
Yuan and Feng Boundary Value Problems         (2020) 2020:61 
https://doi.org/10.1186/s13661-020-01358-9

R E S E A R C H Open Access

Finite time blow-up for the nonlinear
Schrödinger equation in trapped dipolar
quantum gases with arbitrarily positive
initial energy
Yi Yuan1 and Binhua Feng1*

*Correspondence:
binhuaf@163.com
1Department of Mathematics,
Northwest Normal University,
Lanzhou, China

Abstract
In this paper, we study the blow-up criterion for the following nonlinear Schrödinger
equation arising in trapped dipolar quantum gases:

i∂tu = –
1
2
�u + a2(x21 + x22 + x23)u + λ1|u|2u + λ2(K ∗ |u|2)u, (t, x) ∈ [

0, T∗) ×R
3.

When a = 0 or a �= 0, by constructing an invariant set, we establish a new blow-up
criterion, which implies the existence of blow-up solutions with arbitrarily large initial
energy. This result gives a positive answer to the problem left by Carles, Markowich,
and Sparber (Nonlinearity 21:2569–2590, 2008).

Keywords: Nonlinear Schrödinger equation; Trapped dipolar quantum gases;
Blow-up criterion

1 Introduction
In the recent years the so-called dipolar Bose–Einstein condensate, i.e., a condensate made
out of particles possessing a permanent electric or magnetic dipole moment, has attracted
much attention; see, e.g., [2, 3, 17, 22–24]. At a temperature much smaller than the critical
temperature, it is well described by the wave function u(t, x) whose evolution is governed
by the three-dimensional (3D) Schrödinger equation, see, e.g., [2, 3, 24, 35]:

i�∂tu = –
�

2

2m
�u + W (x)u + U0|u|2u +

(
Vdip ∗ |u|2)u, x ∈R

3, t > 0, (1.1)

where t is time, x = (x1, x2, x3)T ∈ R
3 is the Cartesian coordinates, ∗ denotes the convolu-

tion, � is the Planck constant, m is the mass of a dipolar particle, and W (x) = a2(x2
1 +x2

2 +x2
3)

is an external trapping potential, where a is the trapping frequency. U0 = 4π�2as/m de-
scribes the local interaction between dipoles in the condensate with as the s-wave scatter-
ing length (positive for repulsive interaction and negative for attractive interaction). The
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long-range dipolar interaction potential between two dipoles is given by

Vdip(x) =
μ0μ

2
dip

4π

1 – 3 cos2 θ

|x|3 , x ∈R
3, (1.2)

where μ0 is the vacuum magnetic permeability, μdip is the permanent magnetic dipole
moment, and θ is the angle between x ∈R

3 and the dipole axis n ∈R
3, with |n| = 1.

In order to simplify the mathematical analysis, we rescale (1.1) into the following dimen-
sionless Schrödinger equation:

⎧
⎨

⎩
i∂tu = – 1

2�u + W (x)u + λ1|u|2u + λ2(K ∗ |u|2)u, (t, x) ∈ [0, T∗) ×R
3,

u(0, x) = u0(x).
(1.3)

To simplify notation, we assume n = (0, 0, 1). The dimensionless long-range dipolar inter-
action potential K(x) then reads as follows:

K(x) =
x2

1 + x2
2 – 2x2

3
|x|5 , x ∈R

3.

We focus on the case when λ1 and λ2 ∈R fulfill the following conditions:

λ1 <

⎧
⎨

⎩

4
3πλ2, if λ2 > 0,

– 8
3πλ2, if λ2 < 0.

(1.4)

These conditions, following the terminology introduced in [8], define the unstable regime.
Because of important applications of equation (1.3) in physics, it has received much

attention both from physics (see [11, 26]) and mathematics (see [1–5, 7, 8, 18, 20, 21, 28]).
Carles, Markowich, and Sparber in [8] first studied the local well-posedness and proved
that the solution u(t) of (1.3) blows up in finite time in the unstable regime if the initial
energy is small. Ma, Cao, and Wang in [20, 21] studied the sharp thresholds of global
existence and blow-up, and proved that blow-up may occur if the initial energy E(u0) < d
for some d > 0. When W (x) = 0, Huang in [18] discussed the exact value of d by using
the precise characterization of ground states of (2.5). Similar sharp thresholds of global
existence and blow-up for other kinds of nonlinear Schrödinger equations are pursued
strongly in [9, 12–16, 32, 36–41].

