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Abstract
In this paper, we discuss the blow-up and lifespan phenomenon for the following
wave equation with variable coefficient:

utt(t, x) – div(a(x)gradu(t, x)) = f (u,Du,DxDu), x ∈ Rn, t > 0,

with small initial data, where a(x) > 0, Du = (ux0 ,ux1 , . . . ,uxn ) and
DxDu = (uxkxl , k, l = 0, 1, . . . ,n, k + l ≥ 1).
Then we find a new phenomenon. The Cauchy problem

utt(t, x) –�u(t, x) = u(t, x)eu(t,x)
2
, x ∈ R2, t > 0,

is globally well-posed for small initial data, while for the combined nonlinearities

utt(t, x) –�u(t, x) = u(t, x)(eu(t,x)
2
+ eut (t,x)

2
), x ∈ R2, t > 0

with small initial data will blow up in finite time. Moreover, we obtain the lifespan
results for the above problems.

Keywords: Wave equation; Blow up; Lifespan

1 Introduction and main results
1.1 Introduction
The blow-up results concerning the semilinear wave equation

∂ttu –
n∑

i=1

∂2
i u = |u|p, (t, x) ∈R

+ ×R
n, n ≥ 2, (1)

were firstly studied by John [8] when n = 3. More precisely, he showed that the semilinear
wave equation (1) has the global solutions if p > 1 +

√
2 and initial data are sufficiently

small. Meanwhile, he proved the finite time blow-up of solutions if p < 1 +
√

2 and the
initial data are not both identically zero. Then Strauss conjectured, when n ≥ 2, the exis-
tence or nonexistence of global solutions to equation (1) for p ∈ (pc(n),∞) or p ∈ (1, pc(n)],
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where pc(n) is the positive root of the quadratic equation

(n – 1)p2 – (n + 1)p – 2 = 0.

After that, there has been much work concerning this conjecture. We give a brief summary
here. To see the global existence of solutions to (3), one can refer to Glassey [3] for n =
2, Lindblad and Sogge [14] for n ≤ 8 for n ≥ 4; Georgiev, Lindblad, and Sogge [2] for
n ≥ 4 and pc < p ≤ n+3

n–1 . To see the finite time blow-up of solutions to (3), one can see
Glassey [4] for n = 2 and Sideris [15] for n ≥ 4, Yordanov and Zhang [21] and Zhou [23]
for n ≥ 4, Takamura and Wakasa [18] and Zhou and Han [25] for n ≥ 2 and the sharp
upper bound of the lifespan of the solution by using a different method, respectively. The
lifespan T(ε) of the solutions of (1) is the largest value such that solutions exist for x ∈R

n,
0 ≤ t < T(ε). To the best knowledge of the authors, there is little work concerning the
analog of the Strauss conjecture on cosmological spacetimes except the work of Lindblad
et al. [13]. They showed the global existence of solutions for the semilinear wave equation
on Kerr black hole backgrounds. Zhou and Han [24] first obtained a blow-up result on
semilinear wave equations with variable coefficients and boundary. Lai and Zhou [9, 10]
obtained finite time blow-up result for nonlinear wave equations in exterior domains. Yan
[19] verified this conjecture on blow-up result for semilinear wave equation in de Sitter
spacetimes. After that, Li, Li, and Yan [11] gave the blow-up results of semilinear damped
wave equation in de Sitter spacetimes. We refer the reader to [1, 5, 12, 22] for more related
results. In this paper, one of our main results is to study the blow-up result on quasilinear
wave equations with variable coefficients.

Another problem concerns the blow-up solution of nonlinear wave equation with expo-
nential type nonlinearity. The global existence of initial value problem for the nonlinear
wave equation with exponential type nonlinearity

utt(t, x) – �u(t, x) = u(t, x)eαu(t,x)2
, (t, x) ∈ (

R, R2) (2)

was studied by Ibrahim, Majdoub, and Masmoudi [6]. They showed that if the initial en-
ergy is small, then the nonlinear wave equation with exponential type nonlinearity is glob-
ally well-posed. Here α is a positive constant in (0, 4π ]. A scattering problem in the en-
ergy space for Klein–Gordon equations with nonlinearity of exponential growth in two
space dimensions was studied in [7]. Struwe [16] established the global well-posedness
of solutions to the Cauchy problem for the wave equations with exponential nonlineari-
ties in the super-critical regime of large energies for smooth and radially symmetric data.
Then, he [17] showed that the Cauchy problem for wave equations with critical expo-
nential nonlinearities in two space dimensions is globally well-posed for arbitrary smooth
initial data.

