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Abstract
In this paper, we investigate the multiplicity results of some positive solutions for a
system of Hadamard fractional differential equations with parameters and p-Laplacian
operator subject to three-point boundary conditions which contains fractional
derivatives. The proofs of our main result, multiplicity of positive solutions, are derived
in terms of different values of parameters by using Guo–Krasnosel’skii’s fixed point
theorem.
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1 Introduction
Fractional calculus has gained considerable attention from both theoretical and applied
points of view in recent years. There are numerous applications in a variety of fields such
as the signal processing [1], the image processing [2], the control theory [3], the behavior
of viscoelastic and visco-plastic materials under external influences [4, 5], the bioengineer-
ing [6, 7], and so on. In addition there are some applications of fractional calculus within
various fields of mathematics itself, e.g., in the analytical investigation of various types
of special functions [8]. Therefore, the fractional differential equation has been widely
focused on and studied in depth. In fact, fractional differential equations have attracted
more and more attention for their useful applications in various fields such as economics,
science, and engineering, see [9–13] and the references therein.

Turbulent flow in a porous medium is a fundamental mechanics problem. For studying
this type of problem, Leibenson [14] introduced differential equations with p-Laplacian
operator

(
φp

(
u′(t)

))′ = f
(
t, u(t)

)
.
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The study of differential equation with p-Laplacian operator is of significance theoretically
and practically. It is quite natural to study fractional differential equation relative to the
above equation.

Recently, many scholars have paid more attention to the fractional differential equation
boundary value problems and associated with p-Laplacian operator, see [15–27].

In [15] Bachar et al. proved the existence and uniqueness and global asymptotic behav-
ior of a positive continuous solution to the following fractional Navier boundary value
problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα(Dβu)(x) + u(x)f (x, u(x)) = 0, 0 < x < 1,

limx→0+ Dβ–1u(x) = 0, limx→0+ Dα–1(Dβu)(x) = ξ ,

u(1) = 0, Dβu(1) = –ζ ,

where α,β ∈ (1, 2], Dα and Dβ stand for the standard Riemann–Liouville fractional deriva-
tive and ξ , ζ ≥ 0 are such that ζ + ξ > 0.

In [23] Chai investigated the existence and multiplicity of positive solutions for a class of
boundary value problems of fractional differential equations with p-Laplacian operator:

⎧
⎨

⎩
Dβ

0+ (φp(Dα
0+ u(t))) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) + σDγ

0+ u(1) = 0, Dα
0+ u(0) = 0,

where 1 < α ≤ 2, 0 < β ≤ 1, 0 < γ ≤ 1, 0 ≤ α – γ – 1,σ is a positive constant number, and
Dα

0+ , Dβ

0+ , Dγ

0+ are the standard Riemann–Liouville derivatives, by means of the fixed point
theorem on cones.

In [25] Tian et al. investigated the existence of positive solutions for a boundary value
problem of fractional differential equations with p-Laplacian operator

⎧
⎨

⎩
Dβ

0+ (φp(Dα
0+ y(x))) = f (x, y(x)), 0 < x < 1,

y(0) = y′(0) = y(1) = Dα
0+ y(0) = 0, Dα

0+ y(1) = λDα
0+ y(ξ ),

where α,β ∈ R, 2 < α ≤ 3, 1 < β ≤ 2, and ξ ∈ (0, 1),λ ∈ [0, +∞),φp(z) = |z|p–2z, p > 1, Dα
0+ is

the Riemann–Liouville fractional derivative, and f ∈ ([e, 1] × [0, +∞), [0, +∞)). By using
Krasnosel’skii’s fixed point theorem, we give some multiplicity results.

In [26] Tian et al. considered the boundary value problem of fractional differential equa-
tions with p-Laplacian operator

⎧
⎨

⎩
Dγ (φp(Dαu(t))) = f (t, u(t)), 0 < t < 1,

u(0) = Dαu(0) = 0, Dβu(1) = aDβu(ξ ), Dαu(1) = bDαu(η),

where α,β ,γ ∈ R, 1 < α,γ ≤ 2,β > 0 and 1 + β ≤ α ξ ,η ∈ (0, 1)a, b ∈ [0,∞), 1 – aξα–β–1 >
0, 1 – bp–1ηγ –1 > 0. Dα is the Riemann–Liouville fractional derivative and f ∈ ([0, 1] ×
[0, +∞), [0, +∞)). Some existence results of positive solutions were obtained by using the
monotone iterative method.

The system of fractional differential equations boundary value problems with p-
Laplacian operator has also received much attention and has developed very rapidly, see
[28–36].



Rao et al. Boundary Value Problems         (2020) 2020:43 Page 3 of 25

In [32] He and Song discussed the following fractional order differential system with
p-Laplacian operator:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα1
0+ (φp1 (Dβ1

0+ u(t))) = λf (t, u(t)), t ∈ (0, 1),

Dα2
0+ (φp2 (Dβ2

0+ u(t))) = μg(t, u(t)), t ∈ (0, 1),

u(0) = 0, u(1) = a1u(ξ1), Dβ1
0+ u(0) = 0, Dβ1

0+ u(1) = b1Dβ1
0+ u(η1),

v(0) = 0, v(1) = a1v(ξ2), Dβ2
0+ v(0) = 0, Dβ2

0+ v(1) = b1Dβ2
0+ v(η2),

where αi,βi ∈ (1, 2], Dαi
0+ and Dβi

0+ are the standard Riemann–Liouville derivatives, ξi,ηi ∈
(0, 1), ai, bi ∈ [0, 1], i = 1, 2,λ and μ are positive parameters. The uniqueness of solution
was established by using the Banach contraction mapping principle.

In [36] Luca established the existence and nonexistence of positive solutions for a system
of nonlinear Riemann–Liouville fractional differential equations with parameters and p-
Laplacian operator subject to multi-point boundary conditions

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα1
0+ (ϕr1 (Dβ1

0+ u(t))) + λf (t, u(t), v(t), z(t)) = 0, t ∈ (0, 1),

Dα2
0+ (ϕr2 (Dβ2

0+ v(t))) + μg(t, u(t), v(t), z(t)) = 0, t ∈ (0, 1),

u(j)(0) = 0, j = 0, . . . , n – 2, Dβ1
0+ u(0) = 0, Dp1

0+ u(1) =
∑N

i=1aiD
q1
0+ u(ξi),

v(j)(0) = 0, j = 0, . . . , m – 2, Dβ2
0+ v(0) = 0, Dp2

0+ v(1) =
∑M

i=1 aiD
q2
0+ u(ηi),

where α1,α2 ∈ (0, 1],β1 ∈ (n – 1, n],β2 ∈ (m – 1, m], n, m ∈ N, n, m ≥ 3, p1, p2, q1, q2 ∈
R, p1 ∈ [1, n – 2], p2 ∈ [1, m – 2], q1 ∈ [0, q1], q2 ∈ [0, p2], ξi, ai ∈ R for all i = 1, . . . , N(N ∈
N)0 < ξ1 < · · · < ξN < 1,ηi, bi ∈ R for all i = 1, . . . , M(M ∈ N), 0 < η1 < · · · < ηM ≤ 1, r1, r2 >
1,λ,μ > 0, f , g ∈ C([0, 1] × [0,∞) × [0,∞), [0,∞)).

It has been noticed that most of the above-mentioned work on the topic is based on
Riemann–Liouville or Caputo fractional derivatives. As we know, Hadamard fractional
derivative is also a famous fractional derivative given by Hadamard [37] in 1892, and we
can find this kind of derivative in the literature. The key of this definition involves a log-
arithmic function of arbitrary exponent. In the past decades, there were more studies on
Hadamard fractional differential equations under different boundary conditions, see [38–
54].

Huang and Liu [39] established the existence and nonexistence of positive solutions for
a class of boundary value problems of nonlinear Hadamard fractional differential equation
with a parameter

⎧
⎨

⎩
(HDαx)(t) + λa(t)f (x(t)) = 0, t ∈ [1, e],

x(1) = (δx)(1) = (δx)(e) = 0, α ∈ (2, 3],

where λ is a positive parameter, HDα is the left-sided Hadamard fractional derivative of
order α, (δx)(t) = t dx(t)/dt, a : (1, e) → [0,∞) and f : [0,∞) → [0,∞) are two continuous
functions.
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Yang [41] established positive solutions for the coupled Hadamard fractional integral
boundary value problems

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HDαu(t) + λf (t, u(t), v(t)) = 0, t ∈ (1, e),λ > 0,
HDβv(t) + λg(t, u(t), v(t)) = 0, t ∈ (1, e),λ > 0,

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n – 2,

u(e) = μ
∫ e

1 v(s) ds
s , v(e) = ν

∫ e
1 u(s) ds

s ,

where α,β ∈ (n – 1, n] and n ≥ 3, H Dα , HDβ are the Hadamard fractional derivatives of
fractional order α and β respectively.