To our knowledge, the key to showing the existence of blow-up solutions is to prove
J ′′(t) < 0 for all t ∈ [0, T∗), where J(t) =

∫
R3 |x|2|u(t, x)|2 dx. If the solution u(t) blows up in

finite time T∗, i.e., ‖∇u(t)‖L2 → ∞ as t → T∗, it follows from Lemma 2.2 that, for any
large E(u0) > 0, there exists δ > 0 such that J ′′(t) ≤ 6E(u0) –

∫
R3 |∇u(t, x)|2 dx < 0 for all

t ∈ [T∗ – δ, T∗). Therefore, a natural and interesting question is whether there exist blow-
up solutions with arbitrarily large initial energy. In particular, this is an open problem
presented by Carles, Markowich, and Sparber, see Remark 5.3 in [8]. This will be the focus
of the present paper. In fact, similar problems have been studied for other kinds of non-
linear evolutional equations, e.g., semilinear pseudo-parabolic equations and nonlinear
Klein–Gordon equations, see [6, 19, 25, 27, 29–31, 33, 34].

Motivated by the above paper, in this paper, by establishing a blow-up criterion and a
rather delicate analysis, we derive the existence of blow-up solutions with arbitrarily large
initial energy. In particular, our method holds in the cases of both a = 0 and a �= 0.



Yuan and Feng Boundary Value Problems         (2020) 2020:61 Page 3 of 9

Theorem 1.1 Let a ∈R, λ1,λ2 ∈R and satisfy assumption (1.4). Then, for any μ > 0, there
exists u0 ∈ Σ := {v ∈ H1 and |x|v ∈ L2} such that E(u0) = μ and the corresponding solution
u(t) of (1.3) blows up in finite time.

Notation. Throughout this paper, for notational convenience, we use the following no-
tation:

F(u) := –λ1

∫

R3

∣
∣u(x)

∣
∣4 dx – λ2

∫

R3

(
K ∗ |u|2)(x)

∣
∣u(x)

∣
∣2 dx for all u ∈ H1.

Let u(t) be the solution of (1.3), we denote

J(t) :=
∫

R3
|x|2∣∣u(t, x)

∣∣2 dx, θ (t) :=
√

J(t).

2 Preliminaries
In this section, we recall some preliminary results that will be used later. Firstly, let us
recall the local theory for Cauchy problem (1.3) established in [8].

Lemma 2.1 ([8]) For a,λ1,λ2 ∈ R, u0 ∈ X := {v ∈ H1, and
∫
R3 W (x)|v(x)|2 dx < ∞}, there

exists T = T(‖u0‖X) such that (1.3) admits a unique solution u ∈ C([0, T], X). Let [0, T∗)
be the maximal time interval on which the solution u(t) is well defined, if T∗ < ∞, then
‖u(t)‖X → ∞ as t → T∗. Moreover, the solution u(t) enjoys conservation of mass and en-
ergy, i.e., ‖u(t)‖L2 = ‖u0‖L2 and E(u(t)) = E(u0) for all t ∈ [0, T∗), where E(u(t)) is defined
by

E
(
u(t)

)
=

1
2
∥∥∇u(t)

∥∥2
L2 +

∫

R3
W (x)

∣∣u(t, x)
∣∣2 dx –

1
2

F
(
u(t)

)
. (2.1)

In order to prove the existence of blow-up solution, we need the following virial identity,
which can be proved by a similar argument as that in [9].

Lemma 2.2 ([8]) Let u0 ∈ Σ and u(t) be the solution of (1.3). Then function J(t) belongs
to C2[0, T∗), and

J ′(t) = 2 Im
∫

R3
xū(t, x)∇u(t, x) dx, (2.2)

J ′′(t) = 2
∥∥∇u(t)

∥∥2
L2 – 4

∫

R3
W (x)

∣∣u(t, x)
∣∣2 dx – 3F

(
u(t)

)
. (2.3)

Next, we recall the sharp Gagliardo–Nirenberg type inequality established in [1].