1.2 Main results
In this paper, we consider the following Cauchy problem with small initial data in n ≥ 2
space dimensions:

utt(t, x) – div
(
a(x)gradu(t, x)

)

= F
(∣∣u(t, x)

∣∣,
∣∣∇u(t, x)

∣∣,
∣∣�u(t, x)

∣∣) + λ0
∣∣ut(t, x)

∣∣p0 ,

t = 0 : u = εf (x), ut = εg(x),

(3)
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where (t, x) ∈R
+ ×R

n, a(x) is a positive smooth function,

F
(∣∣u(t, x)

∣∣,
∣∣∇u(t, x)

∣∣,
∣∣�u(t, x)

∣∣)

= O
(
λ1

∣∣u(t, x)
∣∣p1 + λ2

∣∣∇u(t, x)
∣∣p2 + λ3

∣∣�u(t, x)
∣∣p3),

Du = (ux0 , ux1 , . . . , uxn ), x0 = t,

DxDu = (uxk xl , k, l = 0, 1, . . . , n, k + l ≥ 1),

(4)

f (x), g(x) ∈ C
∞
0 (Rn), ε is a small parameter, λk (k = 0, 1, 2, 3) are nonnegative constants,

pk > 1. Here, for simplicity of notations, we write x0 = t.
We assume that compactly supported nonnegative data f and g satisfy

f (x), g(x) ≥ 0, f (x) = g(x) = 0 for |x| > 1. (5)

Here we give one of our main results.

Theorem 1 Let f , g be smooth functions with compact support f , g ∈ C
∞
0 and satisfy (5),

space dimensions n ≥ 2. Assume that problem (3) has a solution (u, ut) ∈C([0, T),H1(Rn)×
L

r(Rn)), a(x) > 0 and �a(x)
a(x) ∈ (0, C(1 + |x|2+δ)–1) is local Hölder continuous, where r =

max{2, p0} such that

supp(u, ut) ⊂ {
(t, x) : |x| ≤ 1 + t

}
,

and the index p0 > 1, p2 > 1, p3 > 1 and p1 satisfies

(1 + 2δ)
[
(n + 1)

(
1 – p–1

0
)

+ P–1
0

]
– (2 + n)

(
1 – p–1

0
)

< p1 < n
(
1 – p–1

0
)

+ (1 + 2δ)
[
(n + 1)

(
1 – p–1

0
)

+ P–1
0

]
.

Then the solution u(t, x) will blow up in finite time, that is, T < ∞. Moreover, we have the
following estimates for the lifespan T(ε) of solutions of (3): there exists a positive constant
C, which is independent of ε, such that

T(ε) ≤ C0ε
– p1(p0–1)(p1–1)

p0(p1+1)–2 ,

where C0 is a positive constant which is independent of ε.

Secondly, we consider the following problem:

utt(t, x) – �u(t, x) = u(t, x)
(
eu(t,x)2

+ eut (t,x)2)
, x ∈ R2, t > 0,

t = 0 : u = εf (x), ut = εg(x).
(6)

We assume that compactly supported nonnegative data f and g satisfy

f (x) = 0, g(x) ≥ 0, g(x) = 0 for |x| > 1. (7)
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Theorem 2 Let g be a smooth function with compact support g ∈ C
∞
0 (R2) and satisfy (7).

Assume that problem (6) has a solution (u, ut) ∈C([0, T),H1(R2) ×L
2(R2)) such that

supp(u, ut) ⊂ {
(t, x) : |x| ≤ 1 + t

}
.

Then the solution u(t, x) will blow up in finite time, that is, T < ∞. Moreover, we have the
following estimates for the lifespan T(ε) of solutions of (6): there exists a positive constant
C, which is independent of ε, such that

T(ε) ≤ C0ε
–2.

where C0 is a positive constant which is independent of ε.