Yang [42] investigated the existence of at least one positive solution for Hadamard frac-
tional differential equations system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HDαu(t) + λf (t, u(t), v(t)) = 0, t ∈ (1, e),
HDβv(t) + λg(t, u(t), v(t)) = 0, t ∈ (1, e),

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n – 2,

u(e) = av(ξ ), v(e) = bu(η), ξ ,η ∈ (1, e),

where λ, a, b are three parameters, α,β ∈ (n – 1, n] are two real numbers, and n ≥ 3, by ap-
plying Guo–Krasnoselskii’s fixed point theorem. Zhang and Liu [47] investigated the exis-
tence of solutions for several higher order integral boundary value problems of Hadamard-
type fractional differential equations on an infinite interval by using the monotone iter-
ative technique and Mawhin’s continuation theorem. In [48], Ahmad and Ntouyas dis-
cussed the following coupled Hadamard-type FDEs with Hadamard-type integral bound-
ary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HDαu(t) = f (t, u(t), v(t)), 1 < α ≤ 2, 1 < t < e,
HDβv(t) = g(t, u(t), v(t)), 1 < β ≤ 2, 1 < t < e,

u(1) = 0, u(e) = 1
Γ (γ )

∫ σ1
1 (ln σ1

s )γ –1 u(s)
s ds,

v(1) = 0, v(e) = 1
Γ (γ )

∫ σ2
1 (ln σ2

s )γ –1 v(s)
s ds,

where γ > 0, 1 < σ1 < e, 1 < σ2 < e, HD(·) is the Hadamard-type fractional derivative of frac-
tional order. By using Leray–Schauder’s alternative and Banach’s contraction principle, the
authors obtained the existence and uniqueness of solutions, respectively.

Recentely, Rodica Luca [22] studied the existence and nonexistence of positive solu-
tions for a system with three nonlinear Riemann–Liouville fractional differential equa-
tions with multi-point boundary conditions which contain fractional derivatives by using
Guo–Krasnosel’skii’s fixed point theorem, and Alesemi [54] investigated eigenvalue in-
tervals for a system with three nonlinear Hadamard fractional differential equations with
p-Laplacian operator by using Guo–Krasnosel’skii’s fixed point theorem on cones. Vari-
ous existence results for positive solutions have been derived in terms of different values
of parameters.

Motivated by the aforementioned work, we investigate in this paper the existence of
multiple positive solutions for the following Hadamard fractional differential equations
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with p1-Laplacian, p2-Laplacian, and p3-Laplacian operators:

⎧
⎪⎪⎨

⎪⎪⎩

HDβ1
1+ (φp1 (HDα1

1+ x(t))) = λf (t, x(t), y(t), z(t)), t ∈ (1, e),
HDβ2

1+ (φp2 (HDα2
1+ y(t))) = μg(t, x(t), y(t), z(t)), t ∈ (1, e),

HDβ3
1+ (φp3 (HDα3

1+ z(t))) = υh(t, x(t), y(t), z(t)), t ∈ (1, e),

(1)

subject to the boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(1) = x′(1) = 0, ξ1x(e) + ηH
1 Dγ1

1+ x(e) = 0,

φp1 (HDα1
1+ x(1)) = 0, φp1 (HDα1

1+ x(e)) = ϑ1φp1 (HDα1
1+ x(δ)),

y(1) = y′(1) = 0, ξ2y(e) + ηH
2 Dγ2

1+ y(e) = 0,

φp2 (HDα2
1+ y(1)) = 0, φp2 (HDα2

1+ y(e)) = ϑ2φp2 (HDα2
1+ y(δ)),

z(1) = z′(1) = 0, ξ3z(e) + ηH
3 Dγ3

1+ z(e) = 0,

φp3 (HDα3
1+ z(1)) = 0, φp3 (HDα3

1+ z(e)) = ϑ3φp3 (HDα3
1+ z(δ)),

(2)

where φpi (s) = |s|pi–2s, pi > 1,φ–1
pi

= φqi ,
1
pi

+ 1
qi

= 1, i = 1, 2, 3, f , g, h ∈ C([1, e] × [0, +∞)3,
[0, +∞)), λ,μ,υ are positive parameters, ξi,ηi,ϑi ∈ [0,∞), δ ∈ (1, e), αi ∈ (2, 3],βi,γi ∈
(1, 2], i = 1, 2, 3, and HDk

1+ denotes the Hadamard fractional order k (for k = αi,βi,γi, i =
1, 2, 3).

Under some assumptions on f , g , and h, we give intervals for the parameters λ,μ, and υ

such that positive solutions of (1)–(2) exist. By a positive solution of problem (1)–(2), we
mean a triplet of functions (x, y, z) ∈ (C([1, e], [0,∞)))3 satisfying (1)–(2) with x(t) > 0 for
all t ∈ [1, e], or y(t) > 0 for all t ∈ [1, e], or z(t) > 0 for all t ∈ [1, e] and (x, y, z) �= (0, 0, 0).

We use the following notations for our convenience:

σi =
∫ e

1
Gi(e, s)φqi

(∫ e

1
li(τ )κi(τ )

dτ

τ

)
ds
s

, i = 1, 2, 3;

ρj =
∫

s∈I
Gj(e, s)φqj

(∫

s∈I
ς (τ )Kj1(τ , τ )

dτ

τ

)
ds
s

, j = 1, 2, 3.

We make the following assumptions throughout:
(A1) The functions f , g, h : [1, e] × [0, +∞)3 → [0, +∞) are continuous.
(A2) ξi,ηi,ϑi > 0, 2 < αi ≤ 3, 1 < βi,γi ≤ 2, ηi(γi – 1) > ξiΓ (αi–γi)

Γ (αi)
, 1 – ϑi(ln δ)βi–1 > 0, and

�i = ηiΓ (αi) + ξiΓ (αi – γi) > 0, i = 1, 2, 3.
(A3) The functions f (t, x, y, z) ≤ κ1(t)u1(t, x, y, z), g(t, x, y, z) ≤ κ2(t)u2(t, x, y, z),

h(t, x, y, z) ≤ κ3(t)u3(t, x, y, z), (t, x, y, z) ∈ [1, e] × [0,∞) × [0,∞),×[0,∞), where
ui ∈ C[[1, e] × [0,∞) × [0,∞) × [0,∞), [0,∞)], and κi ∈ C[[1, e], [0,∞)] satisfy
∫ e

1 κi(s) ds
s < ∞, i = 1, 2, 3.

(A4) For I = [e1/4, e3/4] ⊂ [1, e], we introduce the following extreme limits:

f0 = lim
x+y+z→0

min
t∈I

f (t, x, y, z)
(x + y + z)p1–1 , f∞ = lim

x+y+z→∞
min
t∈I

f (t, x, y, z)
(x + y + z)p1–1 ,

g0 = lim
x+y+z→0

min
t∈I

g(t, x, y, z)
(x + y + z)p2–1 , g∞ = lim

x+y+z→∞
min
t∈I

g(t, x, y, z)
(x + y + z)p2–1 ,

h0 = lim
x+y+z→0

min
t∈I

h(t, x, y, z)
(x + y + z)p3–1 , h∞ = lim

x+y+z→∞
min
t∈I

h(t, x, y, z)
(x + y + z)p3–1 ,
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ui0 = lim
x+y+z→0

max
t∈[1,e]

ui(t, x, y, z)
(x + y + z)pi–1 , ui∞ = lim

x+y+z→∞ max
t∈[1,e]

ui(t, x, y, z)
(x + y + z)pi–1 .

In the definition of the extreme limits above, the variables x, y, and z are
nonnegative with f0, f∞, g0, g∞, h0, h∞, ui0, ui∞ ∈ [0,∞), i = 1, 2, 3.

The aim of this paper is to establish some existence and multiplicity results of positive
solutions for system (1)–(2) in explicit intervals for λ,μ, and ν . The rest of the paper is
organized as follows: In Sect. 2, we give some properties of the Green’s function which
are needed later. Also, we state Guo–Krasnosel’skii’s fixed point theorem on cones, and
we prove a key lemma used in the proofs of our main results. In Sect. 3, we discuss the
existence of multiplicity results of positive solutions of system (1)–(2). The intervals in
which the parameters λ,μ, and ν can guarantee the existence of a solution are obtained.
At the end, we give an example to illustrate our main results.

2 Preliminaries and lemmas
We present here the definitions, some lemmas from the theory of Hadamard fractional
calculus, and some auxiliary results that will be used to prove our main theorems.

Definition 2.1 ([9]) The left-sided Hadamard fractional integrals of order α ∈ R
+ of the

function h(t) are defined by

(HIαh
)
(t) =

1
Γ (α)

∫ t

1

(
ln

t
s

)α–1

h(s)
ds
s

(1 ≤ t ≤ e),

where Γ (·) is the gamma function.

