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1 Introduction
Plate equations have been studied for many years because of their worth in certain physical
areas such as vibration and elasticity theories of solid mechanics. The research of the long-
time dynamical behavior of plate equations has become an important area in the field of
the infinite-dimensional dynamical system.

The purpose of this paper is to investigate the following non-autonomous stochastic
plate equations with additive noise and nonlinear damping defined in the entire space R”:

aw
Uy + h(w) + A%u + hu +f(x,u) =gx, 1) +¢(x)%, (1.1)
with the initial value conditions
u(x, t) = up(x), u (%, 7) = ur (%), (1.2)

wherex € R”, t > t with T € R, A is a positive constant, f is a nonlinearity that satisfies cer-

tain growth and dissipative conditions, g(x, ) and ¢ are given functions in L} (R, H*(R"))

and H2(R") N H3(R"), respectively, W (¢) is a two-sided real-valued Wiener process on a
probability space.
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As we know, the attractor is regarded as a proper notation describing the long-time dy-
namics of solutions, and many classical literature works and monographs have appeared
for both the deterministic and stochastic dynamical systems over the last decades, see
[1, 5,7, 8,10, 11, 14, 19, 23, 25] and the references therein. However, in reality, a sys-
tem is always affected by some random factors such as external noise. In order to scru-
tinize the large-time behavior and characterization of solution for the stochastic partial
differential equations driven by noise, Crauel and Flandoi [7, 8], Flandoi and Schmalfuss
[10], and Schmalfuss [19] introduced the concept of pullback attractors and established
some abstract results for the existence of such attractors about compact dynamical system
[1, 8, 10, 14, 15]. Since these methods required the compactness of a pullback absorbing
set for systems, they could not be used to deal with the stochastic PDEs on unbounded
domains. Therefore, in [3], Bates, Lisei, and Lu presented the concept of asymptotic com-
pactness for random dynamical systems, which is an extension of deterministic systems.
And then, using these abstract results, they proved the existence of random attractors for
reaction-diffusion equations on unbounded domain in [4]. Wang in [25] further extended
the concept of asymptotic compactness to the case of partial differential equations with
both random and time-dependent forcing terms; moreover, he applied these criteria into
the stochastic reaction-diffusion equation with additive noise on R” and obtained the ex-
istence of a unique pullback attractor. For most of works on stochastic PDEs, please refer
to [9, 22, 27-29, 32] and the references therein.

Just for problem (1.1)—(1.2) and the corresponding plate equations, in the deterministic
case (i.e., € = 0), existence of global attractors has been studied by several authors, see for
instance [2, 12-14, 30, 31, 33, 34, 37]. As far as the stochastic case driven by additive noise
goes, when the deterministic forcing term g is independent of time, that is, g(x, ) = g(x),
the existence of a random pullback attractor on bounded domain has been obtained in [17,
20, 21]. Recently, on the unbounded domain, the authors investigated the existence and
upper semi-continuity of random attractors for stochastic plate equation with rotational
inertia and Kelvin—Voigt dissipative term as well as dependent-on-time terms (see [36]
for details) and asymptotic behavior for non-autonomous stochastic plate equation on
unbounded domains [35]. To the best of our knowledge, it has not been considered by any
predecessors for the stochastic plate equation with additive noise and nonlinear damping
on unbounded domain. It is well known that nonlinear damping makes the problem more
complex and interesting even to the case of bounded domain. Besides, the theory and
applications of Wang in [24-26] gave us the idea of solving this problem and inspired us,
so we decided to study the existence of pullback attractors for problem (1.1)—(1.2).

Notice that (1.1) is a non-autonomous stochastic equation, i.e., the external term g is
time-dependent. In this case, as in [25], we introduce two parametric spaces to present its
dynamics: one is for the deterministic non-autonomous perturbations, while the other for
the stochastic perturbations. In addition, since Sobolev embeddings are not compact on
R”, we cannot get the asymptotic compactness directly from the regularity of solutions.
We conquer the difficulty by using the uniform estimates on the tails of solutions out-
side a bounded ball in R” and the splitting technique [27] and the compactness methods
introduced in [16].

The organization of this paper is as follows: In Sect. 2, we present some notations and a
proposition about random dynamical systems. In Sect. 3, we establish a continuous cocy-
cle for Eq. (1.1) in H?(R") x L*(R"). In Sect. 4, we obtain all necessary uniform estimates of
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solutions. Finally, in Sect. 5, we show the existence and uniqueness of a random attractor
for (1.1)—(1.2), denoted by R".
Throughout the paper, the letters c and ¢; (i = 1,2,...) are positive constants which may

change their values from line to line or even in the same line.

2 Preliminaries
In order to state and prove our main results, we introduce some notations and a proposi-
tion related to random attractors for stochastic dynamical systems.

Let X be a separable Banach space and (£2,F,P) be the standard probability space,
where 2 = {w € C(R,R) : @(0) = 0}, F is the Borel o-algebra induced by the compact
open topology of £2, and P is the Wiener measure on (£2, F). There is a classical group
{6:}:cr acting on (£2, F, P) which is defined by

Oiw(-) =w(-+t)—w(t) forallwe 2,teR. (2.1)
We often say that (£2, F, P, {6;}:cr) is a parametric dynamical system.

Definition 2.1 ([6]) A mapping @ : R* x R x £ x X — X is called a continuous cocycle
on X over R and (£2,F, P, {0:}scr) if, for all T € R, w € £2, and t,s € R*, the following
conditions (1)—(4) are satisfied:

1) @(,7,+):R* x 2 x X = Xis (BR") x F x B(X), B(X))-measurable;

(2) ®(0,7,w,-) is the identity on X;
(3) @(t+s,1,0,-) = P(t, T +5,0w,-) 0 D(s,T,w,");
4) &(

4) t,7,w,-): X — X is continuous.

Definition 2.2 ([6]) Assume that @ is a continuous cocycle on X over R and (£2, F, P,
{6:}:cr), and D is the collection of all tempered families of nonempty bounded subsets of
X parameterized by 7 e Rand w € £2:

D={D={D(r,0) CX:D(r,0) #¥,T e R,w € 2}}.

Definition 2.3 ([6]) D is said to be tempered if there exists xy € X such that, for every
¢>0,7 €R, and w € £2, the following holds:

lim e“d(D(t +¢t,6,w), %) = 0. (2.2)

t—>—-00

Definition 2.4 ([6]) Given D € D, the family £2(D) = {2(D,7,w): 7t € R,w € 2} is called
the £2-limit set of D where

2D, 1t,w) = ﬂ U D (t, T —t,0_0,D(t - t, G_tw)). (2.3)

$>0 t>s

Definition 2.5 ([6]) The cocycle @ is said to be D-pullback asymptotically compact in X
if, for all T € R and w € £2, the sequence

{@(tn, T —ty, 04,0, x,,)}zil has a convergent subsequence in X (2.4)

whenever ¢, — 00, and x,, € D(t — t,,,0_,w) with {D(7,0w) : T e R,w € 2} € D.
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Definition 2.6 ([6]) A family K = {K(t,0) : T € R,w € 2} € D is called a D-pullback
absorbing set for @ if, for all 7 € R and w € £ and for every D € D, there exists T =
T(D, t,w) >0 such that

@ (t, T —t,0_0,D(t -t 9_ta))) CK(t,w) forallt>T. (2.5)

Definition 2.7 ([6]) K is called a closed measurable D-pullback absorbing set for @ if
K(t,w) is closed in X and is measurable in w with respect to F.