The organization of this paper is as follows. In Sect. 2, we recall some blow-up criteria
on ODEs. Section 3 is devoted to proving the finite time blow-up of solutions for the
quasilinear wave equation (3) with variable coefficients. In the last section, the proof of
Theorem 2 is given.

2 Preliminaries
This section recalls some blow-up results for ordinary differential inequality. The first
relevant result on ODE was established by Sideris [15]. The following blow-up result can
be found in [18, 21] as Lemma 2.1.

Lemma 1 ([18]) Let p > 1, a > 0, and (p – 1)a = q – 2. Assume that G ∈C
2([0, T)) satisfies

G(t) ≥ Kta for t ≥ T0,

G′′(t) ≥ A(t + R)–q∣∣G(t)
∣∣p for t > 0,

G(0) > 0, G′(0) > 0,

where K , T0, A, and R denote positive constants with T0 ≥ R. Then T must satisfy T ≤ 2T1

provided that K ≥ K0, where

K0 =
{

1
2

q
2 a

√
B

p + 1

(
1 –

1
2aδ

)} –2
p–1

, T1 = max

{
T0,

G(0)
G′(0)

}
,

with arbitrarily chosen δ satisfying 0 < δ < p–1
2 and a fixed positive constant B.

A more general blow-up result was given in [19]. One can see Lemma 2.2 in [19] for
more details on the proof.

Lemma 2 ([19]) Let p > 1. Assume that G ∈C
2([0, T)) satisfies

G(t) ≥ Ka(t) for t ≥ T0, (8)

G′′(t) ≥ Ab–1(t + R)
∣∣G(t)

∣∣p for t > 0, (9)

G(0) > 0, G′(0) > 0, (10)



Li et al. Boundary Value Problems         (2020) 2020:59 Page 5 of 12

where K , T0, A, and R denote positive constants with T0 ≥ R, a(t) and b(t) are positive
strictly increasing smooth functions, and b– 1

2 (t + R)a
p–1

2 –δ(t) is a strictly decreasing smooth
function for t > 0, and there exist fixed t0 ≥ 2T1 and a positive constant K̃ such that

K̃a–δ(T1) ≤
∫ t0

T1

b– 1
2 (t + R)a

p–1
2 –δ(t) dt. (11)

Then T must satisfy T ≤ 2T1 provided that K ≥ K0, where

K0 =
(

δK̃
√

p + 1
A

) 2
1–p

, T1 = max

{
T0,

G(0)
G′(0)

}
(12)

with arbitrarily chosen δ satisfying 0 < δ < p–1
2 .

Now we have a new blow-up result.

Lemma 3 Let p > 1 and b1 – a1(p – 1) = 2. Assume that G ∈C
2([0, T)) satisfies

G(t) ≥ Kea1t for t ≥ T0, (13)

G′′(t) ≥ Aeb1(t+R)∣∣G(t)
∣∣p for t > 0, (14)

G(0) > 0, G′(0) > 0, (15)

where K , T0, A, and R denote positive constants with T0 ≥ R.
Then T must satisfy T ≤ 2T1 provided that K ≥ K0, where

K0 =
(

K̃ δ

√
p + 1

A

) 2
1–p

, T1 = max

{
T0,

G(0)
G′(0)

}
(16)

for arbitrarily chosen δ satisfying 0 < δ < p–1
2 , and a positive constant K̃ ≥ a1δe– 1

2 .

Proof We verify condition (11). Let t0 = 2T1. Then direct computation shows that

∫ t0

T1

b– 1
2 (t + R)a

p–1
2 –δ(t) dt

=
∫ 2T1

T1

e– 1
2 b1(t+R)+a1( p–1

2 –δ)t dt

= e– 1
2 b1R

(
–

1
2

b1 + a1

(
p – 1

2
– δ

))–1(
e(– 1

2 b1+a1( p–1
2 –δ))2T1 – e(– 1

2 b1+a1( p–1
2 –δ))T1

)