Definition 2.2 ([9]) The left-sided Hadamard fractional derivatives of order α ∈ (n –
1, n], n ∈ Z+ of the function h(t) are defined by

(HDαh
)
(t) =

1
Γ (n – α)

(
t

d
dt

)n ∫ t

1

(
ln

t
s

)n–α+1

h(s)
ds
s

(1 ≤ t ≤ e),

where Γ (·) is the gamma function.

Lemma 2.1 ([9]) If a,α,β > 0, then

(H

Dα
a

(
ln

t
a

)β–1)
(x) =

Γ (β)
Γ (β – α)

(
ln

x
a

)β–α–1

.

Lemma 2.2 ([9]) Let q > 0 and u ∈ C[1,∞) ∩ L1[1,∞). Then the Hadamard fractional
differential equation HDqu(t) = 0 has the solution

u(t) =
n∑

i=1

ci(ln t)q–1

and the following formula holds:

HIqHDqu(t) = u(t) +
n∑

i=1

ci(ln t)q–i,

where ci ∈ R, i = 1, 2, . . . , n, and n – 1 < q < n.
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Lemma 2.3 Let �1 = η1Γ (α1) + ξ1Γ (α1 – γ1) > 0, ω ∈ C[1, e], and 2 < α1 ≤ 3. Then the
unique solution of

⎧
⎨

⎩

HDα1
1+ x(t) + ω(t) = 0, 1 < t < e,

x(1) = x′(1) = 0, ξ1x(e) + ηH
1 Dγ1

1+ x(e) = 0
(3)

is x(t) =
∫ e

1 G1(t, s)ω(s) ds
s , where

G1(t, s) =

⎧
⎨

⎩
G11(t, s), 1 ≤ t ≤ s ≤ e,

G12(t, s), 1 ≤ s ≤ t ≤ e,
(4)

G11(t, s) =
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1,

G12(t, s) =
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1

–
1

Γ (α1)

(
ln

t
s

)α1–1

.

Proof Assume that x ∈ C[α1]+1[1, e] is a solution of Hadamard fractional order BVPs (3)
and is uniquely expressed as

HIα1
1+

HDα1
1+ x(t) = –HIα1

1+ ω(t)

such that

x(t) = c1(ln t)α1–1 + c2(ln t)α1–2 + c3(ln t)α1–3 –
1

Γ (α1)

∫ t

1

(
ln

t
s

)α1–1

ω(s)
ds
s

for some ci ∈ R, i = 1, 2, 3. From the boundary condition x(1) = x′(1) = 0, we have c2 = c3 =
0. Hence x(t) = c1(ln t)α1–1 – 1

Γ (α1)
∫ t

1 (ln t
s )α1–1ω(s) ds

s and

HDγ1
1+

(
x(t)

)
= c1

Γ (α1)
Γ (α1 – γ1)

(ln t)α1–1 –
1

Γ (α1 – γ1)

∫ t

1

(
ln

t
s

)α1–γ1–1

ω(s)
ds
s

.

Consequently, we obtain from the boundary condition ξ1x(e) + ηH
1 Dγ1

1+ x(e) = 0, we have

c1 =
1

�1

∫ e

1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(1 – ln s)α1–1ω(s)

ds
s

.

As a result,

u(t) =
1

�1

∫ e

1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(1 – ln s)α1–1(ln t)α1–1ω(s)

ds
s

–
1

Γ (α1)

∫ t

1

(
ln

t
s

)α1–1

ω(s)
ds
s

=
∫ t

1

[
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1
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–
1

Γ (α1)

(
ln

t
s

)α1–1]
ω(s)

ds
s

+
∫ e

t

1
�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1ω(s)

ds
s

=
∫ e

1
G1(t, s)ω(s)

ds
s

. �

Lemma 2.4 Let 2 < α1 ≤ 3, 1 < β1 ≤ 2, and ϕ ∈ C[1, e]. Then the unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

HDβ1
1+ (φp1 (HDα1

1+ x(t))) = ϕ(t), 1 < t < e,

x(1) = x′(1) = 0; ξ1x(e) + ηH
1 Dγ1

1+ x(e) = 0,

φp1 (HDα1
1+ x(1)) = 0, φp1 (HDα1

1+ x(e)) = ϑ1φp1 (HDα1
1+ x(δ))

(5)

is x(t) =
∫ e

1 G1(t, s)φq1 (
∫ e

1 K1(s, τ )ϕ(τ ) dτ
τ

) ds
s , where G1(t, s) is defined as (4) and

K1(t, s) = K11(t, s) +
ϑ1(ln t)β1–1

1 – ϑ1(ln δ)β1–1 K11(δ, s),

K11(t, s) =
1

Γ (β1)

⎧
⎨

⎩
(ln t)β1–1(1 – ln s)β1–1, 1 ≤ t ≤ s ≤ e,

(ln t)β1–1(1 – ln s)β1–1 – (ln t
s )β1–1, 1 ≤ s ≤ t ≤ e.

(6)

Proof It follows from Lemma 2.2 and 1 < β1 ≤ 2. An equivalent integral equation for (5)
is given by

φp1

(HDα1
1+ x(t)

)
=

1
Γ (β1)

∫ t

1

(
ln

t
τ

)β1–1

ϕ(τ )
dτ

τ
+ c1(ln t)β1–1 + c2(ln t)β1–2.

Note that φp1 (HDα1
1+ x(1)) = 0, we have c2 = 0. Hence,

φp1

(HDα1
1+ x(e)

)
) =

1
Γ (β1)

∫ e

1
(1 – ln τ )β1–1ϕ(τ )

dτ

τ
+ c1 and

φp1

(HDα1
1+ x(δ)

)
) =

1
Γ (β1)

∫ δ

1

(
ln

δ

τ

)β1–1

ϕ(τ )
dτ

τ
+ c1(ln δ)β1–1.

Consequently, φp1 (HDα1
1+ x(e)) = ϑ1φp1 (HDα1

1+ x(δ)) implies that

c1 =
1

1 – ϑ1(ln δ)β1–1

[∫ δ

1

ϑ1(ln δ
τ

)β1–1

Γ (β1)
ϕ(τ )

dτ

τ
–

∫ e

1

(1 – ln τ )β1–1

Γ (β1)
ϕ(τ )

dτ

τ

]
.

Therefore,

φp1

(HDα1
1+ x(t)

)
=

1
Γ (β1)

∫ t

1

(
ln

t
τ

)β1–1

ϕ(τ )
dτ

τ

+
ϑ1(ln t)β1–1

1 – ϑ1(ln δ)β1–1

∫ δ

1

(ln δ
τ

)β1–1

Γ (β1)
ϕ(τ )

dτ

τ

–
(ln t)β1–1

1 – ϑ1(ln δ)β1–1

∫ e

1

(1 – ln τ )β1–1

Γ (β1)
ϕ(τ )

dτ

τ
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=
1

Γ (β1)

∫ t

1

(
ln

t
τ

)β1–1

ϕ(τ )
dτ

τ

–
(ln t)β1–1

Γ (β1)

∫ e

1
(1 – ln τ )β1–1ϕ(τ )

dτ

τ

+
ϑ1(ln t)β1–1

1 – ϑ1(ln δ)β1–1

∫ δ

1

(ln δ
τ

)β1–1

Γ (β1)
ϕ(τ )

dτ

τ

–
ϑ1(ln t)β1–1

1 – ϑ1(ln δ)β1–1

∫ e

1

(ln δ)β1–1(1 – ln τ )β1–1

Γ (β1)
ϕ(τ )

dτ

τ

= –
∫ e

1
K1(t, τ )ϕ(τ )

dτ

τ
.

Then the Hadamard fractional order BVP (5) is equivalent to the following problem:

HDα1
1+ x(t) + φq1

(∫ e

1
K1(t, τ )ϕ(τ )

dτ

τ

)
= 0 for t ∈ (1, e),

x(1) = x′(1) = 0; ξ1x(e) + ηH
1 Dγ1

1+ x(e) = 0.

In view of Lemma 2.3, we get

x(t) =
∫ e

1
G1(t, s)φq1

(∫ e

1
K1(s, τ )ϕ(τ )

dτ

τ

)
ds
s

. �

Lemma 2.5 Assume that (A2) is satisfied. Then the Green’s function G1(t, s) given by (4)
satisfies the following inequalities:

(i) G1(t, s) ≥ 0 for all (t, s) ∈ [1, e] × [1, e];
(ii) G1(t, s) ≤ G1(e, s) for all (t, s) ∈ [1, e] × [1, e];

(iii) G1(t, s) ≥ ( 1
4 )α1–1G1(e, s) for all (t, s) ∈ I × (1, e), where I = [e1/4, e3/4].

Proof Consider the Green’s function G11(t, s) given by (4).
(i) For 1 ≤ t ≤ s ≤ e.

G11(t, s) =
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1 ≥ 0.