Definition 2.8 ([6]) A family A = {A(7,0): 7 € R,w € 2} € D is called a D-pullback
attractor for @ if the following conditions (1)—(3) are fulfilled: for all £ € R*, T € R, and
w € $2,

(1) A(r,w) is compact in X and is measurable in @ with respect to F;

(2) Aisinvariant, that is,

D (t, 7,0, AT, w)) = At + t,0,0); (2.6)
(3) ForeveryD={D(r,w):teR,we 2} €D,
tlirn dy (CD (t, T —t,60_w,D(t - t, B_ta))), Alz, w)) =0, (2.7)

where dp is the Hausdorft semi-distance given by dy(F, G) = sup,,.pinfyeq |4 — v||x
forany F, G C X.

Definition 2.9 ([6]) A mapping¥ : R xR x £2 — X is called a random complete solution
of @ if, for every t e R*, 5,7 e R,and w € £2,

D(t,7 +5,0,0,¥(s,7,0)) =¥ (E+5,T,0). (2.8)

Definition 2.10 ([6]) ¥ is called a tempered random complete solution of @, if there
exists a tempered family D = {D(r,w) : T € R,w € £2} such that ¥ (¢, t,w) belongs to D(t +
t,0,w) foreveryt e R, r e Rand w € £2.

Proposition 2.1 ([25]) Suppose that @ is D-pullback asymptotically compact in X and has
a closed measurable D-pullback absorbing set K in D. Then @ has a unique D-pullback
attractor A in D which is given by, for each Tt e R and w € £2,

Alr,0) = 2K, 7,0) = || 2(D,7,0) (2.9)
DeD
= {lI/(O, T,w): ¥ is a tempered random complete solution of @ } (2.10)

3 Cocycles for stochastic plate equation
In this section, we firstly present the precise hypotheses on problem (1.1)—(1.2), then show
that it generates a continuous cocycle in H2(R") x H'(R").

Let —A denote the Laplace operator in R”, A = A2 with the domain D(A) = H*(R"). We
can also define the powers A” of A for v € R. The space V, = D(A1) is a Hilbert space with
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the following inner product and norm:

(), = (ATu,Atv), ”'”V:HA%'

As usual, (-, -) denotes L?-inner product and | - || denotes the L2-norm.
Let E = H? x L?, with the Sobolev norm

1
Il2r2 = (VI + Nuell + [ Aul|?)? - fory = (u,v)" € E. (3.1)

Let & = u; + du, where § is a small positive constant whose value will be determined later,
then (1.1)—(1.2) can be reduced to the equivalent system

du
2y du=§,
dt § (3.2)

L8t + (A +82+ Au+ h(E —u) +f(x,u) = glx,t) + P(x) L,

with the initial value conditions

u(x, T) = MO(x): %‘(x: ‘E) = 50(76)7 (33)

where &)(x) = u1(x) + Sup(x), x € R”.

Assume that the functions /4, f satisfy the following conditions:

(1) Let F(x,u) = fouf(x,s) ds for x € R” and u € R, there exist positive constants ¢; (i =
1,2,3,4) such that

[f e, u)| < cilul” +m(x), meLl?(R"), (3.4)

S wu — coF(x,u) = ma(x),  mp € L'(R"), (3.5)

F(x,u) = c3lul’™ —n3(x), ns € L'(R"), (3.6)

’g—f(x, w| <, ‘ Y ww| <@, me2®) (37)
u ox

where 8>0,1<p < %. Note that (3.4) and (3.5) imply
F(x,u)fc(|u|2+ P+t +n%+n2). (3.8)
(2) There exist two constants 1, B, such that
h(0)=0, 0<pB <H(v)<pBy<o0. (3.9
We identify w(t) with W(t), i.e., w(t) = W(t) = W (¢, %), t € R. To study the dynamical
behavior of problem (3.2)—(3.3), we need to convert the stochastic system into a deter-

ministic one with a random parameter. To this end, we set v(¢) = £(¢) — pw(t), we obtain
the equivalent system of (3.2)—(3.3):

Lt Su=v+dot), (3.10)
G=0v+ (A48 + A+ flx,u) = g, 0) — h(v + po(t) — $u) + 8w (0), |
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with the initial value conditions
u(x, 7) = up(x), v(x, T) = vo(x), (3.11)

where vy(x) = & (x) — pw(t), x € R”.

By a standard method as in [5, 18, 23, 36], one may show the following lemma under
conditions (3.4)—(3.9).
Lemma3.1 Puto(t+71,7,0_,0,00) = Ut +7,7,0_,w,u0), V(E+T,T,0_,0,v)) ", where @y =
(0, v0) T, and let (3.4)—(3.9) hold. Then, for every w € 2, T € R, and ¢, € E(R"), problem
(3.10)—(3.11) has a unique (F, BH?*(R")) x B(L*(R")))-measurable solution ¢(-,t,w, po) €
C([r,00), E(R™)) with ¢(t,T,®,90) = w0, ¢(t, T,w,00) € E(R") being continuous in ¢y with
respect to the usual norm of E(R") for each t > t. Moreover, for every (t,7,w, o) € R* x
R x §£2 x E(R"), the mapping

D(t,T,w,¢00) =@t +71,T,0_0,¢0) (3.12)

generates a continuous cocycle from R* x R x £ x E(R") to E(R") over R and (2, F, P,
{et}teR)'

Introducing the homeomorphism P(6,w)(u, v) " = (u,v + z(6;w)) 7, (u,v)" € E(R") whose
inverse homeomorphism P~ (6;w)(,v) T = (u,v — z(6;0))T. Then the transformation

B (t, 7,0, (1o, £0)) = PO,0)® (t, 7, w, (o, v0)) P~} (6,) (3.13)

also generates a continuous cocycle with (3.2)-(3.3) over R and (£2, F, P, {6} :cr)-

Note that these two continuous cocycles are equivalent. By (3.13), it is easy to check that
@ has a random attractor provided @ possesses a random attractor. Then we only need
to consider the continuous cocycle @.

Next we make another assumption:

Assume that ¢, §, and g satisfy the following conditions:

)
o= min{s, %} (3.14)
A+82-p8>0 and PB;>48+ 3 (3.15)
- >0 an > _— .
> ! S(A + 62— Byd)
Moreover,
0 2
/ e””g(~, T +5)H1 ds<oo, V1eR, (3.16)
and
0 2
lim / e‘”/ |g(x, T +s)| dxds=0, VteR, (3.17)
k—o0 J_o x>k

where | - | denotes the absolute value of a real number in R.
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Given abounded nonempty subset B of E, we write || B|| = sup,cz [|¢||£- Let D = {D(7, ) :
7 € R,w € £2} be a family of bounded nonempty subsets of E such that, for every 7 € R,
weS$2,

lim ¢ D(z +5,6,0)| 7 = 0. (3.18)

§—>—00
Let D be the collection of all such families, that is,

D={D={D(r,0): 7 €R,w € 2} : D satisfies (3.18)}. (3.19)
4 Uniform estimates of solutions
In this section, we derive uniform estimates on the solutions of the stochastic plate equa-

tions (3.2)—(3.3) defined on R”.