≥ K̃e–aδT1 ,

with K̃ ≥ a1δe– 1
2 . This completes the proof. �

It follows from Yordanov and Zhang [20] that we introduce φ0(x) ∈ C
2(Rn) and

φ1(x) =
∫

Sn–1
ex·ω dω ≥ 0,
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which are solutions of

�φ0(x) + V (x)φ0(x) = 0,

�φ1(x) + V (x)φ1(x) = φ1(x),

respectively. It is easy to see that φ0(x) �= φ1(x).
Then one can verify φ0(x) and φ1(x) (see [26]) such that

C–1 ≤ φ0(x) ≤ C, (17)

0 < φ1(x) ≤ Ce|x|(1 + |x|)– n–1
2 , n ≥ 2, (18)

φ1(x) ∼ Cne|x||x|– n–1
2 as |x| −→ ∞, (19)

where C is a positive constant.
Moreover, we introduce a test function

ψ1(t, x) = e–tφ1(x).

It is easy to see

�ψ1(t, x) = ψ1(t, x).

One can see [20, 21, 26] for more details.

3 Proof of Theorem 1
Rewrite the variable wave equation (3) as

utt(t, x) – �(
a(x)u(t, x)

)
+

(�a(x)
)
u(t, x)

= F
(∣∣u(t, x)

∣∣,
∣∣∇u(t, x)

∣∣,
∣∣�u(t, x)

∣∣) + λ0
∣∣ut(t, x)

∣∣p0 (20)

with the initial data (u0, u1) satisfying (5), where F takes the form of (4).
Define

G(t) =
∫

Rn
u(t, x)φ0(x).

Since 0 < �a(x)
a(x) < C(1 + |x|2+δ)–1 is local Hölder continuous, we derive

∫

Rn

(�(
a(x)u(t, x)

)
–

(�a(x)
)
u(t, x)

)
φ0(x) dx

=
∫

Rn

(
a(x)u(t, x)�φ0(x) –

(�a(x)
)
u(t, x)φ0(x)

)
dx

=
∫

Rn
a(x)u(t, x)

(
�φ0(x) –

�a(x)
a(x)

φ0(x)
)

dx

= 0. (21)
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So multiplying (20) both sides by φ0(x) and using (21), we have

G′′(t) =
∫

Rn
∂ttu(t, x)φ0(x) dx

=
∫

Rn
φ0(x)

(
F
(∣∣u(t, x)

∣∣,
∣∣∇u(t, x)

∣∣,
∣∣�u(t, x)

∣∣) + λ0
∣∣ut(t, x)

∣∣p0)dx

≥ λ0

∫

Rn
φ0(x)

∣∣ut(t, x)
∣∣p0 dx, (22)

where the last inequality is derived by noticing F(|u(t, x)|, |∇u(t, x)|, |�u(t, x)|) > 0 from
(4).

Similarly, by (4) and (17), we obtain

G′′(t) =
∫

Rn
φ0(x)

(
F
(∣∣u(t, x)

∣∣,
∣∣∇u(t, x)

∣∣,
∣∣�u(t, x)

∣∣) + λ0
∣∣ut(t, x)

∣∣p0)dx

≥ Cλ1

∫

Rn

∣∣u(t, x)
∣∣p1 dx. (23)

By the Hölder inequality, we have

∫

Rn
φ0(x)

∣∣ut(t, x)
∣∣p0 dx ≥

∣∣∣∣
∫

Rn
φ0(x)ut(t, x) dx

∣∣∣∣
p0(∫

|x|≤t+R
φ0(x) dx

)p0–1

≥ C
(
vol

(
Bn))–1(t + R)–n(p0–1)

∣∣∣∣
∫

Rn
φ0(x)ut(t, x) dx

∣∣∣∣
p0

.