Let 1 ≤ s ≤ t ≤ e. Then

G12(t, s) =
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1

–
1

Γ (α1)

(
ln

t
s

)α1–1

=
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1

–
1

�1

[
η1 +

ξ1Γ (α1 – γ1)
Γ (α1)

](
1 –

ln s
ln t

)α1–1

(ln t)α1–1

≥ 1
�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1

–
1

�1

[
η1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1
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≥ η1

�1

[
(1 – ln s)–γ1 – 1

]
(ln t)α1–1(1 – ln s)α1–1 ≥ 0,

which implies G1(t, s) ≥ 0. Hence inequality (i) is proved.
(ii) For 1 ≤ t ≤ s ≤ e.

dG11(t, s)
dt

=
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(α1 – 1)(ln t)α1–2(1 – ln s)α1–1

≥ 0.

Therefore, G1(t, s) is increasing with respect to t, which implies that
G11(t, s) ≤ G11(e, s).

Now for 1 ≤ s ≤ t ≤ e. Then

dG12(t, s)
dt

=
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(α1 – 1)(ln t)α1–2(1 – ln s)α1–1

–
1

Γ (α1)
(α1 – 1)

(
ln

t
s

)α1–2

=
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(α1 – 1)(ln t)α1–2(1 – ln s)α1–1

–
1

�1

[
η1 +

ξ1Γ (α1 – γ1)
Γ (α)

]
(α1 – 1)

(
1 –

ln s
ln t

)α1–2

(ln t)α1–2

≥ (α1 – 1)(ln t)α1–2

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(1 – ln s)α1–1

–
1

�1

[
η1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(1 – ln s)α1–2

=
(α1 – 1)(ln t)α1–2

�1

[
η1(1 – ln s)–(γ1–1) – η1 –

ξ1Γ (α1 – γ1)
Γ (α1)

ln s
]

(1 – ln s)α1–2

=
(α1 – 1)(ln t)α1–2

�1

[
η1

(
(γ1 – 1)(ln s) +

(γ1 – 1)(γ2 – 1)
2

(ln s)2 + · · ·
)

–
ξ1Γ (α1 – γ1)

Γ (α1)
(ln s)

]
(1 – ln s)α1–2

=
(α1 – 1)(ln t)α1–2

�1

[(
η1(γ1 – 1) –

ξ1Γ (α1 – γ1)
Γ (α1)

)
(ln s) + O(ln s)2

]

× (1 – ln s)α1–2

≥ 0.

Therefore, G12(t, s) is increasing with respect to t, which implies that
G12(t, s) ≤ G12(e, s). Hence, inequality (ii) is proved.

(iii) Let 1 ≤ t ≤ s ≤ e and t ∈ I . Then

G11(t, s) =
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1
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=
(ln t)α1–1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(1 – ln s)α1–1

≥
(

1
4

)α1–1

G11(e, s).

Let 1 ≤ s ≤ t ≤ e and t ∈ I

G12(t, s) =
1

�1

[
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1

–
1

Γ (α1)

(
ln

t
s

)α1–1

=
1

�1

[
η(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

]
(ln t)α1–1(1 – ln s)α1–1

–
1

Γ (α1)

(
1 –

ln s
ln t

)α1–1

(ln t)α1–1

≥ (ln t)α1–1
[

1
�1

(
η1(1 – ln s)–γ1 +

ξ1Γ (α1 – γ1)
Γ (α1)

)
(1 – ln s)α1–1

–
1

Γ (α1)
(1 – ln s)α1–1

]

≥
(

1
4

)α1–1

G12(e, s). �

Lemma 2.6 Assume that (A2) is satisfied. Then the Green’s function K1(t, s) given by (6)
satisfies the following inequalities:

(i) 0 ≤ K1(t, s) ≤ l1(s) for all (t, s) ∈ [1, e] × [1, e], where

l1(s) = K11(s, s) +
ϑ1

1 – ϑ1(ln δ)β1–1 K11(δ, s);

(ii) K1(t, s) ≥ ζ1(s)K11(s, s) for all (t, s) ∈ I × (1, e), and r ∈ I ,

ζ1(s) =

⎧
⎨

⎩

( 3
4 )β1–1(1–ln s)β1–1–( 3

4 –ln s)β1–1

(1–ln s)β1–1 , s ∈ (1, r],
1

(4 ln s)β1–1 , s ∈ [r, e).

We can also formulate similar results as Lemmas 2.3–2.6 for the Hadamard fractional
boundary value problems

⎧
⎪⎪⎨

⎪⎪⎩

HDβ2
1+ (φp2 (HDα2

1+ y(t))) = μg(t, x(t), y(t), z(t)), t ∈ (1, e),

y(1) = y′(1) = 0; ξ2y(e) + ηH
2 Dγ2

1+ y(e) = 0,

φp2 (HDα2
1+ y(1)) = 0, φp2 (HDα2

1+ y(e)) = ϑ2φp2 (HDα2
1+ y(δ))

(7)

and

⎧
⎪⎪⎨

⎪⎪⎩

HDβ3
1+ (φp3 (HDα3

1+ z(t))) = υh(t, x(t), y(t), z(t)), t ∈ (1, e),

z(1) = z′(1) = 0; ξ3z(e) + ηH
3 Dγ3

1+ z(e) = 0,

φp3 (HDα3
1+ z(1)) = 0, φp3 (HDα3

1+ z(e)) = ϑ3φp3 (HDα3
1+ z(δ)).

(8)
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We also formulate the results of the Green’s function Gi(t, s) and Ki(t, s), i = 2, 3, for the
homogeneous BVPs corresponding to the Hadamard fractional differential equations (7)
and (8) and define it in a similar manner as G1(t, s) and K1(t, s).

Remark Consider the following conditions:
(i) Gi(t, s) ≥ mGi(e, s) for all (t, s) ∈ I × (1, e), i = 1, 2, 3;

(ii) Ki(t, s) ≥ ζ (s)Ki1(e, s) for all (t, s) ∈ I × (1, e), i = 1, 2, 3,
where I = [e1/4, e3/4], m = min{( 1

4 )α1–1, ( 1
4 )α2–1, ( 1

4 )α3–1}, ζ (s) = min{ζ1(s), ζ2(s), ζ3(s)}.

Our main results are based on the following Guo–Krasnosel’skii fixed-point theorem on
cones.

Theorem 2.7 (Krasnosel’skii [55, 56]) Let X be a Banach space, K ⊆ X be a cone, and
suppose that Ω1,Ω2 are open subsets of X with 0 ∈ Ω1 and Ω1 ⊂ Ω2. Suppose further that
T : K ∩ (Ω2\Ω1) → K is a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω2, or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂Ω1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂Ω2

holds. Then T has a fixed point in K ∩ (Ω2\Ω1).

3 Multiplicity results
In this section we investigate the existence of multiple positive solutions of problem (1)–
(2) under some assumptions on the functions f , g , and h by establishing in the same time
various intervals for the positive parameters λ,μ, and υ .

Let X = C[1, e], then X is a Banach space with the norm ‖x‖ = maxt∈[1,e] |x(t)|. Let Y =
X × X × X, then Y is a Banach space with the norm ‖(x, y, z)‖Y = ‖x‖ + ‖y‖ + ‖z‖.

Define a cone P ⊂ Y by

P =
{

(x, y, z) ∈ Y : x(t) ≥ 0, y(t) ≥ 0, z(t) ≥ 0,∀t ∈ [1, e],

min
t∈I

{
x(t) + y(t) + z(t)

} ≥ m
∥∥(x, y, z)

∥∥
Y

}
,

where I = [e1/4, e3/4]. For λ,μ,υ > 0, we define now the operator Q : P → Y by Q(x, y, z) =
(Qλ(x, y, z), Qμ(x, y, z), Qν(x, y, z)) with

Qλ(x, y, z)(t) = λq1–1
∫ e

1
G1(t, s)φq1

(∫ e

1
K1(s, τ )f

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

,

t ∈ [1, e],

Qμ(u, v, w)(t) = μq2–1
∫ e

1
G2(t, s)φq2

(∫ e

1
K2(s, τ )g

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

,

t ∈ [1, e],

Qν(u, v, w)(t) = υq3–1
∫ e

1
G3(t, s)φq3

(∫ e

1
K3(s, τ )h

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

,

t ∈ [1, e].

