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Abstract
In this paper, we study the following planar Schrödinger–Newton system:

{
–�u + V(x)u + λφu = f (x,u) in R

2,
�φ = u2 in R

2,

where V , f are axially symmetric about x, V is positive, and f is super-linear at zero and
exponential critical at infinity. Using a weaker condition

[ f (x,u)
u3

–
f (x, tu)
(tu)3

]
sign(1 – t) + θV(x)

|1 – t2|
(tu)2

≥ 0, ∀x ∈R
2, t > 0,u �= 0

with θ ∈ [0, 1) instead of the Nehari type monotonic condition on f (x,u)
|u|3 , we obtain a

ground state solution of the above problem via variational methods.
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1 Introduction and main results
In the present paper, we are concerned with the wave solutions of the Schrödinger–
Newton system

{
–iψt – �ψ + W (x)ψ + λφu = g(x,ψ) in R

d,
�φ = |ψ |2 in R

d,
(1.1)

where ψ : Rd × R → C is the wave function, W (x) is a real external potential, λ > 0 is a
parameter. Problems of the type (1.1) arise in many problems from physics. We refer the
readers to [15], therein (1.1) appears in a quantum mechanical context in the case d ≤ 3.
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A standing wave solution of (1.1) is a solution of the form ψ(x, t) = e–iEtu(x) and its
existence reduces (1.1) to the system

{
–�u + V (x)u + λφu = f (x, u) in R

d,
�φ = u2 in R

d,
(1.2)

where V (x) = W (x) – E, g(x, e–iEtu) = f (x, u)e–iEt . For the case d = 3, it is called the
Schrödinger–Poisson system and it has been well studied. For the existence, multiplic-
ity, and concentration, we refer the readers to [2, 3, 9, 10, 13, 20] and the references
therein. For Kirchhoff type equations involving subcritical and critical growth in three
dimensions, please see [19] and the references therein. We also quote the paper [12] for
Hardy–Schrödinger–Kirchhoff systems.

However, much less is known about the case d = 2. For �φ = u2, in R
2, one has

φ(x) =
1

2π

∫
R2

ln
(|x – y|)∣∣u(y)

∣∣2 dy. (1.3)

Substituting it into (1.2), we obtain the integro-differential equation

–�u + V (x)u +
λ

2π

(
ln

(| · |) ∗ u2)u = f (x, u) in R
2. (1.4)

For simplicity, throughout this paper, let λ = 2π . The approach for d = 3 cannot be easily
adapted to d = 2 since

1
4

∫
R2

∫
R2

ln
(|x – y|)∣∣u(y)

∣∣2∣∣u(x)
∣∣2 dy dx, (1.5)

which is the functional associated with the third term in (1.4), is sign-changing, and is
neither bounded from above nor from below on H1(R2). This difficulty has been overcome
recently in [7] or [16]. For

–�u +
(
ln

(| · |) ∗ u2)u = μu in R
2, (1.6)

by introducing the following subspace of H1(R2)

X :=
{

u ∈ H1(
R

2) :
∫
R2

ln
(
1 + |x|)u2 dx < ∞

}

endowed with the norm

‖u‖2 =
∫
R2

(|∇u|2 + u2 + ln
(
1 + |x|)u2)dx,

Stubbe considered the L2-constraint minimization problem and proved that (1.6) admits
a ground state.

Soon afterwards, in [8], Cingolani and Weth processed successfully the two dimensional
Schrödinger–Newton equations with nonlinear term |u|p–2u, p ≥ 4. Du and Weth [11]
provided some results about p > 2 and p ≥ 3. The key tool is Pohozaev type identity (see
[11, Lemma 2.4]). Chen, Shi, and Tang [4] used the same idea to obtain a ground state
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but they could deal with the general nonlinearity f (u). Simultaneously, Chen and Tang [5]
investigated the existence of an axially symmetric Nehari type ground state and nontrivial
solution for

–�u + V (x)u +
(
ln

(| · |) ∗ u2)u = f (x, u) in R
2, (1.7)

where V , f is axially symmetric about x. Please see [6, 17] for further results about two
dimensional Schrödinger–Newton equations with the axially symmetric assumptions. Re-
cently, when V (x) = 1, Alves and Figueiredo [1] proved that (1.4) admits a positive ground
state, where f is a continuous function with the exponential critical growth.