Thus it follows from (22) that

G′′(t) ≥ λ0C
(
vol

(
Bn))–1(t + R)–n(p0–1)

∣∣∣∣
∫

Rn
φ0(x)ut(t, x) dx

∣∣∣∣
p0

= λ0C
(
vol

(
Bn))–1(t + R)–n(p0–1)∣∣G′(t)

∣∣p0 ,

which implies that

d
dt

∣∣G′(t)
∣∣1–p0 ≤ (1 – p0)λ0C–1(vol

(
Bn))–1(t + R)–n(p0–1). (24)

Integrating (24) over [0, t], we get

∣∣G′(t)
∣∣ ≥

(
λ0(p0 – 1)

n – 1
C–1(vol

(
Bn))–1

) –1
p0–1

(t + R)n+ 1
p0–1 . (25)

On the other hand, it follows from (22) that G′(t) =
∫
Rn ∂tu(t, x)φ0(x) dx is an increasing

function for t ≥ 0. Since g(x) ≥ 0 in (5), G(t) is also an increasing function for t ≥ 0. By
f (x) ≥ 0 in (5), we know that G(t) > 0. Thus it follows from (25) that

G(t) ≥
(

λ0(p0 – 1)
n – 1

C–1(vol
(
Bn))–1

) –1
p0–1

(
n – 1
p0 – 1

+ 1
)

(t + R)n+ 1
p0–1 +1. (26)
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On the other hand, by the Hölder inequality, we derive

G(t) =
∫

Rn
u(t, x)φ0(x) dx

≤
(∫

Rn

∣∣u(t, x)φ0(x)
∣∣p1

) 1
p1

(∫

|x|≤1+t
dx

)1– 1
p1

≤ C(1 + t)n(1– 1
p1

)
(∫

Rn

∣∣u(t, x)ψ0(x)
∣∣p1

) 1
p1

,

which combining with (17) gives that

C
∫

Rn

∣∣u(t, x)
∣∣p1 dx ≥

(∫

Rn

∣∣u(t, x)ψ0(x)
∣∣p1

)
dx ≥ (1 + t)–n(p1–1)Fp1

0 (t).

Then by (23) we obtain

G′′(t) ≥ Cλ1 (1 + t)–n(p1–1)Gp1 (t), ∀p1 > 1, (27)

where Cλ is a positive constant which depends on λ1.
Let

a1 = n +
1

p0 – 1
+ 1, b1 = n(p1 – 1). (28)

Next we apply Lemma 2 to prove our result. Let 0 < δ < min{ 1
n , p1–1

2 }. It follows from (26)–
(27) that (8)–(10) hold. The rest is to verify conditions (11) and (12). Substituting (28) into
(11), direct computation shows that if we take p0 > 1 and

(1 + 2δ)
[
(n + 1)

(
1 – p–1

0
)

+ P–1
0

]
– (2 + n)

(
1 – p–1

0
)

< p1 < n
(
1 – p–1

0
)

+ (1 + 2δ)
[
(n + 1)

(
1 – p–1

0
)

+ P–1
0

]
,

then (11) holds.
Taking a fixed positive constant K̃ such that

K̃ ≥
(

λ0(p0 – 1)
n – 1

C–1(vol
(
Bn))–1

) –p1+1
2δ(p0–1)

(
n – 1
p0 – 1

+ 1
) p1–1

2δ
(

p1 + 1
A

) 1
2δ

> 0,

then (12) holds.
Thus G(t) will blow up in finite time, then the solutions to problem (3) will blow up in

finite time. At last, we estimate the lifespan result. Since G′′(t) ≥ 0 and G′(0) ≥ 0, G(t) is
an increasing smooth function. So it holds

G(t) =
∫

Rn
u(t, x)φ0(x) dx ≥ ε

∫

Rn
f (x)φ0(x) dx ≥ Cε.

It follows from (27) that

G′′(t) ≥ (1 + t)–n(p1–1)εp1 , ∀p1 > 1.
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Furthermore, we have

T(ε) ≤ C0ε
– p1(p1–1)

(p1–1)a1–b1+2

≤ C0ε
– p1(p0–1)(p1–1)

p0(p1+1)–2 ,

where C0 is a positive constant which is independent of ε. We complete the proof of The-
orem 1.

4 Proof of Theorem 2
Then we consider the approximation equation of (6)

u(m)
tt (t, x) – �u(m)(t, x) = u(t, x)

(
e(u(m)(t,x))2

+ e(u(m)
t (t,x))2)

,

t = 0 : u(m) = 0, u(m)
t = εg(x),

(29)

where (t, x) ∈R
+ × R2 and m ∈N.