Lemma 3.1 Q : P →P is a completely continuous operator.
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Proof The continuity of functions Gi(t, s), Ki(t, s), i = 1, 2, 3, and f , g, h implies that Q : P →
P is continuous. For all (t, s) ∈ I × [1, e], where I = [e1/4, e3/4], we have

min
t∈I

{
Qλ(x, y, z)(t) + Qμ(x, y, z)(t) + Qν(x, y, z)(t)

}

= min
t∈I

{
λq1–1

∫ e

1
G1(t, s)φq1

(∫ e

1
K1(s, τ )f

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

+ μq2–1
∫ e

1
G2(t, s)φq2

(∫ e

1
K2(s, τ )g

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

+ υq3–1
∫ e

1
G3(t, s)φq3

(∫ e

1
K3(s, τ )h

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

}

≥ m
{
λq1–1

∫ e

1
G1(e, s)φq1

(∫ e

1
K1(s, τ )f

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

+ μq2–1
∫ e

1
G2(e, s)φq2

(∫ e

1
K2(s, τ )g

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

+ υq3–1
∫ e

1
G3(e, s)φq3

(∫ e

1
K3(s, τ )h

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

}

≥ m
(∥∥Qλ(x, y, z)

∥∥ +
∥∥Qμ(x, y, z)

∥∥ +
∥∥Qν(x, y, z)

∥∥)

= m
∥
∥(

Qλ(x, y, z), Qμ(x, y, z), Qν(x, y, z)
)∥∥

= m
∥
∥Q(x, y, z)

∥
∥.

Thus Q(P) ⊂ P . So, we can easily show that Q : P → P is a completely continuous oper-
ator by the Arzela–Ascoli theorem. �

If (x, y, z) ∈P is a fixed point of operator Q, then (x, y, z) is a solution of problem (1)–(2).
So, we will investigate the existence of fixed points of operator Q.

Theorem 3.2 Assume that conditions (A1)–(A4) are satisfied. In addition, assume that
there exist constants r1, M, K , ζ1, ζ2, ζ3, where K is sufficiently small, ζ1 + ζ2 + ζ3 = 1,
with (ζ1mρ1)p1–1M > (σ1)p1–1K , (ζ2mρ2)p2–1M > (σ2)p2–1K , (ζ3mρ3)p3–1M > (σ3)p3–1K such
that:

(1) u10 = u1∞ = 0, u20 = u2∞ = 0, u30 = u3∞ = 0;
(2) f (t, x, y, z) ≥ M(r1)p1–1, or g(t, x, y, z) ≥ M(r1)p2–1, or h(t, x, y, z) ≥ M(r1)p3–1 for

mr1 ≤ ‖(x, y, z)‖Y < r1.
Then, for any

λ ∈
[

1
M

(
1

mρ1

)p1–1

,
1
K

(
ζ1

σ1

)p1–1]
, μ ∈

(
0,

1
K

(
ζ2

σ2

)p2–1]
,

ν ∈
(

0,
1
K

(
ζ3

σ3

)p3–1]
, or

λ ∈
(

0,
1
K

(
ζ1

σ1

)p1–1]
, μ ∈

[
1
M

(
1

mρ2

)p2–1

,
1
K

(
ζ2

σ2

)p2–1]
,

ν ∈ (0,
1
K

(
ζ3

σ3
)p3–1

]
, or



Rao et al. Boundary Value Problems         (2020) 2020:43 Page 14 of 25

λ ∈
(

0,
1
K

(
ζ1

σ1

)p1–1]
, μ ∈

(
0,

1
K

(
ζ2

σ2

)p2–1]
,

ν ∈
[

1
M

(
1

mρ3

)p3–1

,
1
K

(
ζ3

σ3

)p3–1]
,

system (1)–(2) has at least two positive solutions.

Proof We only prove the case of λ ∈ [ 1
M ( 1

mρ1
)p1–1, 1

K ( ζ1
σ1

)p1–1],μ ∈ (0, 1
K ( ζ2

σ2
)p2–1],ν ∈

(0, 1
K ( ζ3

σ3
)p3–1]. The other cases are similar.

Step 1. By the definition of u10 = u20 = u30 = 0, there exists H1 ∈ (0, r1) such that

u1(t, x, y, z) ≤ K(x + y + z)p1–1 for x + y + z ∈ (0, H1),

u2(t, x, y, z) ≤ K(x + y + z)p2–1 for x + y + z ∈ (0, H1),

u3(t, x, y, z) ≤ K(x + y + z)p3–1 for x + y + z ∈ (0, H1).

Then we have

Qλ(x, y, z)(t)

= λq1–1
∫ e

1
G1(t, s)φq1

(∫ e

1
K1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≤ λq1–1
∫ e

1
G1(e, s)φq1

(∫ e

1
K1(s, τ )κ1(τ )u1

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

≤ λq1–1
∫ e

1
G1(e, s)φq1

(∫ e

1
l1(τ )κ1(τ )K

(
x(τ ) + y(τ ) + z(τ )

)p1–1 dτ

τ

)
ds
s

≤ λq1–1Kq1–1∥∥(x, y, z)
∥
∥

Y

∫ e

1
G1(e, s)φq1

(∫ e

1
l1(τ )κ1(τ )

dτ

τ

)
ds
s

≤ (λK)q1–1∥∥(x, y, z)
∥
∥

Y σ1 ≤ ζ1
∥
∥(x, y, z)

∥
∥

Y ,

Qμ(x, y, z)(t)

= μq2–1
∫ e

1
G2(t, s)φq2

(∫ e

1
K2(s, τ )g

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≤ μq2–1
∫ e

1
G2(e, s)φq2

(∫ e

1
K2(s, τ )κ2(τ )u2

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

≤ μq2–1
∫ e

1
G2(e, s)φq2

(∫ e

1
l2(τ )κ2(τ )K

(
x(τ ) + y(τ ) + z(τ )

)p2–1 dτ

τ

)
ds
s

≤ μq2–1Kq2–1∥∥(x, y, z)
∥∥

Y

∫ e

1
G2(e, s)φq2

(∫ e

1
l2(τ )κ2(τ )

dτ

τ

)
ds
s

≤ (μK)q2–1∥∥(x, y, z)
∥∥

Y σ2 ≤ ζ2
∥∥(x, y, z)

∥∥
Y ,

Qν(x, y, z)(t)

= νq3–1
∫ e

1
G3(t, s)φq3

(∫ e

1
K3(s, τ )h

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≤ νq3–1
∫ e

1
G3(e, s)φq3

(∫ e

1
K3(s, τ )κ3(τ )u3

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s
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≤ νq3–1
∫ e

1
G3(e, s)φq3

(∫ e

1
l3(τ )κ3(τ )K

(
x(τ ) + y(τ ) + z(τ )

)p3–1 dτ

τ

)
ds
s

≤ νq3–1Kq3–1∥∥(x, y, z)
∥
∥

Y

∫ e

1
G3(e, s)φq3

(∫ e

1
l3(τ )κ3(τ )

dτ

τ

)
ds
s

≤ (νK)q3–1∥∥(x, y, z)
∥
∥

Y σ3 ≤ ζ3
∥
∥(x, y, z)

∥
∥

Y .

Hence,

∥
∥Q(x, y, z)

∥
∥ =

∥
∥(

Qλ(x, y, z), Qμ(x, y, z), Qν(x, y, z)
)∥∥

=
∥∥Qλ(x, y, z)

∥∥ +
∥∥Qμ(x, y, z)

∥∥ +
∥∥Qν(x, y, z)

∥∥

≤ ζ1
∥∥(x, y, z)

∥∥
Y + ζ2

∥∥(x, y, z)
∥∥

Y + ζ3
∥∥(x, y, z)

∥∥
Y

= (ζ1 + ζ2 + ζ3)
∥
∥(x, y, z)

∥
∥

Y =
∥
∥(x, y, z)

∥
∥

Y .

Consequently, if we set Ω1 = {(x, y, z) ∈P : ‖(x, y, z)‖Y < H1}, then

∥∥Q(x, y, z)
∥∥ ≤ ∥∥(x, y, z)

∥∥
Y for all (x, y, z) ∈P ∩ ∂Ω1. (9)

Step 2. By the definition of u1∞ = u2∞ = u3∞ = 0, there exists H2 > r1 such that

u1(t, x, y, z) ≤ K(x + y + z)p1–1 for x + y + z ∈ [H2,∞),

u2(t, x, y, z) ≤ K(x + y + z)p2–1 for x + y + z ∈ [H2,∞),

u3(t, x, y, z) ≤ K(x + y + z)p3–1 for x + y + z ∈ [H2,∞).

Similarly, set Ω2 = {(x, y, z) ∈P : ‖(x, y, z)‖Y < H2}, then

∥∥Q(x, y, z)
∥∥ ≤ ∥∥(x, y, z)

∥∥
Y for all (x, y, z) ∈P ∩ ∂Ω2. (10)

Step 3. Set Ω3 = {(x, y, z) ∈P : ‖(x, y, z)‖Y < r1}, then for all (x, y, z) ∈P with ‖(x, y, z)‖Y = r1,
we have

Qλ(x, y, z)(t) = λq1–1
∫ e

1
G1(t, s)φq1

(∫ e

1
K1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≥ λq1–1m
∫

s∈I
G1(e, s)φq1

(∫ e

1
K1(s, τ )M(r1)p1–1 dτ

τ

)
ds
s

≥ λq1–1mMq1–1l1

∫

s∈I
G1(e, s)

(∫

s∈I
ς (τ )K11(τ , τ )

)
ds
s

= (λM)q1–1ml1ρ1 ≥ r1 ∀t ∈ I.