We define a new norm || - || by
1
1Yl = (V1P + (2 + 8% = Ba8) lull® + | Auf|*) > for Y = (u,v) € E. (4.1)

It is easy to check that || - || is equivalent to the usual norm || - || 2,2 in (3.1).

The next lemma shows that the cocycle @ has a pullback D-absorbing set in D.
Lemma 4.1 Under (3.4)—(3.9) and (3.14)—(3.17), for every t € R, w € 2, D = {D(7,w) :

T eR,we 2} €D, there exists T = T(t,w,D) > 0 such that, for all t > T, the solution of
problem (3.10)—(3.11) satisfies

” Y('L’, T —t,0_,0,D(t —t, G_tw)) Hi. < Ri(1,w),
t
e‘”t/ e Y (st - t,0_c0,D(t — t,0_0)) H; ds < R(t,w),
Tt
and R (t,w) is given by
T 0
Ri(t,w) =M + M/ " g(x,5) ||2 ds + c/ e‘”(|a)(s)|2 + |w(s) |p+1) ds, (4.2)

where M is a positive constant independent of T, w, D.

Proof Taking the inner product of the second equation of (3.10) with v in L2(R"), we find
that

1d 2 2
EEHVH =S|Vl +(A+8 )(u,v)+(Au,v)+(f(x,u),v)

= (g 0),v) = (h(v + po(t) — $u),v) + 8(, v)(2). (4.3)
By the first equation of (3.10), we have

v=u;—dw(t) +Su. (4.4)
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By Lagrange’s mean value theorem and (3.9), we get

~(h(v + poo(t) - 8u),v)
=—(h(v + po(t) - Su) — h(0),v)
=—(H®)(v+ pw(t) - Su),v)
< —BilvI* — (W (@) (¢pw(t) - 8u),v)
< =BulVIP + Bo| (@)@ 1IVI] + H ()8 (u, v)

2
A o o P
s M)

2
=-Bilvi”+

@O 1011 + 1 (9)8(u,v), (4.5)

where ¢ is between 0 and v + ¢w(t) —
By (3.9) and (4.4), we get

H(9)8(u,v)
= h'(z?)é(u, u; — pw(t) + 814)
d
<B2s- 1—||M||2 + Bad?lu]|* + /325|60(t)’ llull

1d 1
<pBd- Egllull + B28[lu))? +48(A+82 Ba0) ull® + clo(®)* 111> (4.6)

Then substituting the v in (4.4) into the third and fourth terms on the left-hand side of
(4.3), we find that

(A +8%)(u,v)

= (A + 82) (u, u; — pw(t) + Bu)

>-(r+8 )—tllull2 +8(2+8%) ull® = (A + 8%) |o(@)| I 1l

mH

1

d 1
5(>»+5) t||M||2+5()»+52)||M||2—15()»+52—/325)||M||2—C|w(t)|2||¢||2, (4.7)

(Au,v) = (Au, Av) = (Au, Aug — 0(£) Ad + 8 Aus)
1d 2 2
Ed_”Au” + 8] Aull> — |w(@)| | AB | Aull

1d
5;«Auﬂ+—ﬂAM|——+ o(®)|* 1 A1 (4.8)

Using the Cauchy—Schwarz inequality and Young’s inequality, we have

|2 ,31

3(pw(1),v) < slw@|lllvI < |I¢II| || I? (4.9)

2(ﬂ

and

@) = lligllivll <

B1-§
gl + 2 v|%. (4.10)

3
2(B1 = 5) 6
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Let E(x, u) = fR,, F(x, u) dx. Then, for the last term on the left-hand side of (4.3), we have

(f (e, ), v) = (F (x, ), ue — poo(t) + Su)
g (4.11)
= ZF(x, u) + 8(f (%, ), u) — (f (%, ), poo(2)).

By condition (3.5) we get

(v, ), 1) > coF (%, ) + no(x) dx. (4.12)
(750,10 /

n

Using condition (3.4) and (3.6), we obtain

(f (x, ), peo(2))
< [ (alu + ) poto)] ds
Rﬂ

_p_

< [m@@)|1¢n|e@] + e ( | |u|1’+1dx)"“ 16l o0

< | m@)|lel|w@)] +c </R (Fx, 1) + n3(x)) dx) " @ 1lp41|(®)]

[

< |m@|*+= II¢|I 2 w(e)|? +—F(x,u)

[\.’)

$
+ % n3(x) dx+c||¢||p ’ ’pﬂ. (4.13)
R”

By (4.11)—(4.13), we get

8(f (e, ), ) — (f (x, 1), pe(2))

8¢y~ 1 1
> 2Fww s [ meds= 3 Ine| - S1oPo]

3 + +
—% () dx — cllp 25 (). (4.14)

Substitute (4.5)—(4.14) into (4.3) to obtain

d ~
E(nvn2 + (A + 8% = Bad) llull® + | Auel* + 2F (x, )

N =

8¢y~
+ 8(||v||2 + (A +8% = Ba8) lull® + | Aull®) + sz(x, u)

/3

8 8
=glv VP + == vI? + ()»+32 /3zr3)llbt||2+§IIAull2

re(1+ |co(t)|2 +lo@)) + gl (4.15)

3
2(B1 - 6)

Page 9 of 27
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Let 0 = min{$, ‘%}, then

d ~
E(W + (% + 8% = Ba8) lull® + | Aull® + 2F (%, u))

+o (V12 + (A + 8% = Bad) lull® + | Aull + 2F (x, u))

3 5 2 pil
§(ﬂ1_8)llgll +c(1+ |w@)| +|o@).

Multiplying (4.16) by ¢°* and then integrating over (t — ¢, ), we have

e‘”(”v(r,r -t w, VO)H2 + (A +6% - B23) Hu(r,r -t w, uo)”2
+ ||Au(r,t - tw, uo)H2 + 21?( (T, T -t , uo)))

< I (lvoll® + (A + 8% = B28) luoll> + Il Auso 1> + 2F (x, o))
3
(B1-9)

+

/ e‘””g(x,s) szs + c/ e”s(l + |w(s)|2 + |w(s)|p+1) ds.
Tt Tt
Replacing w by 6_,w in the above, we obtain, for every t € R*, 7 e R,and w € £2,
”v(t, T-t0_,0, vo)”2 + (A +8% - ,825) HM(T, T —t,0_,w,up) ||2
+ || Au(t, T -t o, uo)”2 + 2?(x, u(t,t - t,0_;0, uo))
< e (Ivoll* + ( + 8% = Bad) luoll* + | Auo || + 2F (x, up))

° TS 2
(B1-9) /He letx,s)| ds

T
+ C/ eU(S*T)(l + |0_T(1)(S)’2 + |9—1’(1)(S) |p+1) dS'
Tt

+

Again, by (3.9), we get
F(x,u0) < c(1+ [luol® + lluol”*).
Thus, for the first term on the right-hand side of (4.17), we have

e (Ivoll> + (1 + 8% = Bab) oI + | Ao | + 2F (x, o))

p+1)

- 2 2
<ce " (1+llvoll® + lluoll + luollyyy )-

Since (9,v0) " € D(t — t,0_;0) and D € D, then we find
: —ot 2 2 p+1y _
Tim e (o + o2, + 1ol = 0.