In this paper, motivated by the papers [1] and [5], we shall study the existence of ground
state solutions of planar problem (1.1) with an exponential critical growth. In order to
state our main result, we assume that

(V1) V ∈ C(R2,R), infx∈R2 V (x) > 0, V (x) := V (x1, x2) = V (|x1|, |x2|) for all x ∈ R
2.

(V2) There exists a sequence {tn} ⊂ (0,∞) such that tn → ∞ and

sup
x∈R2,n∈N

V (t–1
n x)

V (x)
< ∞.

(f1) f ∈ C1(R2 ×R,R), f (x, u) := f ((x1, x2), u) = f ((|x1|, |x2|), u).
(f2) f (x, u) = o(|u|) as u → 0, uniformly in x ∈R

2.
(f3) There exists α0 > 0 such that

lim|u|→∞
f (x, u)

exp(αu2)
= 0 for α > α0, lim|u|→∞

f (x, u)
exp(αu2)

= +∞ for α < α0.

(f4) There exists θ ∈ [0, 1) such that

[
f (x, τ )

τ 3 –
f (x, tτ )
(tτ )3

]
sign(1 – t) + θV (x)

|1 – t2|
(tτ )2 ≥ 0, ∀x ∈R

2, t > 0, τ �= 0;

(f5) infx∈R2,u�=0
F(x.u)

u2 > –∞, where F(u) =
∫ u

0 f (t) dt.

Remark 1.1 A simple example of satisfying the hypotheses of (V1)–(V2) is the function
V (x) = 1 + |x2|[1 + sin(π |x1|)] with tn = n. Here we also give an example which satisfies
(f1)–(f5):

f (x, u) =
(
K(x)|u|3u – V (x)|u| 3

2 u + V (x)|u|u)
exp

( 1
2 – θ

2
m

πu2
)

,

where K ∈ (R2,R) is axially symmetric and infx∈R2 K(x) > 0, V satisfies (V1) and (V2). But
it does not satisfy the Nehari type monotonic condition

f (x, u)
|u|3 is a strictly increasing function of u ∈R \ {0}.

Now we state our main result as follows.
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Theorem 1 For d = 2, suppose that (V1), (V2) and (f1)–(f5) are satisfied. Then, for any
α ∈ (0, π (1–θ )

m ), where m is the least energy (it will be defined in (2.22)), θ is from (f3), (1.7)
possesses a ground state solution.

Remark 1.2 The condition α ∈ (0, π (1–θ )
m ) is used to prove the minimizing sequence of m

is bounded, and please see Lemma 3.3. Up to now, we have not been able to remove it.

The paper is organized as follows. Section 2 is to establish the variational setting and to
give some preliminaries. Section 3 is to prove the existence of ground states. Throughout
the paper, we always assume that (V1), (V2) and (f1)–(f5) hold and make use of the following
notations:

• C, Ci (i = 0, 1, 2, . . .) for positive constants (possibly different from line to line).
• Ls(R2) := {u : R2 →R :

∫
R2 |u|s dx < ∞} and ‖ · ‖s denotes the usual Ls-norm in Ls(R2).

2 Variational setting and preliminaries
In this section, we begin our study by establishing the variational setting for (1.7). Let
H1(R2) be the usual fractional Sobolev space with the usual norm

‖u‖H1 =
(∫

R2

(|∇u|2 + u2)dx
) 1

2

and

H1
as

(
R

2) :=
{

u ∈ H1(
R

2) : u(x) := u(x1, x2) = u
(|x1|, |x2|

)
,∀x ∈R

2}.

By (V1) and (f1), similar to [5], let E be defined as

E :=
{

u ∈ H1
as

(
R

2) :
∫
R2

V (x)u2 dx < ∞
}

endowed with the norm

‖u‖E =
(∫

R2

(|∇u|2 + V (x)u2 + ln
(
1 + |x|)u2)dx

) 1
2

.

Denote

‖u‖ :=
(∫

R2

(|∇u|2 + V (x)u2)dx
) 1

2
, ‖u‖∗ :=

(∫
R2

ln
(
1 + |x|)u2 dx

) 1
2

.

According to [1, Lemma 2.1], we have the following.

Proposition 2.1 E ↪→ Lt(R2) is compact for all t ∈ [2,∞).

