(
u

l
2
)4 dx

) 1
4
) 8(q̃–1)

l

≤
(∫

D
ul dx

)1– 2(q̃–1)
l

(

C̃
(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 1
2
) 8(q̃–1)

l

= C̃
8(q̃–1)

l

(∫

D
ul dx

)1– 2(q̃–1)
l

(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 4(q̃–1)
l

≤ C̃
8(q̃–1)

l

(∫

D
ul dx

)1– 2(q̃–1)
l

((∫

D
ul dx

) 4(q̃–1)
l

+
(∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 4(q̃–1)
l

)

= C̃
8(q̃–1)

l

((∫

D
ul dx

)1+ 2(q̃–1)
l

+
(∫

D
ul dx

)1– 2(q̃–1)
l

(∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 4(q̃–1)
l

)

= C̃
8(q̃–1)

l

((∫

D
ul dx

)1+ 2(q̃–1)
l

+
(

ε̃

4(1–q̃)
l–4(q̃–1)
2

(∫

D
ul dx

)1+ 2(q̃–1)
l–4(q̃–1)

)1– 4(q̃–1)
l

(

ε̃2

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 4(q̃–1)
l

)

≤ C̃
8(q̃–1)

l

((∫

D
ul dx

)1+ 2(q̃–1)
l

+
(

1 –
4(q̃ – 1)

l

)

ε̃

4(1–q̃)
l–4(q̃–1)
2

(∫

D
ul dx

)1+ 2(q̃–1)
l–4(q̃–1)

+
4(q̃ – 1)

l
ε̃2

∫

D

∣
∣∇u

l
2
∣
∣2 dx

)

, (5.12)

where ε̃2 = θ (l–1)
4Ĩ1(q̃–1) , Ĩ1 = lσ̃ C̃

8(q̃–1)
l ( 2

ρ̃2
0

+ (l+q̃–1)2d̃2

2ε̃1ρ̃2
0

).

Next, we deal with the fourth term of (5.11). Due to (5.5), we get 0 < m–1
l < 1,

0 < 2(m–1)
l < 1. Using the Hölder inequality, the Young inequality, (4.4), and (5.3), we derive

∫

D
ul+m–1 dx

(∫

D
ul dx

)p

≤
(∫

D
ul dx

)1– m–1
l

(∫

D

(
u

l
2
)4 dx

) m–1
l

(∫

D
ul dx

)p

=
(∫

D
ul dx

)1+p– m–1
l

((∫

D

(
u

l
2
)4 dx

) 1
4
) 4(m–1)

l
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≤
(∫

D
ul dx

)1+p– m–1
l

(

C̃
(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 1
2
) 4(m–1)

l

= C̃
4(m–1)

l

(∫

D
ul dx

)1+p– m–1
l

(∫

D
ul dx +

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 2(m–1)
l

≤ C̃
4(m–1)

l

(∫

D
ul dx

)1+p– m–1
l

((∫

D
ul dx

) 2(m–1)
l

+
(∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 2(m–1)
l

)

= C̃
4(m–1)

l

((∫

D
ul dx

)1+p+ m–1
l

+
(∫

D
ul dx

)1+p– m–1
l

(∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 2(m–1)
l

)

= C̃
4(m–1)

l

((

ε̃3

(∫

D
ul dx

) l+r–1
l

) l
l+r–1

(

ε̃
l

1–r
3

(∫

D
ul dx

) (lp+m–1)(l+r–1)
l(r–1)

) r–1
l+r–1

+
(

ε̃
2(1–m)

l–2(m–1)
4

(∫

D
ul dx

) l(1+p)–(m–1)
l–2(m–1)

)1– 2(m–1)
l

(

ε̃4

∫

D

∣
∣∇u

l
2
∣
∣2 dx

) 2(m–1)
l

)

≤ C̃
4(m–1)

l

(
l

l + r – 1
ε̃3

(∫

D
ul dx

) l+r–1
l

+
r – 1

l + r – 1
ε̃

l
1–r
3

(∫

D
ul dx

) (lp+m–1)(l+r–1)
l(r–1)

+
(

1 –
2(m – 1)

l

)

ε̃
2(1–m)

l–2(m–1)
4

(∫

D
ul dx

) l(1+p)–(m–1)
l–2(m–1)

+
2(m – 1)

l
ε̃4

∫

D

∣
∣∇u

l
2
∣
∣2 dx

)