Therefore, there exists T = T(t, w,D) > 0 such that, forall £ > T,

—ot 2 2 p+1
e (L+IIvoll® + lluollzp + lluolFy ) < 1.

(4.16)

(4.17)

(4.18)

Page 10 of 27
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For the last term on the right-hand side of (4.17), we find
c/ e”(s_’)(l + ’6_,w(s)|2 + yé_ra)(sﬂp”) ds
-t
0 2 1
< c/ e‘”(l + |a)(s)| + |a)(s)|p+ )ds
-t

0
< c/ e‘”(l + |a)(s)|2 + |a)(s)|p+1)ds

+

0
c/ e‘”(’a)(s)‘2 + |a)(s)}p+1) ds. (4.19)
Notice that w(s) has at most linear growth at |s| — 0o, which combines (3.19), we can have
T
c / (1400 + 0@ ) ds > S (¢ oo). (4:20)
Tt o

Finally, we estimate the fourth term on the left-hand side of (4.17). Thanks to (3.6), we
obtain that, for all £ > 0,

—2F (%, u(t, T — t,0_,w,u0)) <2 / 13 dx. (4.21)
]Rn

It follows from (4.18)—(4.21) that
“V('C, T —-t0_,0, vo)”2 + (k +8%— /328) ||u(r, T —t,0_;w,Ugp) ||2 + || Au(t, T - t,w, u0)||2

T 0
<c+ c/ e Hg(x,s)”2 ds + c/ e"s(|a)(s)|2 + |w(s) |p+l) ds. (4.22)

Thus the proof is completed. d

Lemma 4.2 Under (3.4)—(3.9) and (3.14)—(3.17), for every t € R, w € 2, D = {D(1,w) :
T €R,we 2} €D, there exists T = T(t,w,D) > 0 such that, for all t > T, the solution of
problem (3.10)—(3.11) satisfies

||A‘l’L Y(T, T -t0_,0,D(t -t 9_ta))) ||Z < Ry(1,w),
and R,(t,w) is given by
Ra(e,0) = ce (b + A b+ [Tl

T 0
+ c/ €77 ||g(x,s) ||i ds + c/ e‘”(l + |a)(s)|2) ds. (4.23)

Proof Taking the inner product of the second equation of (3.10) with A?vin L2(R"), we
find that

- — ||A%v||2 —(SHA%LV”Z + (A + 82)(u,A%v) + (AM,A%V) + (f(x, u),A%v)

= (g(x, t),A%v) = (h(v+ ¢o(t) - Su),A%v) + 8(¢,A%v)a)(t). (4.24)
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Similar to the proof of Lemma 4.1, we have the following estimates
—(h(v + poo(t) - 1), A3v)
= —(h(v+ po®) - 1) — h(0), A% )
=—(W®)(v+ po(t) - 5u),Av)
<=l Atv|" - (W) (goo(e) ~u), A2v)
< abo|? +ﬁz|w<t>|||m¢|| ko] + W) Aby)
<-Bfaiv|’+ ’31 ||A4v|| +clo@)|At | + K (©)8(u,Adv), (4.25)
H ()8 (1, A2v)
=W ()8 (A2, — ()A2§ + 5A 1)

1d
< P23 -5 g lAtul’+ o atul + pusloto] Jato] JAtu]

<p5- 1 2 abul + poo?abul’

—

gs(maz Bad) At u|” + clo(r)] A% ¢

(1 +6%)(u,A%v)

, (4.26)

= (1 +8) (A U — w(D)AS b + 5A% u)

> L (e 8) S Akl 504 87) |4 bu]

=5 - (+8)o(0)|atg ] |4tu]
> L0 8) 9 Akl 504 87) |4 bu]?
- g3(x +62= Bod) | Atul®—¢| (4.27)
(Au, A2v) = (Au, A2, — 0()A? ¢ + SAT 1)
1d
> o lAdu] + saru]? -Iw o||atg]azu]
1d
= S oAbl S adup - (429
1 -8, 1
§(po(),A2v) < 8w()| [Ate] Aty 5c||Az¢||2|a)(t)|2 B la®v|®,  @29)
3
(g,sz)<||g||1||A4v||_z(ﬂ g el + ﬁl 2 abv]. (4.30)

For the last term on the left-hand side of (4.24), thanks to (3.7), we have

~(f(x, u),A%V) <|(fx u),A%v)|

a
f(x, )~A%de+/ —f(x,u)-Aiu-A%vdx
]Rn R” ou

1 0
5/Rn 2 A v|dx+/Rn|£f(x,u)

f (%, u)
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< [ il labldvep [ Jatuljabv|as
R” R~

<lmllfaiv] +Blaiu]faiv|

3% 12
<ce (a O _ﬁ25))yyA4vyy
+ %3()\ +62 = By8) | Atul’. (4.31)

Plugging (4.25)—(4.31) into (4.24) and together with (3.15), we obtain

1d 1 1 3
5 Asv + (8 = ad) Ak + adul”)
S([A%v]* + (18 - a3 |Asul” + [4Tu]?)

=

—+
) 1 2 é ) 1 2 8 3 2 2 2
5||A4v|| +§(k+8 - Bad)|ATu| +§||A4u|| +e(1+|w@®)] +lIgl7), (432)

then
d 1 2 12 3 2
A"+ 0o+ 87 = o8) [ Atul "+ [[ATu]")
o ([atv]’+ (48" - po8)[Atul + |aTu]?)
<c(1+]w@®] +lgl}). (4.33)
Multiplying (4.33) by e°* and then integrating over (t — ¢, t), we have

e‘”(”A%v(t,r - t,w,W))Hz + (A +8% = Bad) HA%’U(T»T - t, 0, o) ”2
+ ||A%u(t, T-Lo, uo)nz)

<At ¢ (v o7~ g Abuo]” + 4T uo])

i oS 2 2
+c/ e (1+ ‘w(s)‘ + ”g(x,s)Hl)ds.
Tt
Replacing w by 6_;w in the above, we obtain, for every t e R*, t e R,and w € £2,

||A4]Tv(r, T —80_,0,Vv) ||2 + (A +8% = Bad) ||A%u(7:, T—40_0, uo)”2
+ ||A%u(r, T-10_;0, uo)||2

< e ([Advo|* + ( + 62 - Bod) | Aduo | + |ATuo|?)

g [ el s e [ eI o) s

< e (JAtv|* + [ATuo |’ + [ATu|)