We formally formulate problem (1.7) in a variational way as follows:

I(u) =
1
2

∫
R2

(|∇u|2 + V (x)u2)dx +
1
4

∫
R2

∫
R2

ln
(|x – y|)∣∣u(y)

∣∣2∣∣u(x)
∣∣2 dy dx

–
∫
R2

F(x, u) dx, u ∈ E. (2.1)
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For simplicity of notations, denote

I0(u) :=
∫
R2

∫
R2

ln
(|x – y|)∣∣u(y)

∣∣2∣∣u(x)
∣∣2 dy dx.

Similar to [8], using ln(r) = ln(1 + r) – ln(1 + 1
r ), ∀r > 0, it holds that

I0(u) =
∫
R2

∫
R2

ln
(
1 + |x – y|)∣∣u(y)

∣∣2∣∣u(x)
∣∣2 dy dx

–
∫
R2

∫
R2

ln

(
1 +

1
|x – y|

)∣∣u(y)
∣∣2∣∣u(x)

∣∣2 dy dx

:= I1(u) – I2(u).

We give the following proposition which is used to estimate the nonlinearity.

Proposition 2.2 ([1, Lemma 2.5]) For every α > 0 and for all u ∈ H1(R2), we have

exp
(
αu2) – 1 ∈ L1(

R
2). (2.2)

Moreover, if ‖∇u‖2 ≤ 1, ‖u‖2 ≤ M, and α < 4π , then there exists C > 0 independent of u
such that

∫
R2

[
exp

(
αu2) – 1

]
dx ≤ C. (2.3)

Lemma 2.3 I ∈ C1(E,R).

Proof Noting that ln(1 + |x – y|) ≤ ln(1 + |x|) – ln(1 + |y|), ∀x, y ∈R
2, we get

∣∣I1(u)
∣∣ ≤ 2‖u‖2

2‖u‖2
∗. (2.4)

In view of ln(1 + r) ≤ r, ∀r > 0, jointly with the Hardy–Littlewood–Sobolev inequality [14],
we obtain

∣∣I2(u)
∣∣ ≤ C‖u‖4

8
3

. (2.5)

So I0 is well defined in E.
Using (f1)–(f3), for each ε > 0, we have

∣∣F(x, u)
∣∣ ≤ ε|u|2 + C(ε)|u|p[exp

(
α|u|2) – 1

]
, (2.6)

where p > 2. Thus, using Hölder’s inequality with s > 1, 1
s + 1

s′ = 1, we get

∫
R2

F(x, u) dx ≤ ε

∫
R2

|u|2 dx + C(ε)
∫
R2

|u|p[exp
(
α|u|2) – 1

]
dx

≤ ε

∫
R2

|u|2 dx + C(ε)
(∫

R2
|u|ps dx

) 1
s
(∫

R2

[
exp

(
s′α|u|2) – 1

]
dx

) 1
s′

.
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By Propositions 2.1 and 2.2, I is well defined in E. By [8, Lemma 2.2], I0 ∈ C1(E,R). It is
easy to check that

∫
R2 F(x, u) dx belongs to C1(E,R). Thus, I ∈ C1(E,R). �

Based on Lemma 2.3, we have

〈
I ′(u), v

〉
=

∫
R2

(∇u∇v + V (x)uv
)

dx +
∫
R2

∫
R2

ln
(|x – y|)∣∣u(y)

∣∣2u(x)v(x) dy dx

–
∫
R2

f (x, u)v dx. (2.7)

Lemma 2.4 For every u ∈ E, we have

I(u) ≥ I(tu) +
1 – t4

4
〈
I ′(u), u

〉
+

(1 – θ )(1 – t2)2

4
‖u‖2, ∀t ≥ 0. (2.8)

Proof Since the proof is similar to [5, Lemma 2.3], we omit it here. �

Now, we define the Nehari manifold

N :=
{

u ∈ E \ {0} :
〈
I ′(u), u

〉
= 0

}
.

Since the Nehari type monotonic condition on f (x,u)
|u|3 and super-cubic condition are not

satisfied, we need to prove that N �= ∅. To the end, we introduce the following new set:

E :=
{

u ∈ E \ {0} :
∫
R2

V (x)u2 dx + I0(u) <
∫
R2

f (x, u)u dx
}

.

Lemma 2.5 E �= ∅.

Proof Let u ∈ E with u �= 0. ut(x) := u(tx). By (V2), there exists C1 > 0 such that

V
(
t–1
n x

) ≤ C1V (x), ∀x ∈R
2, n ∈N. (2.9)

It follows that
∫
R2

V (x)(tnutn )2 dx + I0(tnutn ) –
∫
R2

f (x, tnutn )tnutn dx

≤ C1‖u‖2 + I0(u) – ln tn‖u‖4
2 –

∫
R2

f (t–1
n x, tnu)tnu

t2
n

dx.