, (5.13)

where ε̃3 = γ2(l+r–1)
lγ1

C̃
4(1–m)

l |D| 1–r
l , ε̃4 = θ (l–1)

2lγ1(m–1) C̃
4(1–m)

l .
Finally, we consider the last term of (5.11). Repeating the calculation process of (4.17),

we have

∫

D
ul+r–1 dx ≥ |D| 1–r

l

(∫

D
ul dx

) l+r–1
l

. (5.14)

Substituting (5.12)–(5.14) into (5.11), we deduce

Ã′(t) ≤ lσ̃
2

∫

D
ul dx + Ĩ1

(∫

D
ul dx

)1+ 2(q̃–1)
l

+
Ĩ1[l – 4(q̃ – 1)]

l
ε̃

4(1–q̃)
l–4(q̃–1)
2

(∫

D
ul dx

)1+ 2(q̃–1)
l–4(q̃–1)

+
lγ1(r – 1)
l + r – 1

C̃
4(m–1)

l ε̃
l

1–r
3

(∫

D
ul dx

) (lp+m–1)(l+r–1)
l(r–1)

+ γ1
[
l – 2(m – 1)

]
C̃

4(m–1)
l ε̃

2(1–m)
l–2(m–1)
4

(∫

D
ul dx

) l(1+p)–(m–1)
l–2(m–1)

. (5.15)

We repeat the calculation process of (4.19) to obtain

∫

D
ul dx ≤ 1

ξ̃
Ã(t). (5.16)
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Now, inserting (5.16) into (5.15), we derive

Ã′(t) ≤ lσ̃
2ξ̃

Ã(t) +
Ĩ1

ξ̃ 1+ 2(q̃–1)
l

Ã1+ 2(q̃–1)
l (t) +

Ĩ1[l – 4(q̃ – 1)]

lξ̃ 1+ 2(q̃–1)
l–4(q̃–1)

ε̃

4(1–q̃)
l–4(q̃–1)
2 Ã1+ 2(q̃–1)

l–4(q̃–1) (t)

+
lγ1(r – 1)

(l + r – 1)ξ̃
(lp+m–1)(l+r–1)

l(r–1)
C̃

4(m–1)
l ε̃

l
1–r
3 Ã

(lp+m–1)(l+r–1)
l(r–1) (t)

+
γ1[l – 2(m – 1)]

ξ̃
l(1+p)–(m–1)

l–2(m–1)
C̃

4(m–1)
l ε̃

2(1–m)
l–2(m–1)
4 Ã

l(1+p)–(m–1)
l–2(m–1) (t)

= J̃1Ã(t) + J̃2Ã1+ 2(q̃–1)
l (t) + J̃3Ã1+ 2(q̃–1)

l–4(q̃–1) (t)

+ J̃4Ã
(lp+m–1)(l+r–1)

l(r–1) (t) + J̃5Ã
l(1+p)–(m–1)

l–2(m–1) (t), (5.17)

where J̃1, J̃2, J̃3, J̃4, and J̃5 are defined in (5.6)–(5.9). Since limt→t∗– Ã(t) = +∞, we integrate
(5.17) from 0 to t∗ to get

t∗ ≥
∫ +∞

Ã(0)

dτ

J̃1τ + J̃2τ
1+ 2(q̃–1)

l + J̃3τ
1+ 2(q̃–1)

l–4(q̃–1) + J̃4τ
(lp+m–1)(l+r–1)

l(r–1) + J̃5τ
l(1+p)–(m–1)

l–2(m–1)

. �

6 Applications
In what follows, three examples are given to demonstrate the results of Theorems 2.1–5.1
obtained in this paper.

Example 6.1 Let u(x, t) be a nonnegative classical solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

((u + ln(1 + u)))t =
∑3

i=1((1 + |x|2)uxi )xi + u 1
2 (

∫

D u3 dx) 1
3 – u 5

2 in D × (0, t∗),
∑3

i=1(1 + |x|2)uxiνi = 2
√

5
5 u 3

2 on ∂D × (0, t∗),

u(x, 0) = u0(x) = 1 + |x|2 in D,

where D = {x = (x1, x2, x3) | |x|2 =
∑3

i=1 x2
i < 1

4 } is a ball of R3. Here,

g(u) = u + ln(1 + u), h(u) =
2
√

5
5

u
3
2 ,

(
aij(x)

)

3×3 =

⎛

⎜
⎝

1 + |x|2 0 0
0 1 + |x|2 0
0 0 1 + |x|2

⎞

⎟
⎠ , u0(x) = 1 + |x|2.