T 0
+ c/ e Hg(x,s)”i ds + c/ e‘”(l + ‘w(s)‘z) ds. (4.34)

Thus the proof is completed. g
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Lemma 4.3 Under (3.4)—(3.9) and (3.14)—(3.17), for every n >0, t € R, w € 2, D =
{D(t,w):t eR,we 2} €D, thereexist T = T(t,w,D,n) >0, K = K(t,w,n) > 1 such that,
forallt> T, k > K, the solution of problem (3.10)—(3.11) satisfies

2
|| Y(‘L’, T —t,0_,0,D(t —t, G_tw)) “E(R”\IB;() <n, (4.35)
where for k > 1, By = {x e R" : |x| < k} and R" \ By is the complement of By.
Proof Choose a smooth function p such that 0 < p <1 fors e R, and
0, ifo<|s|<1,
o(s) = (4.36)
1, ifls|>2,

and there exist constants ji1, (2, 13, g such that [p'(s)| < p1, [0”(s)| < w2, 10" (8) < w3,
| p””(s)| < p4 for s € R. Taking the inner product of the second equation of (3.10) with
(| v in L*(R"), we obtain

1d |2 x>
2dt p</2 )' [*dx SAnp<F)|V|2dx
+(A+62)/ p('klzz)uvdx+/M(Au)p(i—lzz)vdx+ (' |2)/(x,u)vdx
2 2
:8[1;{’1 <|/| )¢w(t)vdx /n,o<|lt—|2>h(v+¢>w(t)—8u)vdx
2
+/Rn,o(%>g(x,t)vdx. (4.37)
Similar to (4.5), we have
%[>
—/Rn,o(ﬁ>h(v+¢w(t)—6u)vdx
/ |x|?
=— Rnp(ﬁ)(h(v+¢a)(t)—8u) - h(0))vdx
2 2
_,31/ (' ad >|v| dx + 1 (9)8 / p<|;|2 )uvdx
RYI
2
+ﬁ2/Wp<' il )|¢>||w<r)||v|dx (438)

Taking (4.38) into (4.37), we have

2 2 2
;jt <|x| >|v|2dx 6 - ,31)/ (' ad )lvlzdx+/ (Au)p <|k|2 )vdx
2 4 / || |x® |2
+(A+8*-H®)) | » = uvdx+ (x, u)vdx
RYI
1+8+ﬁ2)/ ( >|¢||a)(t)||vldx+/ 'O<|k|2> (x, t)vdx
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pr—s 2 2 )
<P /np(p>|v|2dx+c/1;np(ﬁ)wﬂw(t)! dx

2
+/ (|k|z )g(x, t)vdx. (4.39)

For the fourth term on the left-hand side of (4.39), we have

2 / | |2
(A+6 —h(ﬁ)é)/Rnp 5 uvdsx
2
:(,\+52—h/(19)5)/ p(';L) (% +Su— ¢w(t))dx
RVI
:(A+82—h/(9)8)/ p(%)(;jtu +8u? —¢w(t)u> dx
RVI
d 2 2
z(k+82 B26 )(;dt/ <|1t—|2>|u|2dx+5pr<| ad )|u| dx)

2
_()\+32—513)fw (l al )|¢||a)(t||u|dx

> (h+8%- ,328)(;;;/ (';f)lul dx+8/ p<|/|22)|u| dx)

_%(A+52—523)/Rnp<| |2)|u| dx - / (' A )I¢I lo@[ dx.  (4.40)

For the third term on the left-hand side of (4.39), we have

(A ) (I |2>
u)p vdx

2
=fﬂ(Au)p('?i—L><iZ Su—po(t )) dx

2
=/Rn(A2M)p(|/t—|2)<Z_t +8u — ¢w(t)) dx
2

L) s

2 (PN P (du
- [ () + 5o () (G ou-00)

‘o %p’('li—f)V(?+8u ¢w(t)) (";LZ)A(%MM pot )))dx
21 Ao’ H1X
Z_v/l<\<x<x/ik(k—2+ k4 >|(Au)v‘dx /I;<x<x/_k k2 ’(AM (VV)|dx

2 2
+%% p(|x| )|Au| dx+8/ ,O<| ad >|AM| dx
2
_/Rnpc al >|Au||A¢|]w )| dx

2/,L1+8,LL2 4‘\/_//L1
Z_/IR” <T)|(Au)v|dx /]R |(A (VV)|dx
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hoEerefo(Ee
Lol

)|Au||A¢|1w(t)|dx

U1 + 4ty 9 4214 1d/ |x|2
-—F A Aull||V - A
> 2 (lAul? + vI*) - % =l Aulll V”+2dt | Au? dx
x> 2 | |
+8 | p|\ =5 JlAuldx—| p |Aul|Ag||o(2)] dx
R” k R"
n1 +4u Zﬂu
> = (18wl + 1) = === (1Al + [ VvI?)

d 2 2

+%E Rnp<|x| )|Au| dx+8/ ,0<| ad >|Au| dx

5 2 2
_E/np(| ad )|Au| dx - c/np(| il )|A¢| loo(t) 2 dix, (4.41)

%[>

< )j(x,u)vdx

2
:/ (le )/(x,u)<—+8u ¢>a)(t)> dx

2
x|

d 2
=z /}Rn p(%)F(x, u)dx + S/RK p(%)j(x, u)udx
x|
- ol = (x, u)pw(t) dx. (4.42)
RVI k
Similar to (4.12) and (4.13) in Lemma 4.1, we have

2 2 2
/H‘{” p(%)f(x,u)udx >0 /Rn p('li—L)F(x, u)dx + /n p(|k|2 )772 dx, (4.43)

2
f P(%)f(x,u)qﬁw(t)dx
R” K
1 I 1 |2
SE/Ran:—z)Imlzde/ (x >|¢>| |w (t)| dx

) 2 )
+ %Anp<ﬁ)(l-"(x,u)+n3)dx+c/ﬂ;np<|x| >|¢|p+1| 0 de (444)
|

2 -
& 5 Anp(%>|g(X,t)‘2dx+ %fﬂvp(lxl >|v| " w5)

<
~2(B1 -

By (4.38)—(4.45), we have

1d |9C|2 2 2 2 2
S vy (V1> + (A + 8% = Bo8) |ul® + | Au|® + 2F (x, u)) dx
R

2
+ 5/ p<ﬂ>(|v|2 + (A +8% = Bod)|ul® + | Aul?) dx
Rﬂ

k2
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E) 2
+ e p(ﬂ>F(x,u)dx
2 Jan

) >\, o 25—;31/‘ x|
SZ/Rnp<k2)IVI dx + 5 P\ v|* dx
) 2 | |2
+=(A+38 —,328)/ lu|? dx
2 ]Rﬂ

8 |%]2 M1+ 4o 2 2
— Au —(A
+2/Rnp( >| P+ L (Awl? + )
. 2721
k

(I1Ax])? + [ Vv]*)
@ 2 2 P+l pel
vef o\ (Im? + [m2] + Insl + g1 + |0@) |7 1@ 1P*") dux