Lemma 2.3 ([1]) Let λ1,λ2 ∈R and satisfy assumption (1.4). Then, for all u ∈ H1,

F(u) = –λ1

∫

R3

∣∣u(x)
∣∣4 dx – λ2

∫

R3
K ∗ ∣∣u(x)

∣∣2∣∣u(x)
∣∣2 dx ≤ C

3
2

opt‖∇u‖3
L2‖u‖L2 , (2.4)

where the sharp constant Copt = F(Q)
2
3

‖Q‖2/3
L2 ‖∇Q‖2

L2
and Q is the ground state of the following el-

liptic equation:

–
1
2
�Q + Q + λ1|Q|2Q + λ2

(
K ∗ |Q|2)Q = 0. (2.5)
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Moreover, the following Pohozaev’s identities hold true:

‖∇Q‖2
L2 =

3
2

F(Q) = 6‖Q‖2
L2 . (2.6)

From (2.6) and (2.1), we can obtain the following useful result:

E(Q) =
1
4

F(Q) +
∫

R3
W (x)|Q|2 dx. (2.7)

Thus, Copt can be rewritten as

Copt =
(

2
3

) 2
3 (6E(Q) – 6

∫
R3 W (x)|Q|2 dx)– 1

3

‖Q‖2/3
L2

. (2.8)

Lemma 2.4 ([10]) Let a ∈R, λ1,λ2 ∈ R and satisfy assumption (1.4). Then, for any u ∈ Σ ,
it holds

(
Im

∫

R3
xū∇u dx

)2

≤
∫

R3
|x|2|u|2 dx

(∫

R3
|∇u|2 dx –

F(u) 2
3

Copt‖u‖ 2
3
L2

)
. (2.9)

The proof is similar to the one in [10], so we omit it.

3 Invariant evolution flow
In this section, we construct a set which is invariant under the flow generated by Cauchy
problem (1.3).

Proposition 3.1 Let a ∈R, λ1,λ2 ∈R and satisfy assumption (1.4). Taking an initial data
u0 ∈ Σ such that 4E(u0) > 8

27C3
opt‖u0‖2

L2
and θ ′(0) ≤ –

√
ym
2 , where ym = 4E(u0) – 8

27C3
opt‖u0‖2

L2
.

Define the set K by

K =
{

v ∈ H1, F(v) >
8

27C3
opt‖v‖2

L2

}
.

If u0 ∈ K , then the corresponding solution u(t) ∈ K for all t ∈ [0, T∗).

Proof Let u0 ∈ K and u(t) be the corresponding solution of (1.3). We deduce from u0 ∈ K
and (2.1) that

2‖∇u0‖2
L2 + 4

∫

R3
W (x)

∣∣u0(x)
∣∣2 dx – 3F(u0) < 4E(u0) –

8
27C3

opt‖u0‖2
L2

. (3.1)

In fact, with the notation of ym and J ′′(0), formula (3.1) implies that J ′′(0)
2 < ym

2 . This com-

bined with the assumption θ ′(0) ≤ –
√

ym
2 implies that

θ ′′(0) =
1

θ (0)

(
J ′′(0)

2
–

(
θ ′(0)

)2
)

< 0. (3.2)
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This implies that there exists t0 > 0 such that θ ′′(t) < 0 for all t ∈ [0, t0]. We then deduce
that θ ′(t) < θ ′(0) < –

√
ym
2 , and so

(
θ ′(t)

)2 >
ym

2
, t ∈ [0, t0]. (3.3)

Next, using (2.1), (2.3), and the conservation of energy, we derive that

F
(
u(t)

)
= 4E(u0) – J ′′(t) – 8

∫

R3
W (x)

∣∣u(t, x)
∣∣2 dx, (3.4)

∥∥∇u(t)
∥∥2

L2 = 6E(u0) – J ′′(t) – 10
∫

R3
W (x)