By the local existence of classical solutions, the solution to Cauchy problem (29) can
be approximated by Picard iteration. Set u(0) ≡ 0. Then u(0)

t ≡ 0. So by the positivity of
the fundamental solution of the wave operator in two space dimensions, we can prove
that u(m)(t, x) is a series of approximate solutions to (29) by induction. Let m −→ ∞, we
conclude that u(t, x) is a nonnegative solution to (6).

Let r = |x| and G(r) = 1
2 r 1

2 g(r), x ∈R
2. The radial symmetric form of equation (6) is

(∂tt – ∂rr)
(
r

1
2 u

)
=

1
4

r– 3
2 u + r

1
2 u

(
eu2

+ eu2
t
)

(30)

with initial data

t = 0 : r
1
2 u = 0, r

1
2 ut = εr

1
2 g(r). (31)

Using (31) and D’Alembert’s formula, for r > t, we have

r
1
2 u(t, r) = ε

∫ r+t

r–t
G(ξ ) dξ +

1
8

∫ t

0

∫ r+t–τ

r–t+τ

ξ– 3
2 u(τ , ξ ) dτ dξ

+
1
2

∫ t

0

∫ r+t–τ

r–t+τ

ξ
1
2 u(τ , ξ )

(
e(u(τ ,ξ ))2

+ e(ut (τ ,ξ ))2)
dτ dξ . (32)

Differentiating (32) with respect to t, we get

r
1
2 ut(t, r) = ε

(
G(r + t) + G(r – t)

)

+
1
8

∫ t

0

(
ξ– 3

2 u(τ , ξ )|ξ=r+t–τ + ξ– 3
2 u(τ , ξ )|ξ=r–t+τ

)
dτ

+
1
2

∫ t

0

(
ξ

1
2 u(τ , ξ )

(
e(u(τ ,ξ ))2

+ e(ut (τ ,ξ ))2)|ξ=r–t+τ

+ ξ
1
2 u(τ , ξ )

(
e(u(τ ,ξ ))2

+ e(ut (τ ,ξ ))2)|ξ=r+t–τ

)
dτ . (33)
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For t ≥ 1
2 and 1

4 < r – t ≤ 3
4 , by the form of G , it follows from (33) that

u(t, r), ut(t, r) ≥ Cεr– 1
2 . (34)

Let

G(t) =
∫

R2
u(t, x) dx.

Note that eu > u for u > 0. By (34), direct computation shows that

G′′(t) ≥
∫

R2
u(t, x)eu2(t,x)

≥
∫

R2
u3(t, x) dx, (35)

and

G′′(t) ≥
∫

R2
u(t, x)eu2

t (t,x)

≥
∫

R2
u(t, x)u2

t (t, x) dx

≥
∫

Cε3
∫ t+ 3

4

t+ 1
4

r– 3
2 · r dr

≥ Cε3(1 + t)– 1
2 ,

which implies that

G(t) ≥ Cε3(1 + t)
3
2 , t ≥ 1. (36)

Since ueu2 is a positive function, by the Hölder inequality, we derive

G(t) ≤
(∫

R2
u3(t, x) dx

) 1
3
(∫

|x|<1+t
dx

) 2
3

≤ C(1 + t)
4
3

(∫

R2
u3(t, x) dx

) 1
3

,

which combining with (35) gives that

G′′(t) ≥ C(1 + t)–4G3(t). (37)

Let

a1 =
3
2

, b1 = 4, p = 3.

It is easy to see that (16) holds for 0 < δ < 1
3 . Applying Lemma 1 to G(t), we know that G(t)

will blow up in finite time, then the solutions to problem (6) will blow up in finite time.
Furthermore, we have T(ε) ≤ C0ε

–2, where C0 > 0 is independent of ε. We complete the
proof of Theorem 2.
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5 Conclusion
In our paper, we show blow-up phenomena for two kinds of nonlinear wave equations,
i.e., nonlinear wave equation with with variable coefficient and wave equation with ex-
ponential type nonlinearity. The importance of our results is that if the null condition or
weak null condition cannot be satisfied, a perturbation of quasilinear term can destroy the
global well-posedness.
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