In view of (f4), t ≥ 0, τ �= 0, it holds that

1 – t4

4
τ f (x, τ ) + F(x, tτ ) – F(x, τ ) +

θV (x)
4

(
1 – t2)2

τ 2

=
∫ 1

t

[
f (x, τ )

τ 3 –
f (x, sτ )
(sτ )3

]
sign(1 – t) + θV (x)

|1 – t2|
(sτ )2 τ 3τ 4 ds ≥ 0. (2.10)

Taking t = 0, we obtain

1
4
τ f (x, τ ) – F(x, τ ) +

θV (x)
4

τ 2 ≥ 0, ∀x ∈R
2, τ ∈R. (2.11)
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By (f5), one has

F(x, τ ) ≥ –C2τ
2, ∀x ∈R

2, τ ∈R. (2.12)

Thus, we get

∫
R2

f (t–1
n x, tnu)tnu

t2
n

dx ≥
∫
R2

[
4F(t–1

n x, tnu)
t2
n

– θV
(
t–1
n x

)
u2

]
dx

≥–4C2

∫
R2

u2 dx – θC1

∫
R2

V (x)u2 dx. (2.13)

So
∫
R2

V (x)(tnutn )2 dx +
∫
R2

∫
R2

ln
(|x – y|)∣∣tnutn (y)

∣∣2∣∣tnutn (x)
∣∣2 dx dy

–
∫
R2

f (x, tnutn )tnutn dx → –∞,

which implies that E �= ∅. �

The following lemma shows that N �= ∅.

Lemma 2.6 For any u ∈ E , there exists unique t > 0 such that tu ∈N .

Proof Given u ∈ E , let γu(t) := 〈I ′(tu), tu〉 for t > 0. Then tu ∈ N if and only if γu(t) = 0.
Taking ε > 0 sufficiently small, jointly with Sobolev embedding, we obtain

γu(t) ≥ t2‖u‖2 – t4I2(u) –
∫
R2

f (x, tu)tu dx

≥ t2‖u‖2 – t4C1‖u‖ 3
2 – t2εC2‖u‖2 – tpC(ε)

∫
R2

|u|p[exp
(
α|tu|2) – 1

]
dx

≥ t2(1 – εC2)‖u‖2 – t4C1‖u‖ 3
2

– tpC(ε)
(∫

R2
|u|sp dx

) 1
s
(∫

R2

[
exp

(
αs′‖tu‖2

(
u

‖u‖
)2)

– 1
]

dx
) 1

s′
.

Choosing t > 0 small such that αs′‖tu‖2 < 4π , it follows from Proposition 2.2 that there
exists t̄ > 0 small enough such that

γu(t) > 0 for all 0 < t < t̄. (2.14)

Now, by (f4), one has

f (x, tτ )tτ ≥ f (x, τ )τ t4 – θV (x)
(
t2 – 1

)
(tτ )2, ∀x ∈R

2, t ≥ 1, τ ∈R, (2.15)

which implies that

∫
R2

[
θV (x)(tu)2 – f (x, tu)tu

]
dx ≤ t4

∫
R2

[
θV (x)u2 – f (x, u)u

]
dx, ∀t ≥ 1. (2.16)
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Therefore,

γu(t) = t2‖u‖2 + t4I0(u) –
∫
R2

f (x, tu)tu dx

≤ t2‖u‖2 + t4
[∫

R2

[
V (x)u2 – f (x, u)u

]
dx + I0(u)

]

– θ t2
∫
R2

V (x)u2 dx, ∀t ≥ 1. (2.17)

Thus, we have γu(t) → –∞, as t → ∞. So there exists t0 > 0 such that γu(t0) = 0. Next, we
shall prove that t0 is unique. Suppose to the contrary that there are t1, t2 > 0 with t1 �= t2

such that γu(t1) = γu(t2) = 0. For t1u ∈ E, using Lemma 2.4, for all t > 0, we have

I(t1u) ≥ I(tt1u) +
(1 – θ )(1 – t2)2t2

1‖u‖2

4
. (2.18)