+c\w(t\/ < >|¢|2 |A¢|?) dx. (4.46)

Since ¢ € H2(R"), m € L*(R"), ny € LY(R™), n3 € L' (R"), we obtain that there exists K; =
Ki(t,n) > 1 such that, for all k > K7,

2
C‘[Rnp(i_lz)(|771|2+ [n2] + In3| + }w(t)|p+l|¢|p+1)dx
+clo@®)|’ f <|x| ) (1612 + 1A dax
%[> 2 S
:C/le>kp(ﬁ>(|n1| + |n2| + 03| + |a)(t)| |p] )dx
+c|w(t)|2 » (| x| )(|¢|2 AgP?) dx

1
SC/ (I + Inal + [nsl + 0O 191™) dx
lx|>k

+ cl(®))? (161 + |A¢ ) dx

x| >k
<en(1+ 0@ +|o@"), (4.47)
along with
2
c / (' klz )g (x,t)dx <c / 2%, t) dx, (4.48)
x| >k

we have that, for all kK > K,

2
4 0 L (V1> + (A + 8% = B28) lul® + | Aul® + 2F (v, u)) dx
dt Jgn k2

2
+o / p<|]’i—|2)(|v|2 + (A +8% = Bo8)|ul® + | Aul® + 2F (%, u)) dx
]Rﬂ
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21 + 8 42

< LR (aul? + IP) + 2 (Al + 1 9vIP)
K

ren(1+ 0@ + @) +c / ) & (x, 1) dx. (4.49)
[x|>

Multiplying (4.49) by e°? and then integrating over (t — ¢, t), we find

%[

/ p(k—2>(|v(t,r - t,a),vo)|2 + (k +8% - ,328)’u(t,r - to, uo)|2

+|Au(t, T -t o, uo)|2 +2F (%, u(t, T — t, 0, up)) ) dx

Y |
<e t/I‘v /)(F)(Wolz + (A +8% = Bad) luol® + | Auo|* + 2F (x, uo) ) dx

L8 [T o Auls, T - t,0,u0)|* + |vis, T — t,0,v0)[*) ds
k2 ( ) ( |
Tt

. 4211,
k

/r UH)(’AM(S,T_LLQ),MO)( |Vv(s,r—t,a),yo)‘2)ds
Tt

Ui ‘ o(s P+1
+c—+cn e (|a)(s| |a) | )ds

+c/ / 7" T 2(x,s) dx ds. (4.50)
-t J|x|>k

Replacing w by 6_; w, it then follows from (4.50) that

2
/ p<|lf—|2>(|v(t,r —t,0_;0, 1/0)|2 + (k +8% - ,325)’14('(,17 —t,0_;0, uo)’2
Rn

+ |Au(r,r —-t,0_0, uo)|2 + 2F(x, u(t,t - t,0_;0, uo))) dx

2
<cn+ e“’t/ p(%)(lvdz + (A +8% = Ba8) uol* + | Aug|* + 2F (%, uo)) dx
RVI

T
+ % / e"(s’t)(|Au(s, 7-t,0_,0, uo)|2 + {V(s, T-t,0_,0, v0)|2) ds
-t
T
+ 4\//?“ / e"(s”)(’Au(s, T-10_;0, u0)|2 + |Vv(s, T-t0_,0, v0)|2) ds
-t

+cn/ e’ ’)(’9 (s ‘ ’9_ }p ds+c/ / e’ T 2(x,s)dxds
Tt -t J|x|>k

x 2
<cn+ e*”/ p<|k—|2> (Ivol® + (A + 8% = Bad)uo|* + | Auol|® + 2F (x, ug)) dx
RVI

2441 + 8ty
+ T

4«/—/L1

T
/ eI (|Auls, T~ .60, uo)|2 + vl T~ t,6-c0, VO)IZ) ds
-1

/ & S_T)(|Au(s,‘c 0.0, u0)|2 |Vv(s,r -t,0_;w, Vo)|2) ds

p+l sr)2
+en / 7 (|6 + o)) ds + ¢ / /Wk (5)dxds,  (451)
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By (3.17), we see that there exists K; = K»(7,7) > Kj such that, for all k > K5,

c / / i &% (x,8)dxds <. (4.52)
-0 J |x|=k

It follows from (4.51)—(4.52), Lemma 4.1, and Lemma 4.2 that there exists T7 = T1(1, w,
D,n) >0 such that, forall t > T1, k > K5,

K2

2
/ 'O<|x| >(|V(7,T—t,9Ta),vo)|2+()L+82—,328)|u(t,r—t,0rw,u0)|2
Rn

+ ’Au(t,r —t,0_;0, z,to)’2 + 2F(x, u(t, 7 —t,0_;o, uo))) dx

0 T
§cn<1+/ e‘”(|w(s){2+ |w(s)|p+1) ds+/ / ke"“’)gz(x,s)dxds) (4.53)

00

where (10, v0) " € D(t — t,0_,0).
Note that (3.6) holds, then we find

x> x> %[>
—2/ p(—)F(x,u)dx§2/ p(— n dx§2/ ol — |nsdx,
K2 wl \ K2 ) wec K2 )T

from which along with 13 € L}(R"), we see that there exists K3 = K3(z, ) > K, such that,
for all k > K3,

||
-2 /1;" p(F)F(x, u)dx <n. (4.54)

Then from (4.53)—(4.54) we know that there exists Ty = T»(t,w,D,n) > T; such that, for
allt > Ty and k > K3,

2
/ p<|x| >(|v(t,r - t,e_-[a),V())|2 + (k +8% - ,325)’14('(,1’ —t,0_;w, u0)|2

K2

+|Au(t, T - 1,0_;0, u0)|2) dx

0
< cn(l +/ e‘”(’w(s)!2 + ’w(s)’ml) ds+/

/ e"(s_f)gz(x,s) dx ds), (4.55)
oo J|x|>k

which completes the proof. O

Let p =1 - p with p given by (4.36). Fix k > 1, and set

~ o~ -~ 2

ii(t, T, 0, i) = P Ju(t, T, 0, uo), (4.56)
—~ o~ PN 2 '
ot T, 0,70) = PVt T, 0, v0).

By (3.10)—(3.11) we find that % and V satisfy the following system in By, = {x € R” : |x| <
2k}:

—) pow(t) — 51, (4.57)
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dv | |2
E—(SA+ (8 +r+A)u+ <k—2)f(x,u)
_ (I Jx| | |z
=P\ 7 g(x,t) =D % h(v+ pw(t) — du) + (1 +8)p| do(t)
+4AVp (I |2 +6Ap (l * Au
k2 k2
() avi v unzp (2L 158
* k2 urus-p k2 ’ (4.58)
with boundary conditions

-~

u=v=0 for|x|=2k. (4.59)

Let {€,}°°, be an orthonormal basis of L*(By) such that Ae, = A,e, with zero boundary
condition in By. Given #, let X,, = span{ey,...,e,} and P, : L(By;) — X,, be the projection

operator.