Then

∥∥Q(x, y, z)
∥∥ ≥ ∥∥(x, y, z)

∥∥
Y for all (x, y, z) ∈P ∩ ∂Ω3. (11)

Consequently, from (9)–(11) and Theorem 2.7, the system has at least two positive solu-
tions (x1, y1, z1) ∈P , (x2, y2, z2) ∈P with 0 < ‖(x1, y1, z1)‖Y < r1 < ‖(x2, y2, z2)‖Y . �
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The following result is an antithesis of Theorem 3.2.

Theorem 3.3 Assume that conditions (A1)–(A4) are satisfied. In addition, assume that
there exist four constants r1, M, K ,�1,�2,�3, where K is sufficiently large, �1 + �2 + �3 =
1, with (�1mρ1)p1–1K > (σ1)p1–1M, (�2mρ2)p2–1K > (σ2)p2–1M, (�3mρ3)p3–1K > (σ3)p3–1M
such that

(3) u1(t, x, y, z) ≤ M(r1)p1–1, or u2(t, x, y, z) ≤ M(r1)p2–1, or u3(t, x, y, z) ≤ M(r1)p3–1 for
0 ≤ ‖(x, y, z)‖Y ≤ r1;

(4) f0 = f∞ = ∞ or g0 = g∞ = ∞ or h0 = h∞ = ∞.
Then, for any

λ ∈
[

1
K

(
1

mρ1

)p1–1

,
1
M

(
�1

σ1

)p1–1]
, μ ∈

(
0,

1
M

(
�2

σ2

)p2–1]
,

ν ∈
(

0,
1
M

(
�3

σ3

)p3–1]
, or

λ ∈
(

0,
1
M

(
�1

σ1

)p1–1]
, μ ∈

[
1
K

(
1

mρ2

)p2–1

,
1
M

(
�2

σ2

)p2–1]
,

ν ∈
(

0,
1
M

(
�3

σ3

)p3–1]
, or

λ ∈
(

0,
1
M

(
�1

σ1

)p1–1]
, μ ∈

(
0,

1
M

(
�2

σ2

)p2–1]
,

ν ∈
[

1
K

(
1

mρ3

)p3–1

,
1
M

(
�3

σ3

)p3–1]
,

system (1)–(2) has at least two positive solutions.

For the convenience of the discussion of more than two positive solutions for system (1)–
(2), we study the problem under a more general case than the assumption of Theorem 3.2
and Theorem 3.3.

ϕi(r) = sup
{

qi(t, x, y, z) : t ∈ [1, e], mr ≤ x + y + z ≤ r
}

, i = 1, 2, 3,

ψ1(r) = inf
{

f (t, x, y, z) : t ∈ I, mr ≤ x + y + z ≤ r
}

,

ψ2(r) = inf
{

g(t, x, y, z) : t ∈ I, mr ≤ x + y + z ≤ r
}

,

ψ3(r) = inf
{

h(t, x, y, z) : t ∈ I, mr ≤ x + y + z ≤ r
}

,

ϕ(r) = max
{
ϕ1(r),ϕ2(r),ϕ3(r)

}
, ψ(r) = min

{
ψ1(r),ψ2(r),ψ3(r)

}
.

Then, we can obtain the following result.

Theorem 3.4 Assume that conditions (A1)–(A4) are satisfied. In addition, assume that
there exist three constants M, K ,ς1,ς2,ς3 and ς1 + ς2 + ς3 = 1 with (ς1mρ1)p1–1M >
(σ1)p1–1K , (ς2mρ2)p2–1M > (σ2)p2–1K , (ς3mρ3)p3–1M > (σ3)p3–1K and three constants d1, d2,
d3 with 0 < d1 < d2 < d3, such that one of the following two conditions is satisfied:

(I) ϕ(d1) ≤ K(d1)pi–1,ψ(d2) > M(d2)pi–1, and ϕ(d3) ≤ K(d3)pi–1, i = 1, 2, 3;
(II) ψ(d1) ≥ M(d1)pi–1,ϕ(d2) < K(d2)pi–1, and ψ(d3) ≥ M(d3)pi–1, i = 1, 2, 3.
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Then, for any

λ ∈
[

1
M

(
1

mρ1

)p1–1

,
1
K

(
ς1

σ1

)p1–1]
, μ ∈

(
0,

1
K

(
ς2

σ2

)p2–1]
,

ν ∈
(

0,
1
K

(
ς3

σ3

)p3–1]
, or

λ ∈
(

0,
1
K

(
ς1

σ1

)p1–1]
, μ ∈

[
1
M

(
1

mρ2

)p2–1

,
1
K

(
ς2

σ2

)]
,

ν ∈
(

0,
1
K

(
ς3

σ3

)p2–1]
, or

λ ∈
(

0,
1
K

(
ς1

σ1

)p1–1]
, μ ∈

(
0,

1
K

(
ς2

σ2

)p2–1]
,

μ ∈
[

1
M

(
1

mρ3

)p3–1

,
1
K

(
ς3

σ3

)p3–1]
,

system (1)–(2) has at least two positive solutions (x�
1, y�

1, z�
1), (x�

2, y�
2, z�

2) and d1 ≤ ‖(x�
1, y�

1,
z�

1)‖Y < d2 < ‖(x�
2, y�

2, z�
2)‖Y ≤ d3.

Proof We only prove the case of (I) and λ ∈ [ 1
M ( 1

mρ1
)p1–1, 1

K ( ς1
σ1

)p1–1], μ ∈ (0, 1
K ( ς2

σ2
)p2–1],ν ∈

(0, 1
K ( ς3

σ3
)p3–1]. The other cases are similar. Let Ωd1 = {(x, y, z) ∈ P : ‖(x, y, z)‖Y < d1}. If

(x, y, z) ∈ ∂Ωd1 , then ‖(x, y, z)‖Y = d1. Since md1 ≤ x + y + z ≤ d1, 1 ≤ t ≤ e, then we have

Qλ(x, y, z)(t)

= λq1–1
∫ e

1
G1(t, s)φq1

(∫ e

1
K1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≤ λq1–1
∫ e

1
G1(e, s)φq1

(∫ e

1
K1(s, τ )κ1(τ )u1

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

≤ λq1–1
∫ e

1
G1(e, s)φq1

(∫ e

1
l1(τ )κ1(τ )ϕ(d1)

dτ

τ

)
ds
s

≤ λq1–1Kq1–1d1

∫ e

1
G1(e, s)φq1

(∫ e

1
l1(τ )κ1(τ )

dτ

τ

)
ds
s

= (λK)q1–1d1σ1 ≤ d1ς1 = ς1
∥∥(x, y, z)

∥∥
Y ,

Qμ(x, y, z)(t)

= μq2–1
∫ e

1
G2(t, s)φq2

(∫ e

1
K2(s, τ )g

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≤ μq2–1
∫ e

1
G2(e, s)φq2

(∫ e

1
K2(s, τ )κ2(τ )u2

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

≤ μq2–1
∫ e

1
G2(e, s)φq2

(∫ e

1
l2(τ )κ2(τ )ϕ(d1)

dτ

τ

)
ds
s

≤ μq2–1Kq2–1d1

∫ e

1
G2(e, s)φq2

(∫ e

1
l2(τ )κ2(τ )

dτ

τ

)
ds
s

= (μK)q2–1d1σ2 ≤ d1ς2 = ς2
∥∥(x, y, z)

∥∥
Y ,
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Qν(x, y, z)(t)

= νq3–1
∫ e

1
G3(t, s)φq3

(∫ e

1
K3(s, τ )h

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≤ νq3–1
∫ e

1
G3(e, s)φq3

(∫ e

1
K3(s, τ )κ3(τ )u3

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

≤ νq3–1
∫ e

1
G3(e, s)φq3

(∫ e

1
l3(τ )κ3(τ )ϕ(d1)

dτ

τ

)
ds
s

≤ νq1–1Kq1–1d1

∫ e

1
G3(e, s)φq3

(∫ e

1
l3(τ )κ3(τ )

dτ

τ

)
ds
s

= (νK)q3–1d1σ3 ≤ d1ς3 = ς3
∥∥(x, y, z)

∥∥
Y .

Hence,

∥∥Q(x, y, z)
∥∥ =

∥∥(
Qλ(x, y, z), Qμ(x, y, z), Qν(x, y, z)

)∥∥

=
∥
∥Qλ(x, y, z)

∥
∥ +

∥
∥Qμ(x, y, z)

∥
∥ +

∥
∥Qν(x, y, z)

∥
∥

≤ ς1
∥∥(x, y, z)

∥∥
Y + ς2

∥∥(x, y, z)
∥∥

Y + ς3
∥∥(x, y, z)

∥∥
Y

= (ς1 + ς2 + ς3)
∥
∥(x, y, z)

∥
∥

Y =
∥
∥(x, y, z)

∥
∥

Y .