Taking t = t2
t1

, it yields that

I(t1u) ≥ I(t2u) +
(1 – θ )(1 – ( t2

t1
)2)2t2

1‖u‖2

4
. (2.19)

Similarly, one has

I(t2u) ≥ I(t1u) +
(1 – θ )(1 – ( t1

t2
)2)2t2

2‖u‖2

4
. (2.20)

We obtain t1 = t2, so it is absurd. �

Since u ∈N , by Lemma 2.4, one has

I(u) = I(u) –
1
4
〈
I ′(u), u

〉 ≥ 1 – θ

4
‖u‖2. (2.21)

So we can define

m := inf
u∈N

I(u). (2.22)

Up to this stage, preparations have been made. We point out that we can define m with-
out using the condition α ∈ (0, π (1–θ )

m ). In the next section, taking full advantage of the
condition α ∈ (0, π (1–θ )

m ), we shall prove the existence of ground state solutions of (1.7).

3 Existence of ground states
In this section, with the additional condition α ∈ (0, π (1–θ )

m ), we are devoted to showing
that m is achieved and the minimizer is a ground state solution of equation (1.7).

Lemma 3.1 There exists C > 0 such that ‖u‖ ≥ C for all u ∈N ; furthermore, m > 0.

Proof Assume by contradiction that there is {un} ⊂N such that ‖un‖ → 0. Obviously,

‖un‖2 + 4
〈
I ′

1(un), un
〉

= 4
〈
I ′

2(un), un
〉
+

∫
R2

f (x, un)un dx.
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In view of (f1) – (f3), combining Hölder’s inequality, it follows that

∣∣∣∣
∫
R2

f (x, un)un dx
∣∣∣∣

≤ ε

∫
R2

|un|2 dx + C(ε)
∫
R2

|un|p
[
exp

(
α|un|2

)
– 1

]
dx

≤ ε

∫
R2

|un|2 dx

+ C(ε)
(∫

R2
|un|sp dx

) 1
s
(∫

R2

[
exp

(
αs′‖un‖2

(
un

‖un‖
)2)

– 1
]

dx
) 1

s′
.

With Proposition 2.2 in hand, using the Sobolev embedding, it leads to

∫
R2

f (x, un)un dx = on(1).

By direct calculation, it holds that

4
〈
I ′

2(un), un
〉 ≤ C‖un‖4

8
3

= on(1).

Thus, one has

〈
I ′

1(un), un
〉

= on(1).

Therefore, we obtain

‖un‖2 ≤ 4
〈
I ′

1(un), un
〉
+

∫
R2

f (x, un)un dx

≤ on(1) + ε

∫
R2

|un|2 dx + C(ε)
∫
R2

|un|p
[
exp

(
α|un|2

)
– 1

]
dx. (3.1)

That is,

(1 – εC)‖un‖2

≤ on(1) + C(ε)
(∫

R2
|un|sp dx

) 1
s
(∫

R2

[
exp

(
αs′‖un‖2

(
un

‖un‖
)2)

– 1
]

dx
) 1

s′
. (3.2)

Noting that ‖un‖ → 0, using Proposition 2.2 again, we get

(1 – εC)‖un‖2 ≤ C(ε)‖un‖p, (3.3)

which is ridiculous. Combining with (2.21), we have m > 0. �

Next, we give the following lemma which shall be used later.

Lemma 3.2 For every u ∈ E, it holds that I1(u) ≥ 1
16‖u‖2

2‖u‖2∗.
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Proof The proof is similar to [5, Lemma 2.2]. Let

Λ1 :=
{

(x1, x2) ∈R
2, x1 > 0, x2 ≥ 0

}
, Λ3 :=

{
(x1, x2) ∈R

2, x1 < 0, x2 ≤ 0
}

.

For any (x, y) ∈ Λ1 × Λ3, it holds that

|x – y| =
√|x|2 + |y|2 – 2x · y ≥ √|x|2 + |y|2 ≥ |x|.

Thus,

I1(u) =
∫
R2

∫
R2

ln
(
1 + |x – y|)∣∣u(y)

∣∣2∣∣u(x)
∣∣2 dy dx

≥
∫

Λ3

∫
Λ1

ln
(
1 + |x – y|)∣∣u(y)

∣∣2∣∣u(x)
∣∣2 dy dx

≥
∫

Λ3

∣∣u(y)
∣∣2 dy

∫
Λ1

ln
(
1 + |x|)∣∣u(x)

∣∣2 dx

=
1

16
‖u‖2

2‖u‖2
∗. �

Let {un} ⊂N be a minimizing sequence of m. On the additional condition α ∈ (0, π (1–θ )
m ),

we want to prove that {un} is bounded in E.