Lemma 4.4 Under (3.4)—(3.9) and (3.14)—(3.17), for every n >0, t € R, w € 2, D =
{D(t,w): T € R,w € 2} € D, there exist T = T(t,w,D,n) >0, K = K(t,0,1) > 1, and
N = N(t,w,n) > 1 such that, for all t > T, k > K, and n > N, the solution of problem
(4.57)—(4.59) satisfies

|- P,,)?(r, T—1,0_.0,D(t —t,0_,0)) 2

a0 =7

Proof Let Uy, = Pyil, Uyn = (I — Pp)U, Vi1 = PV, Vyp = (I — P,)v. Applying I — P, to (4.57),

we obtain
d" 2
Do = ZZ’HS@,Z (I-P)p (|x| )q)w(t). (4.60)

Applying I — P, to (4.58) and taking the inner product with ¥,,5 in L?(By), we have

1d N, ) | ~
E%HVMH = 8[Vuall® + (A + 8% + A) @2, Vn2) + | = (%, 1), V2

2 2
_ ((1 - mﬁ(',’i—'z)g(x, t)@;) L s>(ﬁ(',’j—'2>¢w<t>,vn,z)

—u—mm(—)(h(vww(t)-au),vn,z)
NN Vi +6A5( 21 ) Au
k k
w2 *\av AP Y 5 461
+ k2 u+u F »Vn2 |- ( )
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Substituting v, in (4.60) into the third term on the left-hand side of (4.61), we have

2
(04 8) (2, Vi) = (az dZ‘;’z 4 5Tpa— (= PP ("“' )¢ (t))

%(m& )—||unz|| +8(h + 8%) [ |I? —28(x+82 B28) T2 1>
¢ (1_1),1)p<|k|2 )¢H lo@)[%, (4.62)

and then

du, 2
(AT Tra) = (Aan,z, A( ;‘lj ¢ St — (I - Pn)ﬁ(@)dm(t)))
1
2

v

(4.63)

For the fourth term on the left-hand side of (4.61), we have

2
<ﬁ(|]f—|2>f(x, um,z)
2 dAVI =" 2
- (ﬁ(%)/(x 0, 2 +aun,2—(1—Pn)p<'x' )¢ (t))
d 2 R R 2 ) R
= E (ﬁ(%)f(x’ M)’ Mn,Z) - (:0 (%)fu(xr L{)Mt, un,Z)
(1 ; (I s |2
(x,0), o Ve, -2 55 Jow0). ey

For the third term on the right-hand side of (4.61), we have

u-p )p<|x|2)(h(v+¢w(t) 51 90)
2
=—(I- P,,)ﬁ(%) (h (v+ po(t) - 8u) - h(O),?n,z)

-~

< =BulV2ll® + W (9)8(hn2, V) +

)|

~ 2
[Vaall” +c¢

2 2
(I - Pn)ﬁ<|lf_|2>¢

(o dib :
<l + K030, T2 450, - (- P (- o))

a2
(I-P)p <f2)¢

1d ,
< —BilVu2ll* + Ba2d - Ed_”u”“ + Bad? [t |1

2
(- P)p<' al )¢>H o(®)| sl

2

@)

P~ 2
* =5 ”Vn2” +c

+ B2
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B -
6

+ Buall? + ¢ ()]’

2 2
(1—Pn)ﬁ<',’j—'2)¢

_ 1d _
< =BilVu2ll* + B28 - Ed—nunzn + B8 U |1* + = 5(x+82 B28) tin2 1>

a2
(I-P)p <f2)¢

Using the Cauchy—Schwarz inequality and Young’s inequality, we get

2
8 (ﬁ(%)‘ﬁw(t)r?nJ)

Br-3
+

. |w(e)|. (4.65)

2
[Va2ll” + ¢

m | |2
||vnz|| +c|[(I - PPl ¢ | @[, (4.66)
| |2
(I -P,)p 2(%,8), V2
- ﬂ 515 ol ’
< wall> +c|| (L= P, P = g(x,2) (4.67)

Now, we estimate the last term in (4.61)

x| x| x| 1% ~
(4AV,0(/2> Vu+6Ap(/2 - Au+4Vp o -AVu+uA2p = V2
(W (12|x|w<|x|2) . 8|x|3w(|x|2>)
I/l. —_— — —
P\ )T e P e
2 le2 496 (1% 8|x| o 1x?
12, (482, (lxl*)  16xt (I o
NP e )" P\ )T s P e ) )2

16+/2(3 115 + 4143) 121 + 44t2) _

——————Vull - Va2l + ———— 1 Aul| - [Va2ll
k3 K2

8f 211 4(3puy + 24pu3 + 1644)

k4

- 8(48M2 + 6403)? 2 4(1211 + 48142)? 2 512u%

Grooe Vel g T 1A s e

4(12 96 64414)% -$
( “2(; ’;j,; #a) ||u||2+ﬁlT|m,z||2. (4.68)
-

|A%u] - IBaall +

lull - V2l

| 4%u]”

Assemble together (4.61)—(4.68) to obtain

L 5P+ (b 8% = Bod) ol + ATl + 2( 5( 25 V)3
Zdt n2 2 n,2 n,2 k2 ) yUhpy2
~ 12 2 ~ 12 ~ 2 _( 1x? -
3Bl + (14 8 = o) B+ 1870+ 5(5( S )0,

~ 386-8 ) . s
D2l + 2 1|rv‘n,2||2+E(maz—ﬂza)nun,zn%ZnAun,znz
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4%u]?

2 4(48 64/13)> 2(12 48/15)? 2562
. (48112 + 64113) IVul? + (12p1 +48u2) Al + U
B k6 k4 k2

o 202045 + 96113 + 64414)° llu ||2> +e|- pn)< <|k|22>g(x, t))

st

|+ | |
( ( )f(x, Mtﬁ”ﬂZ) ( ( B )/(x,u) (- Pn)p< )¢w(t)). (4.69)

For the nonlinear terms in (4.69), by (3.7), using Cauchy’s inequality and Young’s inequal-

2

+C

o)’

(t)| +c

ity, we obtain

( Ix? 8 i
(IO( k2 f(x’u)utrun2 _”Aun2”2+C)\ +1||ut||2 (470)

By (3.4), we know

_( |x? |«
k2 f(x,u) (I=Py)p F ow(t)

2
(I-P)7 (“')¢wwu -

<c

2
(I—Pn)p<'x' )qu |(@)]- (4.71)

Sincel <p < Z%i and %, — 00, by Lemmas 4.1 and 4.2, there are N1 = N(n), K1 = K(n)
such that, for all n > N1, k > K,

2(12p41 +4812)*

IVul? + G

lAu]® +

2 448y + 64u3)?
B1 k®

2(12u0 + 9643 + 64114)? -1
+ 5 laall® ) + €y llase >

2 2
| a-r7 (' al )")H"" )]+ clull g | - P)D (' al )¢H|w(t)|

c|u-pp ('x'z) (- P)A( (",ﬁ'j) ) )

<en(1+ @] + el + llull @n)- (4.72)