∣∣u(t, x)
∣∣2 dx. (3.5)

Applying (3.4), (3.5), conservation of mass, and the definition of J ′(t) in (2.2), we deduce
from Lemma 2.4 that

(
J ′(t)

)2 ≤ 4J(t)
{

6E(u0) – J ′′(t) – 10
∫

R3
W (x)

∣∣u(t, x)
∣∣2 dx

–
1

Copt‖u0‖2/3
L2

(
4E(u0) – J ′′(t) – 8

∫

R3
W (x)

∣
∣u(t, x)

∣
∣2 dx

) 2
3
}

< 4J(t)
{

6E(u0) – J ′′(t) – 8
∫

R3
W (x)

∣∣u(t, x)
∣∣2 dx

–
1

Copt‖u0‖2/3
L2

(
4E(u0) – J ′′(t) – 8

∫

R3
W (x)

∣
∣u(t, x)

∣
∣2 dx

) 2
3
}

.

We consequently obtain

(
θ ′(t)

)2 =
(J ′(t))2

4J(t)
≤ η

(
J ′′(t) + 8

∫

R3
W (x)

∣
∣u(t, x)

∣
∣2 dx

)
, (3.6)

where

η(y) = 6E(u0) – y –
(4E(u0) – y) 2

3

Copt‖u0‖2/3
L2

. (3.7)

Now, we deduce from (3.3) and (3.6) that

η

(
J ′′(t) + 8

∫

R3
W (x)

∣
∣u(t, x)

∣
∣2 dx

)
>

ym

2
= η(ym)

for all t ∈ [0, t0]. Thus J ′′(t) + 8
∫
R3 W (x)|u(t, x)|2 dx �= ym for all t ∈ [0, t0]. By continuity,

it follows that J ′′(t) + 8
∫
R3 W (x)|u(t, x)|2 dx < ym for all t ∈ [0, t0], which, together with

(2.3) and the definition of ym, implies F(u(t)) > 8
27C3

opt‖u0‖2
L2

for all t ∈ [0, t0]. Moreover,

θ ′′(t0) = 1
θ (t0) ( J ′′(t0)

2 – (θ ′(t0))2) < –4
∫
R3 W (x)|u(t0,x)|2 dx

θ (t0) ≤ 0. Therefore, applying an elementary
Bootstrap argument, we can obtain

F
(
u(t)

)
>

8
27C3

opt‖u0‖2
L2

=
8

27C3
opt‖u(t)‖2

L2

for all t ∈ [0, T∗). This completes the proof. �
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4 Existence of blow-up solutions
In this section, we use the same notations as in Sect. 3 and prove Theorem 1.1. Firstly, we
establish the following blow-up criterion for (1.3).

Theorem 4.1 Let a ∈R, λ1,λ2 ∈R and satisfy assumption (1.4). Assume that u0 ∈ Σ such
that J ′(0) ≤ 0. If

4‖u0‖2
L2 E(u0) > ‖Q‖2

L2 F(Q), (4.1)

‖u0‖2
L2 F(u0) > ‖Q‖2

L2 F(Q), (4.2)

E(u0)‖u0‖2
L2

(
1 –

(J ′(0))2

8E(u0)J(0)

)
≤ ‖Q‖2

L2

(
E(Q) –

∫

R3
W (x)|Q|2 dx

)
, (4.3)

then the solution u(t) of (1.3) blows up in finite time.

Proof Firstly, it follows from (2.7) and (4.1) that ‖u0‖2
L2 E(u0) > ‖Q‖2

L2 (E(Q) –
∫
R3 W (x) ×

|Q|2 dx). On the other hand, by (2.8) and the definition of ym, we can obtain

‖u0‖2
L2

(
E(u0) –

ym

4

)
= ‖Q‖2

L2

(
E(Q) –

∫

R3
W (x)|Q|2 dx

)
. (4.4)

These imply that (4.1) is equivalent to ym > 0, and (4.3) is equivalent to

(
θ ′(0)

)2 ≥ η(ym) =
ym

2
. (4.5)