Lemma 3.3 If α ∈ (0, π (1–θ )
m ), we have {un} is bounded in E.

Proof Similar to (2.21), {‖un‖} is bounded. Similar to (2.5), {I2(un)} is bounded. Next, we
want to estimate the {I1(un)}. Note that

∣∣∣∣
∫
R2

f (x, un)un dx
∣∣∣∣ ≤ ε

∫
R2

|un|2 dx + C(ε)
∫
R2

|un|p
[
exp

(
α|un|2

)
– 1

]
dx. (3.4)

For the second term on the right, using Hölder’s inequality with s′ > 1 and s′ ≈ 1, it holds
that

∫
R2

|un|p
[
exp

(
α|un|2

)
– 1

]
dx

≤
(∫

R2
|un|sp dx

) 1
s
(∫

R2

[
exp

(
αs′‖un‖2

(
un

‖un‖
)2)

– 1
]

dx
) 1

s′
.

Taking into account α ∈ (0, π (1–θ )
m ), jointly with

1 – θ

4
‖un‖2 ≤ I(un) → m, (3.5)

for n large enough, we obtain αs′‖un‖2 < 4π . So, by Proposition 2.2, we get

∣∣∣∣
∫
R2

f (x, un)un dx
∣∣∣∣ ≤ ε

∫
R2

|un|2 dx + C(ε)C
(∫

R2
|un|sp dx

) 1
s
. (3.6)
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Since

‖un‖2 + I1(un) = I2(un) +
∫
R2

f (x, un)un dx, (3.7)

which yields that {I1(un)} is bounded. And it follows from Lemma 3.2 that {un} is bounded
in E. �

Next, we claim that there are R,η > 0 such that

lim inf
n→∞

∫
BR(yn)

|un|2 dx ≥ η. (3.8)

If it is false, using Lions’ lemma (see [18, Lemma 1.21]), we get un → 0 in Lt(R2) for all
t ∈ [2,∞). Noting that

∣∣I1(un)
∣∣ ≤ 2‖uu‖2

2‖un‖2
∗ = on(1),

∣∣I2(un)
∣∣ ≤ C‖un‖4

8
3

= on(1), (3.9)

similar to (3.5), it holds that

‖un‖2 = on(1) +
∫
R2

f (x, un)un dx

≤ on(1) + ε

∫
R2

|un|2 dx + C(ε)C
(∫

R2
|un|sp dx

) 1
s

= on(1), (3.10)

which contradicts Lemma 3.1.

Lemma 3.4 m is achieved and the minimizer is a weak solution of (1.7).

Proof Now, we can assume that un ⇀ u0 �= 0 in E, un → u0 in Lt(R2) for all t ∈ [2,∞)
and un(x) → u0(x) a.e. in R

2. By a standard argument, one can deduce that I ′(u0) = 0.
Obviously, we have

∫
R2

F(x, un) dx =
∫
R2

F(x, u0) dx + on(1), (3.11)
∫
R2

f (x, un)un dx =
∫
R2

f (x, u0)u0 dx + on(1). (3.12)

Here, we only check 3.12 since (3.11) is similar. We have already known that

∣∣f (x, un)un
∣∣ ≤ ε|un|2 + C(ε)|un|p

[
exp

(
α‖un‖2

(
un

‖un‖
)2)

– 1
]

. (3.13)

Noting that α ∈ (0, π (1–θ )
m ) and (3.5), we obtain that α‖un‖2 < 4π for n large enough. By

Proposition 2.2, there exists C > 0 independent of n such that

∫
R2

[
exp

(
α‖un‖2

(
un

‖un‖
)2)

– 1
]

dx ≤ C.
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It follows from [18, Lemma A.1] and Lebesgue dominated convergence theorem that

lim
n→∞

∫
R2

f (x, un)un dx =
∫
R2

f (x, u0)u0 dx. (3.14)

Thus, we have

m = lim
n→∞

[
I(un) –

1
4
〈
I ′(un), un

〉]

≥ 1
4
‖u0‖2 +

∫
R2

[
1
4

f (x, u0) – F(x, u0)
]

dx

= I(u0) –
1
4
〈
I ′(u0), u0

〉

≥ m. �
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