Now, N = 3, γ1 = 1, γ2 = 1, m = 1
2 , l = 3, p = 1

3 , and r = 5
2 . Choosing ζ = 2, γ = 2

√
5

5 , and
q = 3

2 , we can verify that (2.2)–(2.3) are satisfied. Hence, Theorem 2.1 implies that u exists
for all time in Φ(t) with

Φ(t) =
∫

D
G(u) dx =

∫

D

(

u3 +
3
2

u2 – 3u + 3 ln(1 + u)
)

dx.
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Example 6.2 Let u(x, t) be a nonnegative classical solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

( u+ln(1+u)
2 )t =

∑3
i=1((1 + |x|2)uxi )xi + 9

4 u 3
2 (

∫

D u3 dx) 1
10 – 7

4 u
7
5 in D × (0, t∗),

∑3
i=1(1 + |x|2)uxiνi = 3

√
5

5 u 5
4 on ∂D × (0, t∗),

u(x, 0) = u0(x) = 1 + |x|2 in D,

where D = {x = (x1, x2, x3)||x|2 =
∑3

i=1 x2
i . < 9

16 } is a ball of R3. Now we have

g(u) =
u + ln(1 + u)

2
, h(u) =

3
√

5
5

u
5
4 ,

(
aij(x)

)

3×3 =

⎛

⎜
⎝

1 + |x|2 0 0
0 1 + |x|2 0
0 0 1 + |x|2

⎞

⎟
⎠ , u0(x) = 1 + |x|2.

Here, N = 3, γ1 = 9
4 , γ2 = 7

4 , m = 3
2 , l = 3, p = 1

10 , r = 7
5 , and |D| = 9π

16 . Now, we compute

Ψ (t) =
∫

D
g(u) dx =

1
2

∫

D

(
u + ln(1 + u)

)
dx,

Ψ (0) =
1
2

∫

D

(
u0 + ln(1 + u0)

)
dx = 1.9302.

It follows from (3.4) that δ = 0.7436, M1 = 0.7552, and M2 = 1.0969. It is easy to check that
(3.2)–(3.3) hold. By Theorem 3.1, we deduce that u must blow up in the measure Ψ (t) at
some finite time t∗ and

t∗ ≤
∫ +∞

Ψ (0)

dτ

M1τm+lp – M2
=

∫ +∞

1.9302

dτ

0.7552τ
9
5 – 1.0969

= 1.2304. (6.1)

We note that (6.1) gives an upper bound of t∗. Next, we use Theorem 4.1 to obtain a
lower bound of t∗. Now we select q = 5

4 , σ = 3
√

5
5 , ξ = 1

2 , and θ = 1. By (4.11), we derive
ρ0 = d = 3

4 . Noting N = 3, we can verify that (4.1)–(4.2) and (4.6) hold. Moreover, according
to Theorems 2.1 and 3.2 in [18], we obtain the Sobolev embedding constant C = 7.5931.
Substituting above constants into (4.7)–(4.10), it is easy to get J1 = 4.0249, J2 = 287.4, J3 =
814.14, J4 = 95979, and J5 = 68.205. By (3.6), we obtain

B(u) = l
∫ u

0
yl–1g ′(y) dy =

3
2

∫ u

0
y2

(

1 +
1

1 + y

)

dy =
1
2

u3 +
3
4

u2 –
3
2

u +
3
2

ln(1 + u),

A(t) =
∫

D
B(u) dx =

∫

D

(
1
2

u3 +
3
4

u2 –
3
2

u +
3
2

ln(1 + u)
)

dx,

and

A(0) =
∫

D

(
1
2

u3
0 +

3
4

u2
0 –

3
2

u0 +
3
2

ln(1 + u0)
)

dx = 3.2897.

Blow-up of u in the measure Ψ (t) at t∗ means that u blows up at t∗. Hence u must also
blow up in the measure A(t) at t∗. By Theorem 4.1, we get a lower bound of the blow-up
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time t∗ as follows:

t∗ ≥ T2 =
∫ +∞

A(0)

dτ

J1τ + J2τ
1+ 2(q–1)

l + J3τ
1+ 2(q–1)

l–n(q–1) + J4τ
1+p+ m–1

l + J5τ
1+ 2pl+2(m–1)

2l–n(m–1)

=
∫ +∞

3.2897

dτ

4.0249τ + 287.4τ
7
6 + 814.14τ

11
9 + 95979τ

34
15 + 68.205τ

61
45

= 1.8166 × 10–6. (6.2)

Combining (6.1) and (6.2), we have

1.8166 × 10–6 ≤ t∗ ≤ 1.2304.