2562 3
=t |atul®

+C

Then, by (4.69)—(4.72), we obtain

d " _ _{ 1% -
dt|:”V"2” +(?»+52 ﬂ28)||un,2”2+”Aun,2”2+2(p<k—2 (%, 1), U2

~ ~ ~ |«
+G|:||Vn,2||2+()L+82_ﬁ28)”un,2”2+”Aun,2”2+2< < £ (x, 14), U2

- P)( (' |2> (e t))
k2 ’

2

<cn(1+ |o@ + llul?+ ol s o)) + € (4.73)
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Multiplying (4.73) by e°* and then integrating over (t — ¢,t), we have for all # > N; and
k> ](1

||’17,,,2(r, T—1t, a))”2 + (A +8% - /326) ||7J,,,2(r, T—t, a))”2 + || Alys(t,7 -t w) “2

(o5 Jrs )
X, 1), Upo(T, T — t, )
2
< e—at(||V0||2 + |luol® + ()» +8% - /325)||AMO||2 +2( (%)j(x, u), uo)>

+cn /T e"(s”)(l + |a)(s)|2 + ||ut(s, T-hLo, u0)||2 + ||u(s,r —t,w, Up) ||;{82(Rn)) ds
Tt

i |2 '
+cC / eI (1 —Pn),o( ) g(x,s) (4.74)
Tt
Replacing @ by 6_,w, by a similar process as in Lemma 4.1, we get
[Pna(z, T - £,6_ ) ||2 + (A +8% = Bod) ||tna(r, T - 1,60 0) ||2
- 2 - Ix? ~
+ || Autyo(T, T - £,0_;0) H +2(p = (o0, 1), U (T, T — £,0_ )
<ce (1 +[lvoll® + luoll* + (X + 8% = Ba8) | Auso > + ||u0||]2.12(]Rn) + lluo 125 Rn))
T
+ cn/ e"(s”)(l + |9,,w(s)|2 + ||ut(s, T-t0_,0, uo)||2
Tt
i |2 2
+ ||u(s, -t G,Tw,uo)HHz Rﬂ)) ds+c/ NI -P ),0( ) (x,8)| ds
Tt
<c _Gt(l + lvoll + lluoll® + (A +6% - 525)||AM0|| + ||M0||H2 ®n t ||M0||Z§1Rn))
0 T
+ cn/ e‘”(l + |w(s)|2) ds + cn/ e"(s_f)(”ut(s,t —t,0_;w, Ug) ||2
0 -t
+ ||u(s, -t,0 .0, MO)HH2 Rﬂ)) ds
‘ el ’
+ c/ = Pn)ﬁ<—2>g(x,s +7) (4.75)
oo r

Using the first equation of (3.10) as well as the Minkowski inequality, we can obtain

(s, = 2,60, u0) |
= ||—8u(s, T —t,0_rw,up) +V(S, T — t,0_rw, Vo) + d)@,,w”z
< c(“u(s, T-t0_ 0, uo)”2 + ||v(s, T-t0_ 0, vo)||2 + IG_Ia)Iz)

< cRi(T,w) + c|0_w|? (4.76)
and

||u(s, T-t0_,0, ”0)“11{82(]1% < cR?(r,a)), (4.77)
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where ¢ = max{$, |¢|%,1} and R(zr,w) is given in Lemma 4.1. Hence, it follows from
(4.75)—(4.77) that

[Pna(t, 7 - £,6_c0) ||2 + (2 + 8% = Ba8) |[tna(t, T — 1,6 0) ||2

|«

+ || ATyt T - 1,0_, ) H2 + 2(,7)‘(?>f(x, u), U (T, T - t, wa)>

_ 1
< e (14 lIvoll + lluol® + (% + 8% = Ba8) | Autol|” + N0l 3o my + 10 m))

0
+cnkR}(t,w) +cn/ e (1+ |w(S)|2)dS

—00
0
+c / e’
-0

Since (19, vo) " € D(t — ¢t,0_;0) and D € D, then

2

| 2
ds. (4.78)

(1 - Pn)ﬁ(j_l)g(xxs + 7:)

_ 1
e (L4 ol + lluoll® + (% + 8% = Ba8) I AutolI” + N0 3o oy + 140 o )

—0, t— oo. (4.79)

For the last term on the right-hand side of (4.78), by (3.16), there exists Ny = Ny (t,w,n) >
Nj such that, for all # > N5,

0 2
/_oo e’ (I—Pn)<,6‘<|]t—|2>g(x,s + r))

The proof is completed by (3.4), (4.79)—(4.80), and Lemma 4.1. O

2
ds <. (4.80)

5 Random attractors

In this section, we prove the existence of a D-attractor for the stochastic system (3.10)—
(3.11). We firstly apply the lemmas shown in Sect. 4 to derive the asymptotic compactness
of solutions of (3.10)—(3.11).

Lemma 5.1 Under (3.4)—(3.9) and (3.14)—(3.17), for every T € R, w € £2, the sequence of
weak solutions of (3.10)—(3.11) {Y(z, T — ty, 0_; @, Yo(0_,w))} oo, has a convergent subse-
quence in E whenever t,, — oo and Yy(0_;,,®) € D(t — t,,,0_,,0w) with D € D.

Proof Let t,, — 00 and Yo(0_,w) € D(t — t,, 04, w) with D € D. By Lemma 4.1, there

exists m = m;(t,w,D) > 0 such that, for all m > m;, we have
2
|| Y(T; T- tmr 9,1—(1), YO(O—tma))) ”E = RI(T’ a)) (51)

By Lemma 4.3, for every 1 > 0, there exist ko = ro(7, w, 1) > 1 and my = my(t,w,D,n) > my
such that, for all m > m,,

|Y (1,7 - t,6_0,D(t — t,6_,)) (5.2)

szs(Rn\mako) =1
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By Lemma 4.4, there exist k; = ki(t,w,n) > ko and m3 = ms3(t,w,D,n) > my and n; =
n1(t,w,n) > 0 such that, for all m > m3,

||(I - P,,)?(r, T -t0_rw,D(t -t 9_160)) ||2(]B32k1) <. (5.3)
Using (4.56) and (5.1), we get

|1P.Y (r,7 = t,6_c0,D(t - £,6_.)) < R (7, ), (5.4)

2
“P,,E(]szl)

which together with (5.3) implies that {Y (7,7 — t,,,0_; 0, Yo(0-,,®))} is precompact in
E(Byx,). Note that ﬁ(‘z—‘;) =1 for |x| < k;. Therefore, {Y(t,T — £, 6_rw, Yo(0_4,,w))} is pre-
compact in E(By, ), which along with (5.2) shows the precompactness of this sequence
in E. O

Theorem 5.1 Under (3.4)—(3.9) and (3.14)-(3.17), the random dynamical system ® gen-
erated by the stochastic plate equation (3.10)—(3.11) has a unique pullback D-attractor
A={A(t,w): 7 € R,w € 2} € D in the space E.

Proof Notice that @ is pullback D-asymptotically compact in E by Lemma 5.1 and has
a pullback D-absorbing set by Lemma 4.1. Thus the existence of a unique D-attractor
follows from Proposition 2.1 immediately. O
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