In addition, the assumption J ′(0) ≤ 0 implies θ ′(0) ≤ 0. In view of (2.7) and (4.4), assump-
tion (4.2) yields the estimate

‖u0‖2
L2 F(u0) > 4‖Q‖2

L2

(
E(Q) –

∫

R3
W (x)|Q|2 dx

)
= 4‖u0‖2

L2

(
E(u0) –

ym

4

)
,

which, together with (3.4), implies

J ′′(0) + 8
∫

R3
W (x)

∣∣u0(x)
∣∣2 dx < ym. (4.6)

Therefore, F(u0) > 8
27C3

opt‖u0‖2
L2

. It follows from Proposition 3.1 that F(u(t)) > 8
27C3

opt‖u0‖2
L2

for

all t ∈ [0, T∗). Moreover, we know from the proof of Proposition 3.1 that (θ ′(t))2 > ym
2 for

all t ∈ [0, T∗). We consequently obtain

θ ′′(t) =
1

θ (t)

(
J ′′(t)

2
–

(
θ ′(t)

)2
)

< 0 for all t ∈ [
0, T∗). (4.7)

This implies that the solution u(t) of (1.3) blows up in finite time. If not, i.e., T∗ = +∞, it
follows from θ ′(0) ≤ 0 and (4.7) that

θ (t) = θ (1) +
∫ t

1
θ ′(s) ds < θ (1) + θ ′(1)(t – 1) < 0,

for sufficiently large t, which is a contradiction with θ (t) > 0 for all t ∈ [0, T∗). �
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Finally, we give the proof of Theorem 1.1.

Proof of Theorem 1.1 We claim that the result in Theorem 4.1 can be valid for arbitrarily
large energy. Let v0 = γ 2Q(γ x) for γ > 0. By some simple calculations, we have

‖v0‖2
L2 = γ ‖Q‖2

L2 , F(v0) = γ 5F(Q),

and

E(v0) =
γ 3

2
‖∇Q‖2

L2 +
1
γ

∫

R3
W (x)|Q|2 dx –

γ 5

2
F(Q).

These yield

4‖v0‖2
L2 E(v0) ≤ ‖Q‖2

L2 F(Q) and ‖v0‖2
L2 F(v0) > ‖Q‖2

L2 F(Q) (4.8)

for sufficiently large γ > 0.
Let u0(x) = eiλ|x|2 v0(x) with λ < 0 and u(t) be the corresponding solution of (1.3). It easily

follows that

‖u0‖2
L2 = ‖v0‖2

L2 and E(u0) = E(v0) + 2λ2‖xv0‖2
L2 + 2λ Im

∫

R3
v̄0x · ∇v0 dx, (4.9)

Im
∫

R3
ū0x · ∇u0 dx = Im

∫

R3
v̄0x · ∇v0 dx + 2λ‖xv0‖2

L2 . (4.10)

Combining (4.9) and (4.10), we further infer

E(u0) –
(Im

∫
R3 ū0x · ∇u0 dx)2

2‖xu0‖2
L2

= E(v0) –
(Im

∫
R3 v̄0x · ∇v0 dx)2

2‖xv0‖2
L2

,

which implies (4.3). In addition, due to (4.8), the estimate (4.2) also holds. Choosing suffi-
ciently small λ ∈ (–∞, 0), we deduce from formulas (4.9) and (4.10) that

4‖u0‖2
L2 E(u0) > ‖Q‖2

L2 F(Q) and Im
∫

R3
xū0∇u0 dx < 0.

Applying Theorem 4.1, the solution u(t) of (1.3) with initial data u0 blows up in finite time.
On the other hand, we see from (4.9) that E(u0) → +∞ as λ → –∞. Therefore, the initial
energy can be arbitrarily large. This completes the proof. �

5 Conclusions
In this paper, we study the existence of blow-up solutions for the nonlinear Schrödinger
equation arising in trapped dipolar quantum gases with arbitrarily large initial energy. We
consider two cases, one is that the system is free, the other is that a harmonic potential is
added. In both cases, by constructing an invariant set, we establish a new blow-up crite-
rion, which implies the existence of blow-up solutions with arbitrarily large initial energy.
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