Example 6.3 Let u(x, t) be a nonnegative classical solution of the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut =
∑2

i=1((1 + |x|2)uxi )xi + 2u 3
2 (

∫

D u3 dx) 1
10 – 2u

7
5 in D × (0, t∗),

∑2
i=1(1 + |x|2)uxiνi = 3

√
5

5 u 5
4 on ∂D × (0, t∗),

u(x, 0) = u0(x) = 1 + |x|2 in D,

where D = {x = (x1, x2) | |x|2 =
∑2

i=1 x2
i < 9

16 } is a circular region of R2. Now

g(u) = u, h(u) =
3
√

5
5

u
5
4 ,

(
aij(x)

)

2×2 =

(
1 + |x|2 0

0 1 + |x|2
)

, u0(x) = 1 + |x|2.

Here, N = 2, γ1 = 2, γ2 = 2, m = 3
2 , l = 3, p = 1

10 , r = 7
5 , and |D| = 9π

16 . By (3.1), we have

Ψ (t) =
∫

D
g(u) dx =

∫

D
u dx, Ψ (0) =

∫

D
u0 dx =

∫

D

(
1 + |x|2)dx = 2.2642.

By (3.4), we obtain δ = 0.6506, M1 = 0.7552, and M2 = 2.0004. After some simple calcula-
tions, we know that (3.2)–(3.3) hold. From Theorem 3.1, it follows that u blows up in the
measure Ψ (t) at t∗ and

t∗ ≤
∫ +∞

Ψ (0)

dτ

M1τm+lp – M2
=

∫ +∞

2.2642

dτ

0.7552τ
9
5 – 2.0004

= 1.1291. (6.3)

Next, we apply Theorem 5.1 to get a lower bound of t∗. Now we choose q̃ = 5
4 , σ̃ = 3

√
5

5 ,
ξ̃ = 1, and θ = 1. It follows from (5.10) that ρ̃0 = d̃ = 3

4 . Noting N = 2, it is easy to verify that
(5.1)–(5.2) and (5.5) hold. Moreover, using Theorems 2.1 and 3.2 in [18], we derive the
Sobolev embedding constant C̃ = 10.887. Inserting the above constants into (5.6)–(5.9),
we deduce J̃1 = 2.0125, J̃2 = 140.34, J̃3 = 783.76, J̃4 = 997648, and J̃5 = 90. By (5.4), we have

B̃(u) = l
∫ u

0
yl–1g ′(y) dy = 3

∫ u

0
y2 dy = u3, Ã(t) =

∫

D
B̃(u) dx =

∫

D
u3 dx,
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and

Ã(0) =
∫

D
u3

0 dx =
∫

D

(
1 + |x|2)3 dx = 3.8959.

Since u blows up in the measure Ψ (t) at t∗, u must blow up in the measure Ã(t) at t∗. By
Theorem 5.1, we get

t∗ ≥
∫ +∞

Ã(0)

dτ

J̃1τ + J̃2τ
1+ 2(q̃–1)

l + J̃3τ
1+ 2(q̃–1)

l–4(q̃–1) + J̃4τ
(lp+m–1)(l+r–1)

l(r–1) + J̃5τ
l(1+p)–(m–1)

l–2(m–1)

=
∫ +∞

3.8959

dτ

2.0125τ + 140.34τ
7
6 + 783.76τ

5
4 + 997648τ

34
15 + 90τ

7
5

= 1.4132 × 10–7. (6.4)

From (6.3) and (6.4), it follows that

1.4132 × 10–7 ≤ t∗ ≤ 1.1291.

7 Conclusion
In this paper, we derive the global existence and bounds for the blow-up time of nonlin-
ear parabolic problem (1.1) with nonlocal source. To deal with nonlocal source, we must
establish some new auxiliary functions different from those in [1, 2] and [11]. Further-
more, to obtain the lower bound of the blow-up time in D ⊂ R

N (N ≥ 3) and D ⊂ R
2,

we need to use the embedding theorems in Sobolev spaces W 1,2 ↪→ L
2N

N–2 , N ≥ 3 and
W 1,2 ↪→ L4, N = 2, respectively. Applying these auxiliary functions, the embedding theo-
rems in Sobolev spaces, and the differential inequality technique, we complete our study
with the blow-up and global solutions of problem (1.1).
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