Then

∥
∥Q(x, y, z)

∥
∥ ≤ ∥

∥(x, y, z)
∥
∥

Y , for all (x, y, z) ∈P ∩ ∂Ωd1 . (12)

Let Ωd2 = {(x, y, z) ∈ P : ‖(x, y, z)‖Y < d2}. If (x, y, z) ∈ ∂Ωd2 , then ‖(x, y, z)‖Y = d2. Since
md2 ≤ x + y + z ≤ d2, t ∈ I , then we have

Qλ(x, y, z)(t) = λq1–1
∫ e

1
G1(t, s)φq1

(∫ e

1
K1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≥ λq1–1m
∫

s∈I
G1(e, s)φq1

(∫ e

1
K1(s, τ )ψ(d2)

dτ

τ

)
ds
s

> λq1–1mMq1–1d2

∫

s∈I
G1(e, s)φq1

(∫

s∈I
ς (τ )K11(τ , τ )

dτ

τ

)
ds
s

= (λM)q1–1md2ρ1 ≥ d2 =
∥∥(x, y, z)

∥∥
Y , ∀t ∈ I.

Then

∥
∥Q(x, y, z)

∥
∥ ≥ ∥

∥(x, y, z)
∥
∥

Y for all (x, y, z) ∈P ∩ ∂Ωd2 . (13)

Let Ωd3 = {(x, y, z) ∈ P : ‖(x, y, z)‖Y < d3}. If (x, y, z) ∈ ∂Ωd3 , then ‖(x, y, z)‖Y = d3. Since
md3 ≤ x + y + z ≤ d3, 1 ≤ t ≤ e, then we have

Qλ(x, y, z)(t)

= λq1–1
∫ e

1
G1(t, s)φq1

(∫ e

1
K1(s, τ )f

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s
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≤ λq1–1
∫ e

1
G1(e, s)φq1

(∫ e

1
K1(s, τ )κ1(τ )u1

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

≤ λq1–1
∫ e

1
G1(e, s)φq1

(∫ e

1
l1(τ )κ1(τ )ϕ(d3)

dτ

τ

)
ds
s

≤ λq1–1Kq1–1d3

∫ e

1
G1(e, s)φq1

(∫ e

1
l1(τ )κ1(τ )

dτ

τ

)
ds
s

= (λK)q1–1d3σ1 ≤ d3ς1 = ς1
∥∥(x, y, z)

∥∥
Y ,

Qμ(x, y, z)(t)

= μq2–1
∫ e

1
G2(t, s)φq2

(∫ e

1
K2(s, τ )g

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≤ μq2–1
∫ e

1
G2(e, s)φq2

(∫ e

1
K2(s, τ )κ2(τ )u2

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

≤ μq2–1
∫ e

1
G2(e, s)φq2

(∫ e

1
l2(τ )κ2(τ )ϕ(d3)

dτ

τ

)
ds
s

≤ μq2–1Kq2–1d1

∫ e

1
G2(e, s)φq2

(∫ e

1
l2(τ )κ2(τ )

dτ

τ

)
ds
s

= (μK)q2–1d3σ2 ≤ d3ς2 = ς2
∥∥(x, y, z)

∥∥
Y ,

Qν(x, y, z)(t)

= νq3–1
∫ e

1
G3(t, s)φq3

(∫ e

1
K3(s, τ )h

(
τ , u(τ ), v(τ ), w(τ )

)dτ

τ

)
ds
s

≤ νq3–1
∫ e

1
G3(e, s)φq3

(∫ e

1
l3(τ )κ3(τ )u3

(
τ , x(τ ), y(τ ), z(τ )

)dτ

τ

)
ds
s

≤ νq3–1
∫ e

1
G3(e, s)φq3

(∫ e

1
l3(τ )κ3(τ )ϕ(d3)

dτ

τ

)
ds
s

≤ νq1–1Kq1–1d3

∫ e

1
G3(e, s)φq3

(∫ e

1
l3(τ )κ3(τ )

dτ

τ

)
ds
s

= (νK)q3–1d3σ3 ≤ d3ς3 = ς3
∥∥(x, y, z)

∥∥
Y .

Then

∥∥Q(x, y, z)
∥∥ =

∥∥(
Qλ(x, y, z), Qμ(x, y, z), Qν(x, y, z)

)∥∥

=
∥∥Qλ(x, y, z)

∥∥ +
∥∥Qμ(x, y, z)

∥∥ +
∥∥Qν(x, y, z)

∥∥

≤ ς1
∥∥(x, y, z)

∥∥
Y + ς2

∥∥(x, y, z)
∥∥

Y + ς3
∥∥(x, y, z)

∥∥
Y

= (ς1 + ς2 + ς3)
∥∥(x, y, z)

∥∥
Y =

∥∥(x, y, z)
∥∥

Y .
∥
∥Q(x, y, z)

∥
∥ ≤ ∥

∥(x, y, z)
∥
∥

Y for all (x, y, z) ∈P ∩ ∂Ωd3 . (14)

From (12)–(14) and Theorem 2.7, the system has at least two positive solutions (x�
1, y�

1, z�
1) ∈

P , (x�
2, y�

2, z�
2) ∈P , and d1 ≤ ‖(x�

1, y�
1, z�

1)‖Y < d2 < ‖(x�
2, y�

2, z�
2)‖Y ≤ d3. �

Corollary 3.5 Assume that conditions (A1)–(A4) are satisfied, δ1, δ2, δ3 > 0 with δ1 + δ2 +
δ3 = 1, then we have the following results:
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(1) If 0 < u10, f∞, u20, g∞, u30, h∞ < ∞, (σ1)p1–1u10 < (δ1m2ρ1)p1–1f∞, then for each
λ ∈ ( 1

f∞ ( 1
m2ρ1

)p1–1, 1
u10

( δ1
σ1

)p1–1), μ ∈ (0, 1
u20

( δ2
σ2

)p2–1), and ν ∈ (0, 1
u30

( δ3
σ3

)p3–1), system
(1)–(2) has at least one positive solution.

(2) If 0 < u10, f∞, u20, g∞, u30, h∞ < ∞, (σ2)p2–1u20 < (δ2m2ρ2)p2–1g∞, then for each
λ ∈ (0, 1

u10
( δ1
σ1

)p1–1), μ ∈ ( 1
g∞ ( 1

m2ρ2
)p2–1, 1

u20
( δ2
σ2

)p2–1), and ν ∈ (0, 1
u30

( δ3
σ3

)p3–1), system
(1)–(2) has at least one positive solution.

(3) If 0 < u10, f∞, u20, g∞, u30, h∞ < ∞, (σ3)p3–1u30 < (δ3m2ρ3)p3–1h∞, then for each
λ ∈ (0, 1

u10
( δ1
σ1

)p1–1), μ ∈ (0, 1
u20

( δ3
σ3

)p2–1), and ν ∈ ( 1
h∞ ( 1

m2ρ3
)p3–1, 1

u30
( δ3
σ3

)p3–1), system
(1)–(2) has at least one positive solution.

Similarly, we can also obtain the following theorem that is in some way of duality of
Corollary 3.5.

Corollary 3.6 Assume that conditions (A1)–(A4) are satisfied, ξ1, ξ2, ξ3 > 0 with ξ1 + ξ2 +
ξ3 = 1, then we have the following results:

(1) If 0 < u1∞, f0, u2∞, g0, u3∞, h0 < ∞, (σ1)p1–1u1∞ < (ξ1m2ρ1)p1–1f0, then for each
λ ∈ ( 1

f0
( 1

m2ρ1
)p1–1, 1

u1∞ ( ξ1
σ1

)p1–1), μ ∈ (0, 1
u2∞ ( ξ2

σ2
)p2–1), and ν ∈ (0, 1

u3∞ ( ξ3
σ3

)p3–1), system
(1)–(2) has at least one positive solution.

(2) If 0 < u1∞, f0, u2∞, g0, u3∞, h0 < ∞, (σ2)p2–1u2∞ < (ξ2m2ρ2)p2–1g0, then for each
λ ∈ (0, 1

u1∞ ( ξ1
σ1

)p1–1), μ ∈ ( 1
g0

( 1
m2ρ2

)p2–1, 1
u2∞ ( ξ2

σ2
)p2–1), and ν ∈ (0, 1

u3∞ ( ξ3
σ3

)p3–1), system
(1)–(2) has at least one positive solution.

(3) If 0 < u1∞, f0, u2∞, g0, u3∞, h0 < ∞, (σ3)p3–1u3∞ < (ξ3m2ρ3)p3–1h0, then for each
λ ∈ (0, 1

u1∞ ( ξ1
σ1

)p1–1), μ ∈ (0, 1
u2∞ ( ξ2

σ2
)p2–1), and ν ∈ ( 1

h0
( 1

m2ρ3
)p3–1, 1

u3∞ ( ξ3
σ3

)p3–1), system
(1)–(2) has at least one positive solution.

Remark 3.1 Assume that (A1)–(A4) hold. If u10, u20, u30, u1∞, u2∞, u3∞ < ∞ then there
exist positive constants λ0,μ0, and υ0 such that, for every λ ∈ (0,λ0),μ ∈ (0,μ0), and υ ∈
(0,υ0), the boundary value problem (1)–(2) has no positive solution.

Remark 3.2 Assume that (A1)–(A4) hold.
(i) If f0, f∞ > 0, then there exists a positive constant λ̃0 such that, for every λ > λ̃0,

μ > 0, and υ > 0, the boundary value problem (1)–(2) has no positive solution.
(ii) If g0, g∞ > 0, then there exists a positive constant μ̃0 such that, for every μ > μ̃0,

λ > 0, and υ > 0, the boundary value problem (1)–(2) has no positive solution.
(iii) If h0, h∞ > 0, then there exists a positive constant υ̃0 such that, for every υ > υ̃0,

λ > 0, and μ > 0, the boundary value problem (1)–(2) has no positive solution.

Remark 3.3 Assume that (A1)–(A4) hold. If f0, f∞, g0, g∞, h0, h∞ > 0, then there exist posi-
tive constants ˜̃

λ0, ˜̃μ0, and ˜̃υ0 such that, for every λ > ˜̃
λ0,μ > ˜̃μ0, and υ > ˜̃υ0, the boundary

value problem (1)–(2) has no positive solution.

4 Example
Let us consider an example to illustrate the above results.

Let α1 = α2 = α3 = 5/2,β1 = β2 = β3 = 3/2, ξ1 = ξ2 = ξ3 = 4,η1 = η2 = η3 = 8,γ1 = γ2 = γ3 =
3/2,υ1 = υ2 = υ3 = 1/2, δ = 3/2, p1 = p2 = p3 = 2, q1 = q2 = q3 = 2,φp1 (s) = s,φq1 (s) = s.
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We consider the system of Hadamard fractional differential equation

⎧
⎪⎪⎨

⎪⎪⎩

HD3/2
1+ (φp1 (HD5/2

1+ x(t))) = λf (t, x(t), y(t), z(t)), t ∈ (1, e),
HD3/2

1+ (φp2 (HD5/2
1+ y(t))) = μg(t, x(t), y(t), z(t)), t ∈ (1, e),

HD3/2
1+ (φp3 (HD5/2

1+ z(t))) = υh(t, x(t), y(t), z(t)), t ∈ (1, e),

(15)

with the three-point boundary conditions

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(1) = x′(1) = 0, 4x(e) + 8HD3/2
1+ x(e) = 0,

φp1 (HD5/2
1+ x(1)) = 0, φp1 (HD5/2

1+ x(e)) = 1
2φp1 (HD5/2

1+ x(3/2)),

y(1) = y′(1) = 0, 4y(e) + 8H D3/2
1+ y(e) = 0,

φp2 (HD5/2
1+ y(1)) = 0, φp2 (HD5/2

1+ y(e)) = 1
2φp2 (HD5/2

1+ y(3/2)),

z(1) = z′(1) = 0, 4z(e) + 8H D3/2
1+ z(e) = 0,

φp3 (HD5/2
1+ z(1)) = 0, φp3 (HD5/2

1+ z(e)) = 1
2φp3 (HD5/2

1+ z(3/2)).

(16)

Here, f (t, x, y, z) = (1 – ln t)1/2(1 + sin2(x + y + z)), g(t, x, y, z) = ln1/2 t sin(x + y + z), and
h(t, x, y, z) = (1 + ln t)2(e(x+y+z)3 + sin y) for all t ∈ (1, e), x, y, z ≥ 0. Then we obtain �1 = �2 =
�3 ≈ 14.635 > 0, m = 0.125, and assumptions (A1) and (A2) are satisfied. In addition, we
deduce that

G1(t, s) =

⎧
⎨

⎩
G11(t, s), 1 ≤ t ≤ s ≤ e,

G12(t, s), 1 ≤ s ≤ t ≤ e,

G11(t, s) =
1

�1

[
8(1 – ln s)–3/2 +

4
Γ (5/2)

]
(ln t)3/2(1 – ln s)3/2,

G2(t, s) =
1

�1

[
8(1 – ln s)–3/2 +

4
Γ 5/2

]
(ln t)3/2(1 – ln s)3/2 –

1
Γ (5/2)

(
ln

t
s

)3/2

,

and

K1(t, s) = K11(t, s) +
1/2(ln t)1/2

1 – 1/2(ln(3/2))1/2 K11(3/2, s),

where

K11(t, s) =
1

Γ (3/2)

⎧
⎨

⎩
(ln t)1/2(1 – ln s)1/2, 1 ≤ t ≤ s ≤ e,

(ln t)1/2(1 – ln s)1/2 – (ln t
s )1/2, 1 ≤ s ≤ t ≤ e,

∫ e

1
G1(e, s)

ds
s

=
∫ e

1

[
1

14.635

[
8(1 – ln s)–3/2 +

4Γ (1)
Γ (5/2)

]
(1 – ln s)3/2

–
1

Γ (5/2)
(1 – ln s)3/2

]
ds
s

= 0.5466 +
16(0.06833)

5
√

π

∫ e

1
(1 – ln s)3/2 ds

s
–

4
3
√

π

∫ e

1
(1 – ln s)3/2 ds

s

= 0.5466 +
32

25
√

π
(0.06833) –

8
15

√
π
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= 0.5466 + 0.04935 – 0.3009 = 0.29505,

∫ e

1
K11(τ , τ )

dτ

τ
=

∫ e

1

(ln τ )β1–1(1 – ln τ )β1–1

Γ (β1)
dτ

τ

=
1

Γ (β1)

∫ 1

0
tβ1–1(1 – t)β1–1 dt

=
Γ (β1)
Γ (2β1)

=
Γ (3/2)
Γ (3)

=
√

π

4
,

σ1 =
∫ e

1
G1(e, s)φq1

(∫ e

1
l1(τ )κ1(τ )

dτ

τ

)
ds
s

= (0.29505)
(√

π

4
+

0.1825√
π (0.7973)

)
≈ 0.1689,

ρ1 =
∫

s∈I
G1(e, s)φq1

(∫

s∈I
ς (τ )K11(τ , τ )

dτ

τ

)
ds
s

≈ 0.005876.

We choose r1 = 1, M = 3, K = 8000,�1 = 1/2,�2 = 1/3,�3 = 1/6, then all the conditions in
Theorem 3.3 are satisfied. Therefore, for any

λ ∈ [0.1701837985, 0.9867771857], μ ∈ (0, 0.6578514571],

ν ∈ (0, 0.3289257286] or

λ ∈ (0, 0.9867771857], μ ∈ [0.1701837985, 0.6578514571],

ν ∈ (0, 0.3289257286] or

λ ∈ [0, 0.9867771857], μ ∈ (0, 0.6578514571],

ν ∈ [0.1701837985, 0.3289257286],

system (15)–(16) has at least two positive solutions (x1(t), y1(t), z1(t)), (x2(t), y2(t), z2(t))
with 0 < ‖(x1(t), y1(t), z1(t))‖ < 1 < ‖(x2(t), y2(t), z2(t))‖.

We choose d1 = 1, d2 = 10, d3 = 200, K = 4, M = 7000,ς1 = 1/3,ς2 = 1/6,ς3 = 1/2, then all
the conditions in Theorem 3.4 are satisfied. Therefore, for any

λ ∈ [0.1944957697, 0.4933885929], μ ∈ (0, 0.2466942964],

ν ∈ (0, 0.7400828898] or

λ ∈ (0, 0.4933885929], μ ∈ [0.1944957697, 0.2466942964],

ν ∈ (0, 0.7400828898] or

λ ∈ [0, 0.4933885929], μ ∈ (0, 0.2466942964],

ν ∈ [0.1944957697, 0.7400828898],

system (15)–(16) has at least two positive solutions (x�
1(t), y�

1(t), z�
1(t)), (x�

2(t), y�
2(t), z�

2(t))
with d1 ≤ ‖(x�

1(t), y�
1(t), z�

1(t))‖ < d2 < ‖(x�
2(t), y�

2(t), z�
2(t))‖ ≤ d3.



Rao et al. Boundary Value Problems         (2020) 2020:43 Page 23 of 25

5 Conclusions
By using Krasnosel’skii’s fixed point theorem and under suitable conditions, we have pre-
sented the existence of multiplicity results of positive solutions to the system of three
Hadamard fractional differential equations with p-Laplacian operator. We have also de-
rived three explicit eigenvalue intervals of λ,μ, and ν for the existence of multiple positive
solutions. Finally, we have given an example to demonstrate our result.
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